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Abstract: Facial expression is the crucial component for human beings to express their mental state 

and it has become one of the prominent areas of research in computer vision. However, the task 

becomes challenging when the given facial image is non-frontal. The influence of poses on facial 

images is alleviated using an encoder of a generative adversarial network capable of learning pose 

invariant representations. State-of-art results for image generation are achieved using styleGAN 

architecture. An efficient model is proposed to embed the given image into the latent vector space of 

styleGAN. The encoder extracts high-level features of the facial image and encodes them into the 

latent space. Rigorous analysis of semantics hidden in the latent space of styleGAN is performed. 

Based on the analysis, the facial image is synthesized, and facial expressions are recognized using an 

expression recognition neural network. The original image is recovered from the features encoded in 

the latent space. Semantic editing operations like face rotation, style transfer, face aging, image 

morphing and expression transfer can be performed on the image obtained from the image generated 

using the features encoded latent space of styleGAN. ܮଶ	feature-wise loss is applied to warrant the 

quality of the rebuilt image. The facial image is then fed into the attribute classifier to extract high-

level features, and the features are concatenated to perform facial expression classification. 

Evaluations are performed on the generated results to demonstrate that state-of-art results are achieved 

using the proposed method.  

Keywords: computer vision; deep learning; facial expression recognition; convolutional neural 

network; human-robot interaction; generative adversarial network 
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Abbreviations: CNN: Convolutional neural network; GAN: Generative adversarial network; 

StyleGAN: Style based generative adversarial network; DNN: Deep neural network; AI: Artificial 

intelligence; SIFT: Scale invariant feature transform; LBP: Local binary pattern; HOG: Histogram of 

oriented gradients; FFHQ: Flickr-Faces-HQ dataset; ResNet: Residual neural network; CK: Cohn-

Kanade dataset; RNN: Residual neural network; JAFFE: The Japanese female facial expression; VGG: 

Visual geometry group; AdaIn: Adaptive instance normalization. 

1. Introduction 

Cognitive science and affective computing are the two critical areas demanding significant 

research for expression analysis of facial images[1–3]. Human beings convey their emotional states 

using facial expressions. Hence, determining these facial expressions has become crucial in emotion 

robots, non-verbal human behavior [4], human-robot interaction [5–8], and sentiment analysis [9]. 

However, facial expression recognition remains challenging in the wake of pose variations under 

uncontrolled circumstances. This work's ultimate goal is to perform facial expression recognition by 

considering seven different facial expressions like angry, surprise, happy, disgust, sad, neutral and 

fear. Several works have already been established in facial expression recognition. Still, most of the 

works administer hand-engineered features like HOG [10,11] SIFT [12], and LBP [13] for facial 

feature extraction and considered only frontal views of the faces for emotion recognition. It is 

computationally challenging and complex to use these hand designed feature extraction techniques 

for facial emotion recognition. 

This work proposes a DNN model for facial emotion recognition. DNN is a multilayer perceptron 

with several hidden layers built between the input and output layers. With the advancements in the 

regularization and optimization techniques, DNN can learn large and complex data representations. 

With additional research and fine-tuning of DNN, supervised learning models, namely CNN and RNN, 

and other unsupervised learning models, namely Autoencoders and Boltzmann machine, were 

developed [14,15]. Generative models are considered to be one of the important classes of DNN [16].  

Generative adversarial network are generative models that estimate the density function of the 

data distribution. GAN is built with two adversarial networks, namely generator and discriminator. 

The generator and the discriminator are designed to play a minimax game. The generator generates 

realistic samples to deceive the discriminator, which classifies the real and the fake samples. The 

performance of the generator and the discriminator constantly improves with training and each of them 

trying to win the minimax game [17]. When the discriminator cannot identify the real and the fake 

samples, the generator is said to have learned the data distribution. 

Evolution of GAN in 2014 have opened new opportunities for many state-of-art applications 

including image to image translation [18–20], text to image translation [21,22], image to text translation, 

and facial expression recognition [23,24]. In all these use cases generator generates realistic images and 

the discriminator identifies the fake images. The idea behind GANs is to perform adversarial training 

to learn the representations from a latent space and map them to real data distribution. Many new 

architectures of GAN models were proposed based on the basic GAN architecture. Since GAN's 

evolution, human faces generated by various GAN models have seen progressive improvement in the 

quality and resolution. StyleGAN is proposed based on GAN architectures and it is a state-of-art GAN 

model for generating high-resolution photorealistic images [25,26].  
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Latent space vectors are poorly explored in existing researches. In contrast, this work explores 

the latent space vector of styleGAN to synthesize the non-frontal facial image retaining its expression 

and identity. The latent space concept has enormous uses in deep learning, from learning the features 

of the data to simplifying the representation of data for finding the data patterns. All the important 

information necessary to represent the data is hidden in the latent representation. In other words, the 

model learns features of data to simplify the representation for easier analysis. It makes it easier to 

understand the data points' structural similarities or patterns by analyzing data in the latent space. As 

the latent representations have the data in its compressed form and carry only the important information, 

the processing is faster when compared to other classical approaches. Enough research was not 

performed on connecting the latent representations of images to semantic attributes for editing the 

image. The proposed model interprets the latent space of styleGAN, which is trained for face synthesis. 

This work is split up into two phases wherein the synthesis of facial image is performed using a well-

trained GAN latent space vector. The second phase involves modeling a neural network for facial 

expression recognition. This work 

(i) Explores the latent space of styleGAN and identifies the relationship between the latent 

representations and semantic attributes of the output.  

(ii) Rigorously analyses the capability of GANs to map the latent vectors to high-resolution images. 

(iii) Presents an efficient model for generating non-frontal facial images preserving the identity and 

expression of the face. 

(iv) It provides insight to the researchers about how a random distribution is mapped to a high-quality 

semantic image and how to interpret the semantics of latent space and use the latent space vectors for 

various applications. 

The remainder of the paper is organized as follows. In Section II, existing works relevant to 

emotion recognition and GAN are presented. In Section III, the architecture of the proposed method is 

described. In Section IV, experimental results are discussed with performance analysis. Finally, in 

Section V, the paper is concluded with a discussion about future work.  

2. Related works 

Existing works analyses on generating high-resolution images from ground truth [27–29], 

however, very few works exist on analyzing the capability of GANs concerning latent space. Radford 

et al. [30] were the first to propose that GANs learn various semantic attributes in the hidden latent 

space. Mirza M et al. [31] proposed a model to generate images using disentangled latent vectors and 

labeled attributes. This model is extended with a customized loss function and semantic attributes to 

improve the synthesis quality [32–34]. Arvanitidis et al. [35] proposed a model to vary the output 

smoothly through latent space interpolation. Some works were also performed in the reverse direction 

by generating the latent space from the image space [36,37]. Wang et al. [38] performed facial 

expression recognition using an unsupervised domain adaptation method with four datasets, namely 

FER2013, CK+, MMI, and JAFFE. Seven different emotions, anger, happy, fear, sad, disgust, surprise 

and neutral, were recognized using the developed model. This model for expression recognition was 

built using Alexnet and VGG11. The facial images from CK+, MMI, and JAFFE datasets are cropped, 

while the images from FER2013 were resized to 224 × 224 as the original images were too small, 

measuring 48 × 48. Stochastic gradient descent was used during training. Zhang et al. [39] proposed a 

feature learning model based on DNN for facial expression recognition. The proposed method 
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extracted features from facial images using SIF method. A feature matrix is arrived using the extracted 

SIFT features and passed as input to DNN model for expression classification. The DNN model 

explores the relationship between the SIFT and their semantic features. The proposed model learns the 

features corresponding to facial expressions.  

Yang et al. [40] extracted features suitable for classifying facial expressions using a weighted 

mixture DNN model. Rotation rectification, data augmentation, and face detection are implemented 

on the input data. The proposed model processed the grayscale images and LBP facial images. Features 

of the images are extracted using the VGG16 model. Features of the LBP image are extracted using 

CNN. The models' outputs are combined in a weighted manner, and the classification is performed 

using softmax. Kim et al. [41] developed a facial expression recognition system using deep hierarchical 

learning. The proposed model utilizes two networks: appearance feature-based and geometric feature-

based networks, to extract holistic features and coordinate action units. An autoencoder is designed to 

generate a neutral expression facial image. Dynamic facial features are extracted between the 

emotional and neutral expression facial image. Zhang et al. [42] used a deep identity network for 

identifying faces. A deep learning framework based on local facial patches and multi-scale global 

images was proposed for facial expression recognition. The proposed model localized the foreground 

image from the background image. Face part patches are generated with local and global identity 

information. The generated face patches are fed into CNN to perform facial expression classification.  

Ferreira et al. [43] proposed a DNN architecture with loss functions based on the fact that 

expressions are associated with facial muscles' movement. The loss function regularizes the learning 

process to make the proposed DNN learn features that are specific to an expression. The model 

identifies the face components, namely nose, eyes, eyebrows and mouth and expression wrinkles to 

recognize the facial expression. Also, the model is also capable of learning expression-specific features 

and facial relevance maps. González-Lozoya et al. [44] improved generalization in facial expression 

recognition by fusing the instances extracted from different facial databases. The proposed method is 

capable of recognizing micro-expressions. Facial expression recognition is performed using face 

detection from the facial image, facture extraction using CNN and modeling. In a nutshell, the 

proposed model is a prototype system for facial expression recognition and micro-expression 

recognition for analyzing videos.  

Deng et al. [6] proposed a conditional GAN-based approach. The proposed approach individually 

controls the facial expression. It simultaneously learns the generative and discriminative 

representations. Similarly, Cai et al. [23] proposed a Condition GAN-based approach to reduce the 

inter-subject variations for expression recognition from facial images. Yang et al. [45] proposed a 

feature separation model for facial expression recognition tasks. The feature separation is achieved 

through partial feature exchange and various constraints. Liong et al. [46] proposed four steps: facial 

landmarks annotations, optical flow guided image computation, feature extraction, and emotion class 

categorization. Here, GAN is used to perform data augmentation to generate more image samples. Wu 

et al. [47] proposed a Cascade Expression Focal GAN to perform progressive facial expression editing 

with local expression focuses. This approach preserved identity-related features and details around the 

nose, eyes and mouth.  

The current work extracts the pose component, identity component and expressive component 

from the facial image. The extracted expressive component is used to perform facial expression 

recognition. This work exploits the latent representation of the facial image to analyze the semantic 

contents of the image. The model identifies the relationship that exists between the latent vector and 
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the semantics of the image. GAN-based face synthesis is performed by controlling the facial attributes 

and preserving the identity. A new approach is proposed for performing emotion classification based 

on GAN and fine-tuned VGG19 model. The emotions are classified into seven classes namely anger, 

fear, sad, happy, disgust, surprise and neutral. Given any multi-pose facial image, the latent vector is 

obtained and passed through a generator to generate the facial image. Facial features are extracted 

from the generated image and the non-frontal facial image. The difference is calculated as loss, and 

gradient descent is applied to reduce the loss. The gradients are backpropagated and images are fine-

tuned until the image very close to the input image is obtained. The facial image is then passed 

through facial expression recognition neural network to perform emotion classification. The 

expression recognition neural network is a deep CNN model which extracts high-level facial features 

and predicts the output as a probability of seven classes. The features extracted from the latent 

representation are concatenated with features extracted by the deep CNN model and facial 

expression classification is performed. 

3. Materials and methods 

When a generative model is trained on a dataset, the model discovers the data's underlying 

structure. Given that the model has discovered the underlying structure, it can be utilized to perform a 

variety of applications. This work explores the extent to which the latent space interpolation can 

navigate the visual world, like manipulating an image of a female to look like a male, making an image 

with neutral expression to smile, face aging and more. The basic science behind encoder-decoder is 

that an encoder encodes the pixel space into the latent vector space. The decoder decodes the available 

information from the latent space vector to rebuilt the actual input. The latent space contains the actual 

input in a compressed version of the actual data at a lower dimension when compared to the pixel 

space. It has only the information that is required to reconstruct the actual input from the latent space 

vector. A generator in the GAN architecture exploits the latent space and maps the latent vector to the 

output [48]. Mapping performed by the generator varies for every epoch. By using the random points 

in the latent vector space, the generator generates a new image. Figure 1 shows the mapping network 

that maps the latent space vector to another intermediate vector fed to the image synthesis network. 

This work involves exploiting the latent space of styleGAN trained on Flickr Faces High-Quality 

Dataset (FFHQ). Vector arithmetic operations are performed on the points in the latent space to 

generate images. The random vector from the latent space is passed as input to the generator model. 

The size of the latent space and the points are the input samples for the generator. The generator model 

returns the generated images as output. The number of epochs required for training is arbitrary and it 

can be increased if the quality of the images generated is to be improved. 

Traditionally the generator gets a random noise vector as input. The random noise is fed into a 

bunch of up-sampling networks until the desired image is generated. In contrast to the traditional 

approach, the styleGAN generator has a mapping network ݂ as shown in Figure 1, which takes a 

random sample ݖ	 ∈ 	ܼ	as the input and transforms into an intermediate vector called ݓ ∈ ܹ. The 

disentanglement observed at the ܹ space is much stronger than the disentanglement observed at ܼ 

space. Unlike ܼ , ܹ  is not restricted to a specific distribution and it can better understand the 

underlying features of the real data. Since the disentanglement in ܹ space is much superior to ܼ space, 

attribute editing is far better with ܹ space. The distribution of vector ݓ is not required to be Gaussian, 

and rather it can be any other distribution. 
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Figure 1. Mapping network. 

Hence, the actual generator architecture of styleGAN does not start with a random noise vector, 

rather starts from a constant vector. This constant vector is optimized during the training. The vector ݓ is plugged into multiple layers of the generative architecture using a blending layer called AdaIN. 

During training, in addition, the vector ݓ	noise is also added to these parameters. The general principle 

of a generative model is that its latent space learns the underlying structure. The structure learnt by the 

generative model is unsupervised during the adversarial training process. In order to leverage this 

structure, the image in the latent space is manipulated instead of manipulating in pixel space. 

Manipulating the image in pixel space is complicated. To simplify this, the image in latent space is 

manipulated. The latent vector is determined in the latent space to perform this manipulation for a 

given query image. Two different methodologies can be adapted to determine the latent vector. 

1) Given that the generator model is a fully differentiable neural network, a random latent code 

is passed through the differentiable generator and generated images. The generated image is compared 

with the query image by calculating the loss 2ܮ, which is the pixel difference of the two images. The 

gradients are backpropagated through the generator and update the latent vector at the generator 

model's beginning. By applying gradient descent on the pixel lose 2ܮ, the optimal latent vector is 

generated. But, considering the 2ܮ pixel loss alone will generate an image that is not very close to the 

query image. The optimization may get stuck in the local minima. To overcome this issue, a trained 

classifier is used as a lens to look at the image. Both the generated image and the query image are 

sent through a trained VGG network that was trained to classify ImageNet images. Instead of 

traveling through the entire VGG network until the classification, the feature vectors are distilled 

from the fully connected layers. These feature vectors give a high-level semantic representation of 

the facial image content. 

2) Sampled random vectors are passed through generators to generate faces. With the dataset 

generated, a ResNet (Residual Network) is trained to obtain the image's latent code. Given a query 
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image, it is passed through a ResNet model, which gives an initial estimate of the latent vector in the 

styleGAN network. This latent vector is taken and passed through a generator to generate an image. 

On the generated image, a pre-trained VGG network is used to extract features from the image. 

Similarly, the VGG network is applied to the query image, and high-level features are extracted from 

the query image. Loss 2ܮ is calculated in the VGG feature space. L2 distance is minimized in the 

feature space using gradient descent. The gradients are then back-propagated through the generator 

network until the latent code. During this optimization process, the generator weights are fixed. Only 

the latent code at the input end is updated. Finally, an optimized image is generated, which is very 

close to the query image.  

This work adopted the second approach to obtain the latent code. The flowchart for the overall 

approach is represented in Figure 2. 

 

Figure 2. Flowchart for facial expression recognition. 

The latent vector is sampled and pass it through the generator to obtain the image. A classifier is 

applied on the generated on the facial image generated to extract the attributes. A syleGAN latent 

space has 512 dimensions. Figure 3 shows the schematic illustration of facial expression recognition 

of a non-frontal facial image. Given a facial image with expression, the corresponding identity, pose 

and expressive components are extracted through an encoder. The extracted components are 

concatenated and sent to the decoder. This is performed to distill the expressive component from the 

facial image to classify the expressions. Facial expression recognition is performed in two phases. The 

two phases are separated by the dotted rectangular box in the schematic illustration. The first phase 

involves determining the latent vector of the given query image. The second phase involves extracting 

high-level facial attributes and facial expression recognition using an expression recognition neural 
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network. Six different basic emotions, namely happy, sad, angry, fear, disgust, and surprise, are 

recognized. Facial images with no expression are classified as neutral. The drawback with the current 

work is the proposed model does not handle the images in a noisy environment. The future work may 

explore facial expression recognition on an unconstrained expression dataset with a noisy environment 

and explore the real-time applications of facial expression recognition. 

 

Figure 3. Schematic illustration of facial expression recognition from a non-frontal face. 

(i) The latent code is obtained using the ResNet. With the initial latent codes, gradient 

descent optimization is performed. (ii) Using a neural network, facial features are obtained 

and facial expression is classified.  

The overall framework involves extracting the attributes such as pose, expression and identity. 

Let ௜ܺbe the input sample, ܧ௘௡௖௢ௗ௘௥ be the encoder and ܦௗ௘௖௢ௗ௘௥ be the decoder. The encoder and 

decoder are built with multiple convolutional layers to map the attributes into the latent vector and to 

recover the image back from the latent vector, which is represented as,  

ොݔ  ൌ ௘௡௖௢ௗ௘௥ሺܧௗ௘௖௢ௗ௘௥൫ܦ ௜ܺሻ൯ ൌ  ௗ௘௖௢ௗ௘௥ሺܼሻ (1)ܦ

Where, ௜ܺ	is the input sample, ݔො is the reconstructed image, ܧ௘௡௖௢ௗ௘௥ is the encoder that encodes the 

given input to the latent space, ܦௗ௘௖௢ௗ௘௥  is the decoder that decodes the latent vector back to the 

original input and ܼ is the latent space vector. 

In terms of latent space, the ultimate goal is to maneuver latent space to achieve a given image's 

transformations. The model generator is formulated to map the given latent space to the image space ࡳ: ࢆ → ࢆ .ࡵ ⊆ Թ࢔, where Թ௡ denotes n-dimensional latent space. Here, ࡳ	is the generator, ࢆ is the 

latent space and ࡵ is the image space. ࢠ ∈ ࢏ is a latent space vector and ݖ where ,ࢆ ∈  is a ࢏ where ,ࡵ
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sample in the image space. Figure 4 shows the generative network, where a random sample from a 

given distribution is passed to the generator G. The generator generates image i, and the loss ܮଶ is 

calculated as the feature-wise difference between the generated distribution and the real distribution.  

 

Figure 4. Generative network. 

Algorithm 1: Training GAN using gradient descent. 

Input: ࢠ: Random vector from the given distribution ࢆ:Input latent space ࢃ: Intermediate latent code 

Functions: 

Generator G:ࢆ →  ࡵ
Loss←  .૛: Calculate cross-entropy lossࡸ

Output: ܫ: Image space ࢏: Sample in the image space ࢏ࢅ: Synthesized facial image 

 

for number of images in the image space do: 

   for each ݅ ∈  :ܫ
     Sample random vector z, from the given distribution 

     Generate the facial image using the random vector 

                            G:ࢆ →   ࡵ
     Calculate feature-wise loss ࡸ૛ and update the latent vector 

     Synthesize the frontal facial image, ࢏ࢅ retraining the identity and expression of the image 

   end 

end. 

3.1. Facial expression recognition 

Deep CNN is used for extracting facial features and emotion recognition. Fine-tuned VGG19 

architecture is used in the model. The architecture of VGG19 is fine-tuned to optimize the 

classification performance of deep CNN. The dropout technique is used between the fully connected 

layer and the final convolutional layer to avoid over-fitting. The final fully connected layer uses 

softmax for classifying the expressions into one of the seven categories. The softmax activation 
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function output is represented as probabilities corresponding to seven different classes, which sum up 

to 1. The cross-entropy loss function is used to handle the noise labels and for faster training. Another 

advantage of using cross-entropy as a loss function is improved generalization capabilities. Figure 5 

shows the fine-tuned VGG19 network. The output of the classifier corresponding to maximum 

probability is determined as the expression of the facial image, represented by the equation,  

௘௫௣ܥ  ൌ ൫max	ሺܲሺݕ௜ሻ൯ (2) 

 

Figure 5. Fine-tuned VGG19 network. 

To perform facial expression recognition, CK+ dataset is used, which is released as an extension 

of the Cohn-Kanade (CK) dataset [49]. The CK+ dataset has 593 image sequences of 123 subjects. 

Among the 593 sequences of images, 327 sequences have labels containing the emotion. The last 

three frames of each of the 327 are extracted from the dataset, making 981 facial expressions. The 

dataset is more robust and reliable as the dataset was obtained under a laboratory environment. Data 

augmentation is done to expand the database volume. 10-fold cross-validation is performed to 

improve the accuracy. Seven different facial expressions, namely happy, sad, fear, surprise, disgust, 

neutral and angry, are classified. Figure 6 shows sample images from the CK+ dataset displaying 

seven different emotions.  

   
(a) Anger (b) Neutral (c) Disgust (d) Fear (e) Happy (f) Sad (g) Surprise

Figure 6. Sample images from the CK+ dataset displaying seven different emotions. 

3.2. Loss function 

Cross-entropy is used as a loss function to calculate the loss. The formula to calculate cross-

entropy is, 
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ܧܥ  ൌ 	െ ଵே∑ ௜ݕ . logሺݕపෝሻ ൅ ሺ1 െ .௜ሻݕ log	ሺ1 െ పෝሻே௜ୀ଴ݕ  (3) 

The output probabilities of seven classes of a fully connected model are normalized to 1, ݕ௜ ∈ሼ1, … . Nሽ  using softmax activation function. Softmax activation function handles ݕ௜ ∈ ሼ1,… . . , ܰሽ 
where N is the number of classes. The formula to calculate softmax activation function is, 

௜ሻݖሺߪ  ൌ ௘ೣ೔∑ ௘ೣ೔೔ಿసభ  ,௜ሻ = Softmax activation functionݖሺߪ	݁ݎ݄݁ݓ (4) 

N is the number of classes of a multiclass classifier. 

Algorithm 2: Training CNN model for classification. 

Input: ܯ஼ேே: Deep CNN model ݔ௜: Input image ܺ: No of input images ݅	 ∈ ሾ1,7ሿ 
Functions: ݕ௜ ← ௜ݔ	 ஼ேே in probability, givenܯ ሻ: Output ofݔ஼ேேሺܯ ∈ ݏݏ݋݈ ܺ ← ݈஼ா: Calculate cross-entropy loss. 

Training: 

for number of training iterations do: 

  for each ݔ௜ ∈ ܺ: 

௜ݕ   ← ݏݏ݋݈		 ௜ሻݔ஼ேேሺܯ ← ݈஼ா = ݆ሺߠሻ ൌ 	െ ଵ௠∑ ௜ݕൣ log൫݄ఏሺݔ௜ሻ൯ ൅ ሺ1 െ ௜ሻlog൫1ݕ െ ݄ఏሺݔ௜ሻ൯൧௠௜ୀଵ  

  Update ܯ஼ேே with loss  

௘௫௣ܥ   ൌ ൫max	ሺܲሺݕ௜ሻ൯ 
  end 

end 

4. Results and discussion 

The proposed model is evaluated with a benchmark dataset and real images. The ground truth 

images are passed into the model to predict the latent code. The expression and identity components 

are distilled from the ground truth image. The results displayed below show that the generated images 

are very close to the ground truth image.  

Figure 7 represents the results obtained from the first stage of the proposed model. Figure 7(a) 

represents the ground truth image passed as input to the encoder to obtain the feature vector. Figure 7(b) 

represents the aligned image. Figure 7(c) represents the latent representation of the facial image. 

Figure 7(d) represents the rebuilt image generated by concatenating the feature vectors. It is evident 
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from the results that our model preserved the identity and expression of the ground truth image. The 

model achieves high-quality image synthesis for a multi-posed facial image with expression. 

 

 

 

 

 

 
(a) Ground truth (b) aligned image (c) latent representation (d) generated image. 

Figure 7. Image synthesis using latent space vector of generative adversarial network. 

In this section, the real faces are manipulated to analyze the performance of the proposed model 

for real faces. Figure 8 shows the results of generating facial images from the latent code of the image. 

Results show that the image can successfully predict the facial expression for real faces.  
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(a) Ground truth (b) aligned image (c) latent representation (d) generated image 

Figure 8. Manipulation on real faces. 

 

Figure 9. Experimental results–facial expression recognition. 

Figure 9 shows the results achieved using the proposed method. The left side of the results 

shows the input image and the right side of the results shows the predictions of the proposed model. 

The features of the facial image passed to the neural network are extracted and concatenated with 

features extracted in the first phase. With concatenated features, the facial expressions are 

recognized and categorized into seven different classes. Experimental results show that the proposed 

model accurately classifies the emotions into seven different classes. The recognized expressions 

are plotted graphically, representing the emotion category against the classification score. Different 

colored bars are used to represent different emotions. The results classified the facial images for 

happy, neutral and angry emotions. 
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(a) Accuracy curve for CK+ dataset (b) Loss curve for CK+ dataset 

  

(c) Accuracy curve for FER2013 dataset (d) Loss curve for FER2013 dataset 

Figure 10. Accuracy and Loss curves for the proposed model. 

The effectiveness of the model is evaluated by calculating the facial expression recognition 

accuracy. The accuracy of the model is calculated using the formula, ݕܿܽݎݑܿܿܣ ൌ ݏ݊݋݅ݐܿ݅݀݁ݎ݌	݂݋	ݎܾ݁݉ݑ݊	݈ܽݐ݋ܶݏ݊݋݅ݐܿ݅݀݁ݎ݌	ݐܿ݁ݎݎ݋ܿ	݂݋	ݎܾ݁݉ݑܰ	  

Figure 10(a),(b) show the accuracy and loss curves of the proposed model for the CK+ dataset in 

predicting facial expression. The performance of the model is improved using 10-fold cross-validation. 

The recognition accuracy of 96.97% is achieved using the proposed model. The model outperforms 

other models that adopted hand-crafted features. The accuracy achieved showcases the superiority of 

the GAN-based deep learning model in extracting the facial expression features and recognizing the 

facial emotions. Recognition accuracy of 95.94% is achieved using ResNet18. Recognition accuracy 

of 95.39% is achieved using ResNet50. The accuracy achieved using VGG19 is higher than the 

accuracy achieved using ResNet18 and ResNet50. The other CNN architectures, namely LeNet and 

AlexNet, have drawbacks when compared to VGG and ResNet architectures. In the case of LeNet 

architecture, it struggles with overfitting, and average pooling is used, whereas in other architectures, 

max pooling is used. Average pooling does not select prominent features as in the case of max pooling. 
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The use of Tanh in LeNet architecture is another drawback because of the vanishing gradient problem. 

Drawbacks of LeNet are overcome in AlexNet with the use of Max Pooling and Relu activation 

function. But, the main drawback of AlexNet architecture is rapid down-sampling of the intermediate 

representations through strided convolution and max-pooling layers. Figure 10(c),(d) show the 

accuracy and loss curves of the proposed model for the FER2013 dataset in predicting facial expression. 

The performance of the model is improved using 10-fold cross-validation. The recognition accuracy 

of 72.38% is achieved, which is higher than other models on the FER2013 dataset. The images present 

in the dataset are noisy with low illumination, blurred and occluded. The recognition accuracy can 

further be improved by applying denoising techniques on the images and data augmentation can be 

performed to increase the number of the images. The model achieves high performance when 

compared to the models that handled only frontal view of the facial images [38]. 

 
(a) Confusion matrix–CK+ dataset. 

(b) Confusion matrix–FER2013 public test set (c) Confusion matrix–FER 2013 private test set

Figure 11. Confusion matrix – CK+ and FER2013 dataset.  
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Confusion matrix was analyzed to evaluate the performance in determining the facial expression. 

Figure 11(a) shows the confusion matrix for the performance evaluation of our model on the CK+ 

dataset for different expressions and the accuracy of overall expression recognition. The average 

recognition rate is 96.97%. The recognition accuracy represents that the model can recognize the facial 

expression regardless of the angle of the head. The confusion matrix depicts that the model performs 

exceptionally well for happy, sad, surprise, angry and disgust expressions with very high accuracies. 

One hundred percent accuracy is achieved for the expressions with a good number of samples for each 

expression. It should be noted that the classification error occurs in recognizing fear and neutral 

emotions. The accuracy of recognizing fear and neutral is low because of a small number of training 

images for the two expressions. The results suggest that automated models can perform equally well as 

a human observer does. Figure 11(b) shows the confusion matrix for the performance evaluation of our 

model on the FER2013 Public Test set for different expressions and the accuracy of overall expression 

recognition. Figure 11(c) shows the confusion matrix for the performance evaluation of our model on 

the FER2013 Private Test set for different expressions and the accuracy of overall expression recognition. 

Table 1. Comparison of facial expression recognition performance with existing methods. 

Reference Method Dataset Class Accuracy (%) 

[50] Coordinates of facial key point tracking CK+ 6 94.31 

[51] Three stage support vector machine CK+ 7 93.29 

[52] CNN based expression recognition CK+ 7 80.30 

[53] general purpose graphic processing unit CK+ 7 96.02 

[41] Weighted mixture deep neural network CK+ 6 96 

[46] CNN for facial expression recognition FER2013 6 65% 

 
Multi-Pose Facial Expression Recognition using 

Latent Space Vector 
CK+ 7 96.97 

 
Multi-Pose Facial Expression Recognition using 

Latent Space Vector 
FER2013 7 72.38% 

Table 1 shows the comparison of facial expression recognition performance with existing 

methods. The methods listed in the table perform facial expression recognition on the frontal view of 

the facial images. The proposed work takes multi-pose facial images and performs facial expression 

recognition. From the results, it can be observed that the model outperforms the existing state-of-art 

methods for multi-pose facial expression recognition. 

5. Conclusions 

The work proposed model to extract features from the latent representation of the facial image. 

The given facial image is encoded into feature vectors from which the input ground truth image is 

recovered back. The model recovers identity and expression discriminative representation of the facial 

image. Experiments were conducted using real images and the CK+ dataset. When compared with the 

existing works, the current work generalizes well and synthesizes visually appealing images preserving 

the semantics of the facial image. From the results, the proposed model is capable of extracting the 

facial expression regardless of the facial image view. The proposed model achieved state-of-art results 

with an accuracy of 96.97% for the CK+ dataset. The future work may explore facial expression 
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recognition on an unconstrained expression dataset with a noisy environment and also explore the real-

time applications of facial expression recognition.  
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