
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 165 (2019) 336–342

1877-0509 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the INTERNATIONAL CONFERENCE ON RECENT TRENDS IN
ADVANCED COMPUTING 2019.
10.1016/j.procs.2020.01.041

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the INTERNATIONAL CONFERENCE ON RECENT TRENDS IN
ADVANCED COMPUTING 2019.

ScienceDirect

Keywords: Foreground extraction; Graph-cut segmentation; IoT; Image processing; Min-cut max-flow; RGCS; Segmentation

1. Introduction

Computer vision is a branch of computer science that is aimed at making the computers better at gaining higher

* Corresponding author:. Tel.:+91-8894645564.

 E-mail address:nishant.sharma2018@vitstudent.ac.in

ScienceDirect

INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ADVANCED COMPUTING
2019, ICRTAC 2019

Image Segmentation in Constrained IoT Servers

Nishant Sharma*, Parveen Sultana H, Rahul Singh, Shriniwas Patil, Sumit Pareek

Vellore Institute of Technology, Vellore and 632014, India

Abstract

Image segmentation forms an important concept in the computer vision technology. Image segmentation breaks the image into
boundaries that differentiate meaningful components. For computer vision to realize its full potential it is essential that the image

segmentation algorithms give accurate results in a fast and efficient way. In hierarchical architecture based IoT networks set up to

“see” the world, methods of computer vision need more analysis. The need for low cost setup for IoT networks in terms of

memory and their computational capabilities demands research for developing methods that are resource sensitive and can be

successfully integrated into such networks of low end IoT servers. Addressing this need, a refined graph cut segmentation
technique for low to medium resolution images and for constrained devices is presented in the paper. Implementation and

analysis of the refined graph cut segmenter for linux based IoT servers is discussed. A comparison with the contemporary

segmentation methods under similar constraints is also presented.

 Nishant Sharma et al. / Procedia Computer Science 165 (2019) 336–342 337

ScienceDirect
ScienceDirect

level understanding from digital images and videos. Image segmentation is an important process in computer v ision

of breaking down an image into sets of pixels that can differentiate the boundary of one object in the image from

that of the other. In this paper, the graph cut segmentation technique is discussed and a refined graph cut segmenter

is proposed with respect to Internet of Things based computer vision systems . A comparative analysis with

contemporary segmentation techniques is also discussed in a later section.Internet of things (IoT) is an ever-growing

concept of connecting all real world things in a giant network, and is increasingly becoming a part of human life. It

finds application and commands presence in even the remotest areas of the developing n ations. In hierarchical

architectures in IoT networks, a relatively more powerful Linux based machine acts like a cluster head to a network

of constrained IoT end nodes. These cluster heads are not computational heavy weights and are constrained in

resources, albeit relat ively less than the end nodes in the network. Making these cluster heads and end nodes capable

of processing to their full potential with in these constraints makes for a load balanced overall hierarch ical structure

reaching all the way up to the root server. These hierarch ical architectures benefit from using efficient techniques

based on the requirements of the application and the constraints on their hardware. IoT networks designed to process

on images (like humans), and to take action bas ed on the results of the processed image will require image

segmentation methods employed by them to be extremely „good‟ (i.e. accurate and efficient). EECS Berkeley has a

benchmark for various boundary detection algorithms against human accuracy represen ted as score between 0 and 1

[12]. These segmentation results can then be used by some object detection engine to extract the features of an

object. These features can identify an object (as is known in the real world) with the help of some precompiled

database. A reasoning process may interact with thisdatabase and may take appropriate action based on the result of

the object identification, much like a human being. These action taking systems, for instance, could alert the

authorities of crit ical situations in the areas of video surveillance and remote sensing, and can really assist humans in

making a safer society to live in. In the hierarchical architecture consisting of a root server and the corresponding

sub layer servers, segmentation techniques introduced into the sub layer servers can do the essential load balancing

for the root server. In vary ing degrees of constrained servers, techniques suitable for the hardware and

computational capacity may be chosen. The constrained sub layer servers may lack a reasoner but they can assist the

root server (with a reasoner) by doing load sharing in the object detection process.

2. Related Work

Review of image segmentation techniques has been done in [24], [15], [27], [16], [18], and [14]. The authors of [13]

present an efficient graph based image segmentation technique. Grab cut technique and its principles are discussed

in [23]. An implementation of watershed technique is presented in [17]. One of the advanced image segmentation

techniques based on iterated conditional models is presented in [10]. A review of IoT based applications in done by

the authors of [19]. Challenges of IoT in Indian perspective are d iscussed in [25]. A paper describing the benefits of

hierarchical computing in IoT is discussed by the author of [26].

Fig. 1. System architecture for computer vision in IoT server.

338 Nishant Sharma et al. / Procedia Computer Science 165 (2019) 336–342

3. System Architecture

Fig. 1. shows an abstract computer vision architecture for an IoT server. The discussion on image segmentation in

this paper is centred on this architecture.A common sub module for IoT servers in a network is shown in the figure.

An image is captured from the camera module and is passed to the object detection engine whose final objective is

to extract the object features.An image segmenter forms a part of this engine and is utilized while separating the

object boundaries in the image. Multiple sub layer servers (in a hierarchical network design) can provide the object

detection features to the root server for various surrounding objects and the root server can reason on them. The

reasoner (as part of the root server) interacts with a knowledge base that assists in the object identificat ion. The

knowledge base may be stored on the cloud owing to its large size. The reasoner may take a suitable action based on

the result of thisobject identification processand the requirements of the application. An example of th is action may

be to alert the authorities after successfully reasoning about a security breach in a protected area based on one or

more captured images of an intrusion. Th is paper limits itself to the image segmentation part of the object detection

engine and proposes a refined graph cut segmentation technique that is sensitive to the IoT servers‟ computational

capabilities while also giving accurate results.

4. RGCS for Constrained IoT Servers

4.1. Graph cut segmentation algorithm

 The idea of the graph cut segmentation algorithm is discussed by the author of [22]. Its brief summarization is as

follows. Consider Fig. 2. The image is visualized as a directed graph. This directed graph for the image consists of

two types of nodes, those that lie on the foreground and those that lie on the background. Two ext ra nodes denoting

the source and the sink are assumed. There are three types of edges for a node in the image graph. A node is

connected with an edge from the source, an edge to the sink and an edge to its neighbouring nodes. A 4-

neighborhood is considered, i.e. a node is attached to the node on its left, right, up and down. Source and sink have

edges to (and from) a node that denote its belonging to the foreground and background respectively. The basic idea

is that a node which has a h igher probability of being a foreground will have an edge with a greater weight from the

source, and a node that is probably background will have an edge with a lower weight from the source. This implies

that a higher weight edge from the source for a foreground node will mean a lower weight edge from the node to the

sink and vice versa. Nodes also connect with some edge weight to their 4 neighbourhood adjacent. A probability

distribution model is needed that determines the edge weights between the source and the node, between the node

and the sink, and between the node and the 4-neighborhood adjacent. The mathemat ical model is restated in (1).To

determine the relat ive edge weights of the neighbouring nodes a variable () has been used.In [22], the author has

used a naive Bayesian classifier on the RGB values of the image nodes to determine the p robability of a node in the

image belonging to either the fo reground or the background. A Bayesian classifier is trained on the training data fed

to it from the image itself and is based on the metric of calculated mean RGB value and variance from the train ing

data. Assuminga Gaussian mult ivariate normal distribution [11] a classifier is constructed which is used to assign

the respective foreground and background probabilities for each node in the image given its RGB

vector([RGB])w.r.t. the obtained mean and variance (or standard deviation)results from the training data. In (1), σ is
the standard deviation obtained from the training data.

1 2

sin

([])
_

([]) ([])

([])
_

([]) ([])

_

foreground node

source node

foreground node background node

background node

node k

foreground node background node

node node

P RGB
edge weight

P RGB P RGB

P RGB
edge weight

P RGB P RGB

edge weight













2
1 2|[] [] |node nodeRGB RGB

e

 
 

 (1)

 Nishant Sharma et al. / Procedia Computer Science 165 (2019) 336–342 339

σ is













 
 

Fig. 2. Foreground extraction using graph cut segmentation technique.

Once the graph is constructed, foreground extraction is performed using a standard min -cut max-flow algorithm

which cuts through the background edges from the source to various nodes as shown in Fig.2.

4.2. RGCS (Refined Graph Cut Segmenter)

The methodology used by the author of [22], although extremely low taxing on the resources and an ideal base

model for low end IoT nodes, is not contemporary. Firstly, the algorithm is serial in nature. It does not take

advantage of the mult iprocessing abilities now common to most relatively powerfu l Linux based IoT servers. For

example, raspberry pi (a small and affordable IoT server) [28] has a quad-core CPU. There are certain calculations

that can be parallelized. Among these is the process(for all nodes) of assigning edge weights in accordance with (1)

for each edgebetween the node and the source, and the node and the sink. The mathematical calculat ions on column

mean and variances for RGB values that are required to train the Bayesian classifier may also be performed utilizing

the parallel processing capabilit ies of the machine. The Process and the (synchronized) Queues methods of the

multiprocessing library of python [6] are utilized for parts of the program that could benefit from pa rallel processing

and where exchange of results between processes is required, such as in case of a queue that stores the mean of a

large co lumn of color values and must return it to the caller before exiting. On other parts of the p rogram where

simultaneous work could be done but no exchange of data needed to happen like the edge weight calculation of

individual nodes with source and sink, the threading library of the python [9] may be utilized. Although raspbian os

on raspberry pi 3 supports a 32 b it armh f architecture, 64 bit variants of pi and suitable complementing os are

readily available. On a 64 b it machine using a debian/linux based os, efficiency and speed can be further enhanced

using such tools as Graph tools. Graph tools [2] is a C++ based python module that provides means for graph and

algorithms‟ v isualization and analysis, and that uses OpenMP [8] to p rovide fast implementations of standard graph

algorithms such as the min-cut max-flow algorithm by enabling high performance computing and parallel

programming. In contrast to the Edmonds-Karp min-cut max-flow algorithm used in [22] from the python-pygraph

minmax-module [5], Graph tools provides more efficient OpenMP based min-cut max-flow implementations of

which boykov_kolmogorov_max_flow() is used in RGCS.

340 Nishant Sharma et al. / Procedia Computer Science 165 (2019) 336–342

Fig. 3. (from left) (first) Graph for the test image with edge weights as in (1); (second) Residual capacity result graph (foreground extraction).

5. Raspberry Pi as the IoT server

A raspberry pi client is set up on Ubuntu 18.04 (b ionic beaver) for simulation. Raspbian OS is installed and

configured on pi. Raspbian is based on debian buster and supports 32 bit armhf architecture. Networking is then

configured on pi. A camera module is set up on pi as demonstrated in [1]. An image is taken from the camera

module and is usedas a test image for experimentation.

6. Results and Discussion

6.1. Foreground extraction by RGCS

The test image is resized to 400 265 px. The segmentation results for the min-cut max-flow

boykov_kolmogorov_max_flow() of Graph tools used in the experiment are v isualized in Fig.3. Fig.3. (first) depicts

the graph for the test image constructed by the graph tools visualizer where each edge represents either an edge

between the source and a node, or a node and the sink, o r a node and its 4 neighbours, with edge weights calculated

from (1). The edges in Fig.3. (second) form the extracted foreground after the application of the min -cut max-flow

algorithm. It is obvious from the extract ion shown in Fig.4. (first) that a significant part of the test image is

foreground. As a result Fig.3. (second) has a dense foreground extraction.

6.2. Comparison with the contemporary watershed and grabcut segmentation techniques

 In watershed segmentation technique an image is considered similar to a geographical area containing either the

sky touching mountains or the valley areas between those mountains [20], and is a very efficient technique for

segmentation. Grab cut discussed comprehensively in [21] on the other hand is a foreground extraction method

extending the graph cut segmentation principles (similar to the basic principles of the RGCS) and makes it an ideal

candidate for comparat ive analysis. OpenCV [7], which is an open source library fo r the implementation of

computer vision and machine learn ing, provides an implementation for the grabcut [4]andthe watershed algorithm

[3]. OpenCV grabcut notably iterates on segmentation outputs until the results converge. Watershed algorithm,

similarly, is prone to over-segmentation. An instance for the simulation run on the test image for RGCS, the grabcut

and the watershed algorithm is given in Fig. 4. Some of the benchmarks for the four algorithms: RGCS (without

Graph tools), RGCS (with Graph tools), OpenCV grabcut and OpenCV watershed are given in Table 1.

 Nishant Sharma et al. / Procedia Computer Science 165 (2019) 336–342 341

Fig. 4. (from left) (first) RGCS; (second) OpenCV grabcut; (third) OpenCV watershed.

 Table 1.Benchmarks for the algorithms.

Algorithm Runtime Image resolution Computational

complexity

Storage

requirements

(Modules and

Packages)

RGCS (without Graph tools) Slow Low, medium Low Low

RGCS (with Graph tools) Comparable to OpenCV grabcut Low, medium Low Medium

OpenCV grabcut Fast Low, medium Medium Medium

OpenCV watershed Slower than RGCS (with Graph

tools)

Low, medium, high Medium Medium

RGCS improved under the refinements provides anequivalent performance for a test image when compared to the

OpenCV‟s grabcut and watershed implementations.For low and medium resolution images RGCS (with Graph

tools) and the OpenCV grabcut give comparable performance on a linux based 64 bit IoT server. The OpenCV

watershed takes longer time for low and medium resolution images but provides results when dealing with high

resolution images.

7. Conclusion

Thepaper discusses IoT applications that are set up to reason on digital images, and the importance of image

segmentation techniques in realizing computer vision in its fu ll potential. It discusses a refined graph cut segmenter

(RGCS) that does foreground ext raction based on the probability that a node in an image graph belongs to either the

foreground or the background. The refinements to the basic princip le involve using the parallel processing

environment now common to IoT servers. The underlying graph representation and the min-cut max-flow algorithm

may also be made more efficient using state of the art and parallel programming based graph algorithm libraries .

RGCS is well suited for segmenting low and medium resolution images in an IoT server. The issue of memory error

in images of high resolution for the RGCS is outlined in the Appendix A. Future work may involve a ddressing this

issue. Based on the constraints on server resources and the requirements of the application, an appropriate

segmentation algorithm may be chosen based on the benchmarks given in Table 1.

Appendix A. Images of high resolution

 When passing the original test image taken from the camera module of resolution 2584×1704 px to RGCS, the

calculations outreach the memory bounds leading to a memory error as shown in Fig. 5.

342 Nishant Sharma et al. / Procedia Computer Science 165 (2019) 336–342

Fig. 5. RGCS-Memory error for an image of high resolution.

References

 [1] Camera configuration [internet]. Available from: https://www.raspberrypi.org/documentation/configuration/camera.md.

 [2] graph tools - efficient network analysis [internet]. Available from: https://graph-tool.skewed.de/.

 [3] Image segmentation with watershed algorithm [internet]. Available from: https://opencv-python-tutroals.readthedocs.io/en/latest/py_
 tutorials/py_imgproc/py_watershed/py_watershed.html.

 [4] Interactive foreground extraction using grabcut algorithm [internet]. Available from: https://docs.opencv.org/3.4.3/d8/d83/tutorial_py_
 grabcut.html.

 [5] Module minmax [internet]. Available from: http://www.chiark.greenend.org.uk/doc/python-pygraph/docs/pygraph.algorithms.

 minmax-module.html.

 [6] multiprocessing process-based threading interface [internet]. Available from: https://docs.python.org/2/library/multiprocessing.html.

 [7] Opencv [internet]. Available from: https://opencv.org/.

 [8] OpenMP [internet]. Available from: https://www.openmp.org/.

 [9] threading thread-based parallelism [internet]. Available from: https://docs.python.org/3/library/threading.html.

[10] Besag, Julian. (1986) “On the statistical analysis of dirty pictures.” Journal of the Royal Statistical Society: Series B (Methodological) 48:

 259–279.

[11] Do, Chuong B. (2008) More on multivariate gaussians [internet]. Available from: http://cs229. stanford. edu/section/more on gaussians. pdf.

[12] Boundary detection benchmark: Algorithm ranking [internet]. Available from: https://www2.eecs.berkeley.edu/Research/Projects/
 CS/vision/bsds/bench/html/algorithms.html.

[13] Felzenszwalb, P.F., and D.P. Huttenlocher. (2004) “Efficient graph-based image segmentation.” International journal of computer vision 59:

 167–181.

[14] Fu, King-Sun, and J. K. Mui. (1981) “A survey on image segmentation.” Pattern recognition 13: 3–16.

[15] Gonzalez, Rafael C., Richards E. Woods, and Steven L. Eddins. (2009). Digital image processing using matlab, Gatesmark publishing.

[16] Haralick, Robert M., and Linda G. Shapiro. (1985) “ Image segmentation techniques.” Computer vision, graphics, and image processing 29:

 100–132.

[17] Kaur, Amandeep. (2014) “Aayushi,image segmentation using watershed transform.” International Journal of Soft Computing and
 Engineering (IJDCE) 4: 5–8.
[18] Kumar, Vinod, Tauj Lal, Piyush Dhuliya, and Diwaker Pant. (2016) “A study and comparison of different image segmentation algorithms.”

 International Conference on Advances in Computing, Communication, & Automation (ICACCA) (Fall): IEEE 2: 1–6.
[19] Nagakannan, M., C. Johnson Inbaraj, K. Mukesh Kannan, and S. Ramkumar. (2018) “A recent review on iot based techniques and

 applications.” International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud): IEEE 2: 70–75.

[20] Preim, Bernhard, and Charl P. Botha.(2013). Visual Computing for Medicine, 2 ed., Author.

[21] Rother, Carsten, Vladimir Kolmogorov, and Andrew Blake. (2004) “Grabcut: Interactive foreground extraction using iterated graph cuts.”

 ACM transactions on graphics (TOG): 309–314.

[22] Solem, Jan Erik. (2012). Programming Computer Vision with Python: Tools and algorithms for analyzing images, O‟Reilly Media Inc.

[23] Talbot, Justin F., and Xiaoqian Xu. (2006) “Implementing grabcut.” Brigham Young University 3.

[24] Xess, Monika, and S. Akila Agnes. (2014) “Analysis of image segmentation methods based on performance evaluation parameters.” Int. J.
 Comput. Eng. Res 4: 68–75.
[25] Yadav, Er Pooja, Er Ankur Mittal, and Hemant Yadav. (2018) “ Iot: Challenges and issues in indian perspective.” International Conference

 On Internet of Things: Smart Innovation and Usages (IoT-SIU): IEEE 3: 1–5.

[26] Yang, Zhihe. (2017) “Hierarchical computing: A high performance computing architecture for data-processing in iot era.” International
 Conference on Systems and Informatics (ICSAI): IEEE 4: 1698–1702.
[27] Yuheng, Song, and Yan Hao. (2017) “Image segmentation algorithms overview.” arXiv preprint arXiv:1707.02051.

[28] Raspberry Pi Blog [internet]. Available from: https://www.raspberrypi.org/blog/.

