
Research Article
Implementation of Special Function Unit for Vertex Shader
Processor Using Hybrid Number System

Avni Agarwal, P. Harsha, Swati Vasishta, and S. Sivanantham

VLSI Division, School of Electronics Engineering, VIT University, Vellore 632014, India

Correspondence should be addressed to S. Sivanantham; ssivanantham@vit.ac.in

Received 28 May 2014; Revised 19 September 2014; Accepted 25 September 2014; Published 15 October 2014

Academic Editor: Lixin Gao

Copyright © 2014 Avni Agarwal et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The world of 3D graphic computing has undergone a revolution in the recent past, making devices more computationally intensive,
providing high-end imaging to the user.TheOpenGL ES Standard documents the requirements of graphic processing unit. A prime
feature of this standard is a special function unit (SFU), which performs all the required mathematical computations on the vertex
information corresponding to the image.This paper presents a low-cost, high-performance SFU architecture with improved speed
and reduced area. Hybrid number system is employed here in order to reduce the complexity of operations by suitably switching
between logarithmic number system (LNS) and binary number system (BNS). In this work, reduction of area and a higher operating
frequency are achieved with almost the same power consumption as that of the existing implementations.

1. Introduction

The various technology advancements have made the world
of graphic computationmore intensive.Most recent advance-
ments of the graphic processing unit [1] include high level
dynamic parallelism, which makes GPU computing easier
and broadens the reach [2]. Since these GPUs are more
power consuming, there has been an increasing demand for
the real time 3D graphics application for mobile devices
which have more stringent power constraints [3–7]. In order
to meet these requirements, the application programming
interface (API) has set up a standard OpenGL-ES (embedded
system) [8]. At the time of this work, the latest standard
was OpenGL-ES 3.1. One of the most popular versions
of this standard is OpenGL-ES 2.0, which consists of a
vertex shader and a fragment shader processor as the two
major programmable components, along with pipelining.
The programmable processors used for GPUs are termed
as “shaders.” The “dot product” computation, which is one
of the key operations on mobile GPU, is carried out in
a vectored processing unit. The lighting related operations
require more complex instructions like square root, expo-
nentiation, reciprocals, and multiply-accumulate to be per-
formed, which are taken care of by the special function
unit.

In the literature, [9]makes use of a hybrid number system
(HNS)which consists of both binary and logarithmic number
systems. The log and antilog conversion blocks, however, are
based on a lookup table approach, which is lengthy.

This work focuses on the design of a vertex shader proc-
essor for mobile applications, consisting of logarithmic arith-
metic unit and floating point arithmetic unit. In order to
reduce the power consumption, the lookup table approach
for the conversion of binary to log scale is done away with
and an equation based method is made use of, which leads to
significant reduction in the area and power.

The rest of the paper is organized into seven sections.
Section 2 describes the overall architecture of SFU. The
architecture of logarithmic and antilogarithmic converters
is illustrated in Section 3. Section 4 describes logarithmic
arithmetic unit followed by a floating point arithmetic unit
in Section 5. The results are discussed in Section 6 with
Section 7 concluding the paper.

2. Architecture

In this section, the architecture of the designed special
function unit (SFU) is explained.The architecture, as a whole,
can be divided into 4 main modules, namely, log converter
(LOGC), antilogarithmic converter (ALOGC), floating point

Hindawi Publishing Corporation
Journal of Computer Networks and Communications
Volume 2014, Article ID 890354, 7 pages
http://dx.doi.org/10.1155/2014/890354

2 Journal of Computer Networks and Communications

Control unit

s

Pipeline

Logarithmic number unit

ALOGCALOGC ALOGC ALOGC

sFloating point number unit

D0 D1 D2

16-bit floating point output

16-bit LNS outputs

Pipeline

LOGC LOGC LOGC LOGC LOGC LOGC LOGC LOGC

Figure 1: Architecture of special function unit.

unit (FPU), and logarithmic number unit (LNU), as shown in
Figure 1. In this architecture, we have used the IEEE standard
of representing floating point numbers, IEEE 754 standard,
and the corresponding logic for conversions between the two
formats has also been formulated. The IEEE 754 standard is
depicted in Table 1.

The logarithmic converter, at its most basic functional
level, converts a 16-bit floating point number into a 16-bit
logarithmic number. The base of the logarithmic number in
this design is 2 since the processing is internally in binary
arithmetic. This logarithmic operation is performed so as to
reduce the complexity of operations such as powering and
computation of square root, since these operations reduce to
simple algebraic operations in logarithmic number system.
For example, (𝑋 ∗ 𝑌) reduces to (log𝑋 + log𝑌) and 𝑋𝑌
reduces to (𝑌∗ log𝑋), and so forth.The operations presented
in this paper are listed in Table 2.

Although logarithmic conversions reduce the complexity
in few operations, it also complicates certain simple opera-
tions such as addition and subtraction, as can be seen from
Table 2. Therefore, using LNS for all the operations may not
be an optimal choice. This brings the need of embedding
both logarithmic number system and floating point number
system, thus making it a hybrid number system. The usage
of these number systems is dictated by a control logic which
takes in the operation to be performed as an input and
suitably activates the required number system.

The logarithmic arithmetic unit (LAU) is involved in
processing of logarithmic numbers. The outputs of LAU are

Table 1: (a) FLP-16—half precision floating point formation (FLP-
16), (b) LNS-16—Q5.11 format for logarithmic numbers.

(a)

Sign (1 bit) Exponent (5 bits) Mantissa (10 bits)

(b)

Sign (1 bit) Integer (5 bits) Fraction (10 bits)

Table 2: Selection of number system based on operation.

Operation Number systems System used
BNS LNS

Multiply 𝑋 ∗ 𝑌 log𝑋 + log𝑌 LNS
Divide 𝑋/𝑌 log𝑋 − log𝑌 LNS
Square-root √𝑋 (1/2) ∗ log𝑋 LNS
Power 𝑋

𝑌
𝑌 ∗ log𝑋 LNS

Add 𝑋 + 𝑌 log𝑋 + log(1 + 2log𝑌−log𝑋) BNS
Subtract 𝑋 − 𝑌 log𝑋 − log(1 + 2log𝑌−log𝑋) BNS

in logarithmic scale which is later converted back in an
antilogarithmic converter. However, when the operations to
be performed are simple and straightforward there is no
need for logarithmic/antilogarithmic conversions. In [9], the
operands are passed through all the blocks irrespective of the
operation being performed. But, in this design, for simple
operations, the operands are directed to FAU bypassing

Journal of Computer Networks and Communications 3

LAU.This prevents unnecessary switching operations in LAU,
thereby reducing power.

If the logarithmic number system is used, it is preceded
with a logarithmic converter and followed by an antilogarith-
mic converter. If the FAU is being used, logarithmic/antiloga-
rithmic conversions are not required. In this architecture,
three stages of pipelining have been introduced—one stage
consisting of the logarithmic converters, second stage con-
sisting of LAU, and the final stage consisting of antilogarith-
mic converters. However, pipelining is made internal in FAU.
The internal architecture of individual modules is explained
in the subsequent sections.

3. Logarithmic and Antilogarithmic
Converters

As discussed in Section 2, operations such as calculation
of power, square root, multiplication, and division can be
tedious and time consuming if the conventional binary
number system (BNS) is adopted. Hence, it brings in the need
for logarithmic number system which effectively reduces the
complexity of such operations. The most basic block in the
logarithmic number system is logarithmic/antilogarithmic
converter. The logarithmic converter (LOGC) is used to
convert a 16-bit binary number into a 16-bit logarithmic
number. The width size of 16-bits corresponds to the usage
of IEEE 754 floating point standard representation. The
antilogarithmic converter (ALOGC) performs the reverse of
operation of LOGC.

Logarithmic converters can be implemented in multiple
ways. The Lookup table (LUT) approach has been employed
in [9]. However, LUTs can have amassive area overhead as the
size of the operands and the number of operations increase.
Since the core application of this design is vertex processing,
although there can be a small-scale precision variation, it
can be traded for higher speed. In this paper, we propose
an architecture that uses an equation based method (EBM)
that eliminates the need for large LUTs, thereby, reducing
considerable number of gates.

The architecture of LOGC and ALOGC is based on
Algorithm 1. For logarithmic conversion the coefficients of
𝑎 and 𝑏 are calculated depending on the computation of
the value 𝑦. The coefficients of 𝑎 and 𝑏 for LOGC are
given in Table 3. A similar but reverse approach is used for
antilogarithmic conversion. The coefficients of 𝑎 and 𝑏 for
ALOGC are given in Table 4.

Algorithm 1. It computes the base-2 logarithmic value of a
nonzero binary number.

Consider 𝐵 to be a nonzero binary number.

Step 1. 𝐵 = 𝑏
𝑚
𝑏
𝑚−1
, . . . , 𝑏

𝑘+1
𝑏
𝑘
, where 𝑏 : 0/1;

𝑚, 𝑘 = 0, ±1, ±2, . . . ; 𝑚 ≥ 𝑘. (1)

It follows logically that

𝐵 =

𝑚

∑
𝑖=𝑘

𝑏
𝑖
2
𝑖
. (2)

Table 3: Coefficients of 𝑎 and 𝑏 for logarithmic conversion.

Range Mantissa
0 ≤ 𝑦 < (1/4) 𝑦∗ = 𝑦 + 37𝑦/128 + 1/128

(1/4) ≤ 𝑦 < (1/2) 𝑦∗ = 𝑦 + 3𝑦/64 + 1/16

(1/2) ≤ 𝑦 < (3/4) 𝑦
∗
= 𝑦 + 37𝑦/64 + 1/32

(3/4) ≤ 𝑦 < 1 𝑦
∗
= 𝑦 + 29𝑦/128

Table 4: Coefficients of 𝑎 and 𝑏 for antilogarithmic conversion.

Range Mantissa
0 ≤ 𝑦 < (1/4) 𝑦

∗
= 𝑦 + 1/4𝑦 + (3/4)

(1/4) ≤ 𝑦 < (1/2) 𝑦∗ = 𝑦 + 13/128𝑦 + 55/64

(1/2) ≤ 𝑦 < (3/4) 𝑦∗ = 𝑦 + 9/128𝑦 + 7/8

(3/4) ≤ 𝑦 < 1 𝑦
∗
= 𝑦 + 35/128𝑦 + 23/32

Computational unit

Combiner

CLK

RST

CLK

RST

X[15:0]

[15:0]logX

Figure 2: LOGC and ALOGC basic architecture block diagram.

Step 2. Splitting the MSB and the other LSBs,

𝐵 = 2
𝑗
+

𝑗−1

∑
𝑖=𝑘

𝑏
𝑖
2
𝑖
. (3)

Step 3. Reducing the equation by taking 2𝑗 as a common fac-
tor,

𝐵 = 2
𝑗
(1 +

𝑗−1

∑
𝑖=𝑘

𝑏
𝑖
2
𝑖−𝑗
) = 2

𝑗
(1 + 𝑦) , (4)

where 𝑦 = ∑𝑗−1
𝑖=𝑘
𝑏
𝑖
2𝑖−𝑗.

Step 4. 𝐵 = 2𝑗(1 + 𝑦) → log
2
𝐵 = 𝑗 + log

2
(1 + 𝑦).

Step 5. Approximating the equation obtained in Step 5 using
a linear approximation,

log
2
𝐵 ≈ 𝑗 + 𝑎𝑦 + 𝑏. (5)

The basic architecture of the proposed LOGC is as shown
in Figure 2. Since the operands use IEEE 754 format, 1-bit of
sign, 5-bits of exponent and 10-bits of mantissa and processed
separately. The architecture consists of two main units.

4 Journal of Computer Networks and Communications

Booth encoder Booth encoder Booth encoder Booth encoder

Control logic

10 10 10 10 10 10 10 10

CPA CPA CPA CPA

16 × 616 × 616 × 616 × 6

k0 k1 k2 k3y0x0 z0 w0

4:2 CSA 4:2 CSA 4:2 CSA 4:2 CSA

≪1 ≪1 ≪1 ≪1X1

X1X0

Y1

Y1Y0

Z1

Z0

Z1

Z1
3:2 CSA 3:2 CSA 3:2 CSA4:2 CSA

W1W0

r0 r1 r2 r3

Figure 3: Architecture of LAU.

3.1. Computational Unit. In this unit, the mantissa in the
logarithmic number is computed. The mantissa of the input
is processed by the EBM as explained above. According to the
value of the input mantissa, the corresponding equations are
implemented and the logarithmic mantissa is obtained.

3.2. Combiner Block. Asmentioned earlier, the exponent and
mantissa parts are computed separately and combined at the
final stage. In this block, the exponent bits of the logarithmic
number are computed taking into consideration the sign
bit. Depending on the sign bit, either of the two operations
is executed. In the positive way, the exponent bits are
simply obtained by subtracting the base of IEEE 754 format
(base = 15) whereas in the negative way, 1’s complement
of the positive logarithmic exponent is considered as the
final exponent. Since 1’s complement is considered for the
exponent, 2’s complement ofmantissa is considered to correct
the consistency of the answer.

4. Logarithmic Arithmetic Unit

Figure 3 shows the block diagram architecture for the
logarithmic arithmetic unit (LAU). This block is capable

of performing three different operations like four multi-
plications 𝑥

𝑖
𝑦
𝑖
corresponding to the dot product ∑4

𝑖=1
𝑥
𝑖
𝑦
𝑖
,

four multiplications that correspond to the Taylor series
expansion ∑4

𝑖=1
𝑎
𝑖
𝑥𝑘𝑖 and one powering operation 𝑦𝑥 as four

additions of 𝑥
𝑖
+ 𝑦
𝑖
, four MAC operations of log 𝑎

𝑖
+ 𝑘
𝑖
∗

log𝑥, and one multiplication as 𝑥 ∗ log𝑦, respectively. The
word sizes of 𝑘

𝑖
and 𝑥

𝑖
are, respectively, 6-bits and 16-bits.

For powering operation of 𝑥𝑦, the range of the exponent is
extended to 12-bits and its output will be obtained in the
channel 𝑟

1
. As shown in Figure 3, the multiplication required

for the MAC and powering operations are performed by
using a radix-4 booth multiplier of 16 × 6 input. A series
of carry save adders (CSA) and carry propagate adders
(CPA) are used to sum up the partial products obtained
after multiplication. The control logic block is used to
determine which operation is to be performed in the LAU
and is responsible for routing of the signals and inputs
to the corresponding adder blocks. For this end, a global
control signal is made use of. If this control is 00, powering
operation is performed, if 01, the Taylor series expansion is
to be done, and if 10, the dot product operation is carried
out.

Journal of Computer Networks and Communications 5

E

5-bit
subtractor

Swap

Shifter
N bits to

right

Normalize and round

Leading zero
detectorMUX

Adder/subtractor
mantissaControl block

Add/subtract

X

Sign

Magnitude M

M of smaller
operand

(tentative)

5-bit
subtractor

(Add/Sub)MAN

S1
S2

SM

SR

M1 M2
E1 E2

MRER

E1 E2

N = |E1 − E2|

Figure 4: FAU architecture block diagram [10].

5. Floating Point Arithmetic Unit

Floating point arithmetic unit unpacks the operands in the
IEEE 754 format into mantissa and exponent to carry out
the computation of the two, independent of each other. At
the end, it packs the resultant mantissa and exponent back to
IEEE 754 format. The architecture of the FAU is as shown in
Figure 4.

The basic flow of the computation includes setting the
tentative resultant exponent as the larger exponent of the
two operands and shifting right the mantissa of the smaller
operand by the difference between the two exponents. The
extracted exponents are subtracted and the sign bit of the
operation is used to determine which of the two exponents
is to be set as tentative exponent of the result through a
multiplexer. The swap block determines the mantissa to be
shifted right according to the sign bit from the subtractor.The
shifter right shifts the mantissa of the smaller operand by the
amount equal to the difference of the extracted exponents.
The control logic determines which operation has to be
performed on the mantissa and the sign bit of the result
depending on the sign bit of the two operands based on the
truth tables shown in Table 5. When the exponent of the
two operands is equal the sign of the operation performed on

the mantissa is used to determine the sign of the result. The
final result is normalized by detecting the number of leading
zeros and then shifting themantissa accordingly to obtain the
resultantmantissa.Thenumber of leadings is subtracted from
the tentative exponent to obtain the final resultant exponent.

6. Results and Discussion

This work has been implemented in TSMC 180 nm CMOS
process technology. The RTL synthesis was performed using
Cadence RTL Compiler and the physical design of gate
level netlist (GLN) to Gerber Data Stream Information
Interchange (GDSII) was carried out using Cadence SoCEn-
counter. Table 6 reports the area occupied, number of cells
used, and percentage of occupancy of the units of SFU. Table 7
reports the area of logic elements, inverters, sequential
elements, and clock gating elements. The total power of SFU
as well as the individual blocks is as shown in Table 8.

Tables 9 and 10 illustrate the comparison with respect to
area, power, and frequency between this work and the work
presented in [9]. It is observed that there is approximately
68% reduction in area. A higher frequency is achieved at the
cost of slight increase in power.

6 Journal of Computer Networks and Communications

Table 5: FAU control logic truth tables.

(a) Add/Sub = 0 (subtraction)

Inputs Outputs
𝑆
1

𝑆
2

𝑆
𝑀

𝑆
𝑅

(Add/Sub)MAN

0 0 0 0 0
0 0 1 1 0
0 1 0 0 1
0 1 1 0 1
1 0 0 1 1
1 0 1 1 1
1 1 0 0 0
1 1 1 1 0

(b) Add/Sub = 1 (addition)

Inputs Outputs
𝑆
1

𝑆
2

𝑆
𝑀

𝑆
𝑅

(Add/Sub)MAN

0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 1 1
1 1 1 1 1

Table 6: Area report of each unit.

Units Cell area Number of cells Percentage
LAU 43374 3738 50.45%
FAU 4958 396 5.34%
ALOGC 15832 1092 14.73%
LOGC 27760 2224 30.01%
SFU 91768 7450 100%

Table 7: Gate utilization report for each unit.

Units Area Percentage
Logic 66156.165 72.1%
Inverter 2318.648 2.5%
Sequential elements 22865.675 24.9%
Clock gating elements 427.745 0.5%
SFU 91768.234 100%

As mentioned in Section 3, due to the linear approxima-
tion used in the EBM, there is a trade-off between accuracy
and hardware complexity. An error analysis has been carried
out to quantify this trade-off. Since we are using IEEE 754
floating point format representation, the coefficients in the
linear approximation are quantized to 10 bits which leads to
a quantization error. An inherent error also occurs due to
approximation which is also considered in the error analysis.
Table 11 shows the percentage errors for different ranges of

Table 8: Report of the power consumed by each unit.

Units Leakage power
(mW)

Dynamic power
(mW)

Total power
mW

LAU 0.0980 1.5322 1.6302
FAU 0.0093 0.6138 0.6231
ALOGC 0.0100 0.1658 0.1758
LOGC 0.0087 0.1034 0.1121
SFU 0.2178 3.7786 3.9964

Table 9: Comparison of results in terms of area.

Units Gates [9] Gates [this work] Gate reduction
SFU 23230 7450 67.9%
LAU 5170 3738 27.7%
FAU 3690 396 89.26%
ALOGC 3880 1092 71.85%
LOGC 7830 2224 71.5%

Table 10: Comparison of power and frequency.

Parameter [9] This work
Power 3mW 3.99mW
Frequency 200MHz 500MHz

Table 11: Error analysis.

Range 𝑦 at 𝐸MAX Max. error (𝐸MAX) Error %
0 ≤ 𝑦 < (1/4) 0.125 0.0034 2.000
(1/4) ≤ 𝑦 < (1/2) 0.370 0.0029 0.638
(1/2) ≤ 𝑦 < (3/4) 0.620 0.0032 0.459
(3/4) ≤ 𝑦 < 1 0.870 0.0027 0.296

the variable 𝑦 in Algorithm 1. A detailed analysis on mean
square error and its mathematical formulation has been done
in [11]. We observe that the percentage error is less than 2%
which is acceptable according to the standards. It can also be
observed that, in each interval, the maximum error occurs
about the mid-point of the interval.

7. Conclusion

A special function unit using hybrid number system was
implemented. To improve the area and power consumed by
lookup tables, an equation based method was employed in
the logarithmic and antilogarithmic converters. A control
logic was used to choose between the logarithmic and
binary number systems depending on the operation to be
performed. It is reported that there has been a significant
improvement in the overall performance of the SFU. The
design occupies a die area of 870𝜇m × 872𝜇m (Figure 5).

Journal of Computer Networks and Communications 7

Figure 5: Die image of SFU.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] J. Nickolls and W. J. Dally, “The GPU computing era,” IEEE
Mirco, vol. 30, no. 2, pp. 56–69, 2010.

[2] “NVIDIA’s Next Generation CUDATM Compute Architecture:
Kepler TM GK110,” white paper.

[3] B.-G. Nam, H. Kim, and H.-J. Yoo, “A low-power unified arith-
metic unit for programmable handheld 3-D graphics systems,”
IEEE Journal of Solid-State Circuits, vol. 42, no. 8, pp. 1767–1778,
2007.

[4] B.-G. Nam, H. Kim, and H.-J. Yoo, “Power and area-efficient
unified computation of vector and elementary functions for
handheld 3D graphics systems,” IEEE Transactions on Comput-
ers, vol. 57, no. 4, pp. 490–504, 2008.

[5] B.-G. Nam and H.-J. Yoo, “An embedded stream processor core
based on logarithmic arithmetic for a low-power 3-D graphics
SoC,” IEEE Journal of Solid-State Circuits, vol. 44, no. 5, pp.
1554–1570, 2009.

[6] C.-H. Yu, K. Chung, D. Kim, S.-H. Kim, and L.-S. Kim, “A
186-Mvertices/s 161-mW floating-point vertex processor with
optimized datapath and vertex caches,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 17, no. 10, pp.
1369–1382, 2009.

[7] S.-H. Kim, H.-Y. Kim, Y.-J. Kim, K. Chung, D. Kim, and L.-S.
Kim, “A 116 fps/74 mW heterogeneous 3D-media processor for
3-D display applications,” IEEE Journal of Solid-State Circuits,
vol. 45, no. 3, pp. 652–667, 2010.

[8] OpenGL ES Specification, 2014, http://www.khronos.org/open-
gles/.

[9] S.-F. Hsiao, C.-F. Chiu, and C.-S. Wen, “Design of a low-
cost floating-point programmable vertex processor for mobile
graphics applications based on hybrid number system,” in
Proceedings of the IEEE International Conference on Integrated
Circuit Design and Technology (ICICDT ’11), May 2011.

[10] V. Carl Hamacher, Z. Vranesic, and S. Zaky, Computer Organi-
zation and Embedded System, TMH, 6th edition, 2012.

[11] E. L. Hall, D. D. Lynch, and S. J. Dwyer, “Generation of products
and quotients using approximate binary logarithms for digital
filtering applications,” IEEE Transactions on Computers, vol. 19,
no. 2, pp. 97–105, 1970.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

