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Abstract: This article presents a novel impedance-source-based direct current (DC)-to-alternating

current (AC)/DC converter (Z-Source DAD Converter). The Z-Source DAD converter converts

the input DC voltage into AC or DC with buck or boost in the load voltage. This Z-Source DAD

conversion circuit is a single-stage power conversion system. This converter circuit converts the

input DC voltage into variable-magnitude output DC voltage or converts the DC voltage into

a variable-magnitude output AC voltage. The higher voltage magnitude in boost mode can be

controlled by controlling the shoot-through (ST) state timing of the converter. MATLAB-Simulink

simulation and microcontroller-based hardware circuit results are presented to demonstrate power

conversion with the buck and boost features of the Z-Source DAD converter for both types of output

voltages. The simulation and experimental results show that the Z-Source DAD converter converts

the given DC supply into AC or DC with buck or boost in the output load voltage.

Keywords: DC–DC converter; DC–AC inverter; DC–AC/DC converter; DAD converter; Z-Source

converter; boost factor; shoot-through

1. Introduction

In power electronics converter circuits, such as the voltage source inverter (VSI), the output

alternating current (AC) voltage is less than the input direct current (DC) voltage. In current source

inverters (CSI), the output AC voltage is higher than the input DC voltage. The Z-Source inverter

eliminates the above restriction and will act as a buck or boost inverter [1]. In the DC–DC buck

converter, the output DC voltage is always lower than the input DC voltage; in the DC–DC boost

converter, the output is always greater than the input DC voltage. The Z-Source converter will buck or

boost the DC voltage [1]. A considerable amount of literature is available to demonstrate the features

of the Z-Source inverter/converter [2–5]. However, the Z-Source converter output will be of either AC

or DC [6–8].

This proposed Z-Source DC-to-AC/DC (DAD) converter converts the input DC voltage to AC

output voltage with buck or boost in the magnitude of the AC load voltage. Also, the Z-Source

DAD converter converts the input DC voltage with buck or boost in the voltage level for the DC

load. Therefore, at any time point, this Z-Source DAD converter converts the input DC voltage into

output AC or DC voltage with buck or boost capability. This converter will play an important role in

non-conventional energy-source-fed electrical applications, particularly in solar photovoltaic systems

where the input is DC voltage (i.e., from solar panels), and the load can be either AC or DC.

At present, most of the photovoltaic (PV) power generation systems employ two-stage power

conversion circuits. To increase the PV system efficiency the first power conversion circuit is used to

operate the solar PV system at the Maximum Power Point (MPP) of the panel. The second power

conversion circuit is used to get the desired output voltage to satisfy the load or grid requirement.

In recent developments, the Z-source inverter or converter is integrated with the MPP technique to

reduce the number of power conversion stages, which significantly improves the systems efficiency
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and performance [9–12]. However, the existing converters will give only one type of output (either AC

or DC). The proposed Z-source DAD converter will give either AC or DC for the given DC input, which

gives flexibility in choosing the AC or DC load without bothering about the converter configuration.

The nature of the Z-Source DAD converter output (AC or DC) is selected by adjusting the switching

pattern of the power switches used in the converter circuit. The value of the load voltage is varied by

adjusting the duty cycle (D) or Modulation Index (MI) combined with the shoot-through (ST) zero

state duration of the converter/inverter. This ST state can be obtained in the converter by switching

the power switches of the same column or leg ON at the same time [1,13]. During this dead time, the

inductor stores the energy, which is released when the converter is operating in any one of the active

states [13]. This unique property imbues the boost capability of the Z-Source DAD converter. During

the ST time, there is no energy flow between the input and the output; therefore, this ST state is also

called the zero state [13]. This ST state is used only for boost mode operation and it is not required for

buck mode operation.

2. Z-Source DAD Converter

The Z-Source DAD converter consists of an impedance source network connected between the

input DC supply and the converter circuit, as shown in Figure 1. The Z-Source arrangement creates

the buck and boost ability of the inverter and the converter circuit [1,13].

 

  

Figure 1. Z-Source direct current (DC)-to-alternating current (AC)/DC (DAD) converter system.

This Z-Source network employs split inductors and split capacitors arranged in an X shape. This

Z-Source network is a two-port network with split inductors L1 and L2 and split capacitors C1 and

C2 [1,13]. These components are arranged in an X shape between the system input supply and the

converter circuit, as shown in Figure 2. This arrangement, along with the converter circuit, can directly

convert the input DC to output AC or DC of higher or lower magnitude by controlling the duty cycle

or MI along with the shoot-through duration. The circuit arrangement of the Z-Source DAD converter

is shown in Figure 2.
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Figure 2. Simplified circuit arrangement of Z-Source DAD converter. (L1, L2 split inductors, C1, C2

split capacitors, S1–S4 switches).
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3. Operating Principle

As shown in Figure 3, the Z-Source DAD converter can operate in three states: (1: open state,

2: active state, and 3: shoot-through (ST) state). In the active state, the energy transfer occurs between

the input and the load, whereas in the open state and zero state, no energy transfer takes place between

the input and the load. In the ST state, the switches S1–S4 or S2–S3 are switched on, which leads to

the short circuit of the Z-source network. During this time, the diode is reverse-biased, and energy is

transferred from C1 to L1 and C2 to L2.

 

Figure 3. Operating states of the Z-Source DAD converter. (1: open state, 2: active state, 3: shoot-through

(ST) state).

The ST state is initiated by closing the S1–S4 or S3–S2 of the converter. The ST state can be achieved

in three ways, as shown in Figure 4. ST state-1 can be achieved by closing the first and fourth switches,

ST state-2 by closing the second and third switches, and ST state-3 by closing all the switches. Any one

of the ST states can be used to obtain the shoot-through. The ST time duration decides the magnitude

of the boost in the output voltage. Therefore, any one of the ST states is implemented in the converter

or inverter circuit to produce a higher-value load voltage. The ST state is not required for buck mode

operation where the output AC or DC voltage is less than the input DC voltage.

 

Figure 4. ST zero states.
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In the non-active state, all the switches are open. Therefore, no energy is drawn from the supply,

and no energy is supplied to the load. During active state-1, S1 and S2 are turned on, then the load

receives positive voltage; in active state-2, S3 and S4 are turned on, then the load receives negative

voltage. Figure 5 shows the non-active and active states. The non-active state and active state durations

determine the output voltage in buck mode, whereas the ST duration along with the active and

non-active durations determines the magnitude of the output voltage in boost mode operation. On the

basis of the load requirement, the DAD converter output is switched over between AC or DC with

buck or boost in the load voltage for the given DC input supply.

 

2
 

2
 

01 TT
 

Figure 5. Non-active and active states: (a) non-active state, (b) active state-1, and (c) active state-2.

3.1. Inverter Mode

In this mode input, DC voltage is converted into AC voltage. For this purpose, switches 1 and 2

are turned on for the first half cycle (positive) duration, as shown in Figure 6, and switches 3 and 4 are

turned on for the next (negative) half cycle, as shown in Figure 7. This mode produces the buck mode

of operation, and the output voltage is:

Vac = M·
Vdc

2
(1)

where M is the Modulation Index, and Vdc is the DC link voltage.
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Figure 6. Z-Source DAD converter, inverter mode (positive half cycle).
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Figure 7. Z-Source DAD converter, inverter mode (negative half cycle).

For boost mode, an ST state is used to achieve the boost in the voltage. The ST state is the zero state

of the inverter. During this time, no energy transfer occurs between the input and output, therefore

this state is also called a zero state. With the help of the ST state, the boost in magnitude of the output

voltage is controlled [14–17]. In this mode, the output AC voltage is:

Vac = M·B·
Vdc

2
(2)

where

B = Boost f actor =
T

T1 − T0
(3)

where T1 is the active state duration, T0 is the ST state duration, and T is the total duration.

3.2. Converter Mode

The converter mode of operation operates as a DC–DC boost or buck converter. In buck mode, by

keeping switches 3 and 4 open and controlling switches 1 and 2, the output voltage can be controlled,

as shown in Figure 8. In buck mode, the output DC voltage is:

Vo = D·Vdc (4)

By adjusting the duty cycle (D), the output DC is controlled. Here, the magnitude of output is less than

that of the DC input.

–

=
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– –Figure 8. Z-Source DAD converter,–DC–DC converter mode.
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For boost mode, any one of the ST states is introduced before the active state. In this mode, the

output voltage is:

Vo = B·
Vdc

2
(5)

By controlling the boost factor (B), the load DC voltage magnitude is varied. Here, the load voltage is

always higher than the magnitude of the DC link voltage. By varying the ST duration, the boost factor

can be controlled.

4. Design of Z-Source

The split capacitor (C1, C2) and the split inductor (L1, L2) are selected on the basis of the

buck–boost requirement of the system. Normally, the capacitor rating is nearer to the rating of the

input capacitor of the VSI [13]. The capacitor rating can be found by using Equations (6)–(8). The

inductor rating is nearer to the input side inductor rating of the CSI [13]. The inductor value can be

found using Equation (9). The capacitor and inductor can also be designed by taking the buck–boost

converter design or the Z-Source design of the simple Z-Source inverter [1,13]. In general, the capacitor

value is obtained using the value of the current through the inductor (Il) and the change in the capacitor

voltage (∆Vc):

C1 = C2 = C =
IlDST

2∆VC
(6)

The voltage stress across the capacitor is

VC1 = VC2 = VC = Vin
(1−DS)

(1− 2DS)
(7)

where

DS =
TO

T
(8)

The value of the inductor can be determined using the voltage across the capacitor (Vc) and the

change in the inductor current (∆Il):

L1 = L2 = L =
VCDST

2∆Il
(9)

5. Simulation and Experimental Results

A MATLAB-Simulink (The MathWorks, Massachusetts, USA) simulation was conducted to

analyze the performance of the proposed Z-Source DAD converter with the Z-source element values of

C1 = C2 = 100 µF and L1 = L2 = 250 mH, 12 Volt DC input, and a load resistance of 50 Ω. The same

circuit parameters were used to construct the hardware circuit; the control pulses to the switches were

generated using an ATmega (Microchip, AZ, USA)-microcontroller-based circuit board, as shown in

Figure 9. The hardware setup consisted of four IRFZ44 MOSFETS used as a switch (S1–S4) and four

4N35M optocouplers used to connect the microcontroller circuit with the converter switches. The

optocouplers provided electrical isolation between the low-power microcontroller circuits and the

high-power converter circuit. The MATLAB-Simulink simulation and the hardware circuit were tested

for both the inverter and the converter circuits operation. The buck and boost modes were applied to

both the inverter and the converter circuits. The outcome of the simulation and hardware results are

shown below.
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Figure 9. Hardware setup.

Figures 10 and 11 show the control pulse and output DC voltage for the DAD converter for

DC-to-DC buck mode operation with a duty cycle of 0.5 and without ST timing. Figures 12 and 13 show

the control pulse and output DC voltage for the DAD converter in DC-to-DC boost mode operation

with duty cycle of 0.5 and ST timing of 0.001 s. By introducing the ST timing, the buck converter

switched over to boost mode, demonstrating the ability of the DAD converter to increase or decrease

the voltage magnitude of the given input DC voltage (Figures 11 and 13). The experimental wave

forms are shown in Figure 14.

 

 

Figure 10. Simulink simulation of control pulses for DC–DC buck mode.

 

 

Figure 11. Simulated output of DC–DC buck mode load voltage.
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Figure 12. Simulink simulation of control pulse for DC–DC boost mode.

 

Figure 13. Simulated output of DC–DC boost mode load voltage.

 

      
                 (a)                                                    (b) 

Figure 14. Experimental output voltage waveforms for an input DC voltage of 12V: (a) Output voltage

of DC–DC buck mode with D = 0.5 (b) Output voltage of DC–DC boost mode with D = 0.5 and ST = 0.1.

(Voltage: 10 V/div, Time: 10 ms/div).

Figures 15 and 16 show the control pulse and output AC voltage of the DAD converter in buck

mode operation with a modulation index of 0.8 and without ST timing. The Fast Fourier Transform

(FFT) analysis is depicted in Figure 17 to understand the harmonic components. By introducing the

ST timing of 0.004 s, the same buck inverter acted as a boost inverter. Figures 18 and 19 show the

control pulse and output AC voltage of the DAD converter in boost mode operation with a modulation

index of 0.8 and ST timing of 0.004 s. Figure 20 provides the harmonic analysis of the output AC

voltage. This buck–boost feature in both converter and inverter modes increases the suitability of the
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DAD converter for photovoltaic systems by eliminating the number of power converting stages in

distributed generating systems [18–21].

 

 

Figure 15. Control pulse for inverter mode in buck mode.

 

 

Figure 16. Simulated output of output voltage for inverter mode in buck mode.

 

Figure 17. Simulated Fast Fourier Transform (FFT) analysis of buck inverter output with Total Harmonic

Distortion (THD).
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Figure 18. Simulink simulation of control pulse for inverter boost mode.

 

 

Figure 19. Simulated output of output voltage for inverter in boost mode.
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Figure 20. Simulated FFT analysis of boost mode inverter output with THD.

Experimental wave forms for DC–AC inverters are shown in Figure 21. The above results indicate

that the Z-Source DAD converter is capable of converting the given DC input voltage into AC or DC

output voltages with buck or boost in the magnitude. The boost in the output voltage can be varied by

adjusting the duty cycle or modulation index along with the shoot-through timing of the converter.

The ST timing is not required for buck mode operation. Figures 22 and 23 compare the experimental

output voltages between the buck and boost modes of both converter and inverter operation of the

Z-Source DAD converter.

 

            
(a)                                               (b) 

Figure 21. Experimental output voltage waveforms for an input DC voltage of 12 V: (a) buck mode

inverter output with modulation index (MI) = 0.8; (b) boost mode inverter output with MI = 0.8 and

ST = 0.1 (Voltage: 10 V/div, Time: 10 ms/div).

 

 

Figure 22. Experimental DC–DC converter voltage comparison of buck mode and boost mode with a

boost factor of 2.
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Figure 23. Experimental DC–AC inverter output voltage comparisons of buck mode and boost mode

with a boost factor of 4.

6. Conclusions

This Z-Source DAD converter converts the given DC input into either AC or DC with buck or

boost in the voltage magnitude. However, the existing Z-Source converters produce only one type of

output (either AC or DC) with buck or boost in the voltage magnitude. The buck–boost feature of the

Z-Source DAD converter reduces the two-stage power converter circuit required by renewable energy

applications like solar PV systems. This converter can be widely used in PV energy systems. During

the daytime, the Z-Source DAD converter operates as a DC–DC converter and stores PV power in a

battery or supplies power to the DC load. During the night-time, the battery power is converted to AC

by the same converter to operate residential appliances. The Z-Source DAD converter can be used

for both AC and DC loads. Thus, the Z-Source DAD converter operates easily when compared with

normal DC–DC or DC–AC conversion and reduces the number of components, thereby decreasing the

size of the power converter circuit. The overall cost of the Z-Source DAD converter is less, and the size

is smaller than those of the normal two-stage power converter circuit.
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