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Abstract

In this paper we introduce a technique to compute an improved bound on edge-forwarding indices of graphs. Further we
prove that the bound is sharp for cylinder, torus and certain trees.
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1. Introduction

There are a large number of graph optimization problems which arise in network design and analysis. A well-
designed interconnection network makes efficient use of scarce communication resources and is used in systems ranging from
large super computers to small embedded system on a chip. A designer of interconnection networks has to take into account
communication speed, high robustness, rich structure, fault tolerance and fixed degree [1].

Routings are important functions of communication networks. The choice of a routing in a network directly affects
efficiency of communication and performance of the network. There are many parameters to measure the quality of a routing.
In this paper we consider one of the parameters namely the forwarding index, which is used to measure the load of a vertex
or the congestion of an edge. It is quite natural that a good routing should not load any vertex or edge too much, in the sense
that not too many paths specified by the routing should go through it.

Let be a connected undirected graph or a strongly connected digraph with order . A routing in defines a set
of fixed paths for all ordered pairs of vertices of . The path specified by carries the data
transmitted from the source to the destination . If is not a direct edge, then the internal vertices of can
serve as a forwarding function for the data being communicated between the vertices.

The congestion of an edge in a routing is the number of paths of going through it, and is denoted by .
The edge-forwarding index of a routing in a graph is defined as

where the maximum is taken over all edges of . Then, the edge-forwarding index of is defined as

where the minimum is taken over all routings of [4].

Forwarding indices for star graphs, cayley graphs, -connected graphs, folded -cubes and orbital regular graphs are
found in [1-9]. Xu et. al. have given survey of forwarding index problems is found in [11].
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2. Main Results

A lower bound for available in the literature [4] is given in the following theorem 1.

Theorem 1 : For any connected graph

The bound given in Theorem 1 involves distance between every pair of vertices in a graph G. The following simple
observation is a major breakthrough in obtaining an improved bound for the edge forwarding index without using distance
matrix.

For Define

Lemma 2 : Let be an edge cut of such that the removal of edges of leaves into components and .

Then .

Proof. For in and in , each of and passes through at least one edge of . Therefore

. Hence for all . Thus

Corollary 3 : Let be a cut edge of such that removal of leaves into components and .

Then .

3. Forwarding Indices of Cylinder and Torus

We begin with cycle on vertices.

Algorithm A

Input :
Cycle

Algorithm
1. Label the vertices of with consecutive numbers in the clockwise sense.
2.  Let denote a shortest path between and . If there exist two shortest paths between and , choose

the one in the clockwise direction.

Output : ( ) = / /
Proof. = {(0,1), ( /2 , /2 + 1 )} is an edge cut of cycle and splits it into two components with /2 and/2 vertices. By Lemma 2, Π( ) ≥ /2 /2 . By algorithm A, Π( ) = /2 /2 .

Figure  1: Edge Cut in (a) × , (b) × .
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Algorithm B

Input :
Cylinder × / Torus ×

Algorithm
1.  Label the row of × / × as + 1, + 2,…, + from left to right, where 0 ≤ < .
2.  Let ( , ) denote a shortest path between and . If there exist more then one shortest path between and

choose the one that moves from row to row in the clockwise direction.

Output : Π( × ) = x{2 × /2 × ( − /2 ) , /2 × ( − /2 )}.
Π( × ) = { /2 × ( − /2 ) , /2 × ( − /2 )}.

Proof. The set of edges between /2 − 1 column and /2 column is an edge cut of × and splits it into two

components with /2 and ( − /2 ) vertices respectively. By Lemma 2, Π( × ) ≥ × ×( )
. By

algorithm B, congestion on edges between ( − 1) and column is 2 × × ( − ) and congestion on each of the

edges between ( − 1) and column is
× ×( )

. Congestion on edges between ( − 1) and row is 2 × ×( − ) and congestion on each of the edges between ( − 1) and row is
×( )

.

Remark : Routing algorithms A and B give minimum congestion of any edge in , × and × respectively.

4. Forwarding Indices of Cylinder and Torus

In this section we compute the forwarding index for certain well known tree architectures. A tree is a connected
graph that contains no cycles. Trees are the most fundamental graph-theoretic models used in many fields: data structure and
analysis, design of algorithms, combinatorial optimization and design of networks [12].

The most common type of tree is the binary tree. A binary tree is said to be a complete binary tree if each internal
node has exactly two descendents. These descendents are described as left and right children of the parent node. The complete
binary tree of height , denoted by has exactly 2 − 1 vertices. The 1-rooted complete binary tree is obtained from a
complete binary tree by attaching to its root a pendant edge. The new vertex is called the root of and is considered to be
at level 0. The -rooted complete binary tree is obtained by taking vertex disjoint 1-rooted complete binary trees on2 vertices with roots say , , … , and adding the edges ( , ), 1 ≤ ≤ − 1 [12].

Theorem 4 : Let be a complete binary tree . Then ( ) = 2 × (2 − 1)
Proof. The removal of a cut edge incident at the root vertex of leaves into 2 components with 2 − 1 and2 vertices. By Corollary 3, Π( ) ≥ 2 × (2 − 1)Let ∈ ( ). The congestion on e is 2| ( )| | ( )| where

and are the components of − . We now define a function : ( ) → by ( ) = 2| ( )| | ( )| =2| ( )| (2 − | ( )|. The function f is maximum when .

The following theorem is easy consequence of Theorem 4.

Theorem 5 : Let be a -rooted complete binary tree . Then ( ) = 2 /2 /2 .

The sibling tree is obtained from the complete binary tree by adding edges (sibling edges) between left and
right children of the same parent node.

The 1-rooted sibling tree is obtained from the 1-rooted complete binary tree by adding edges (sibling edges)
between left and right children of the same parent node. The -rooted sibling tree is obtained by taking copies of vertex
disjoint 1-rooted sibling tree on 2 vertices with roots say , , … , and adding the edges ( , ) , 2 ≤ ≤ − 1.
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Theorem 6 : Let be a sibling tree , Then ( ) = 2 × (2 − 1).
Proof. The removal of edges = { , } incident at the root vertex of leaves into 2 components with2 − 1 and 2 vertices. ( , ) By Lemma 2, Π( ) ≥ 2 × 2 − 1 × 2 . Let ( , ) denote a shortest path

between and . If is in then it passes through edge . Therefore congestion each of the on edge incident with root
vertex is (2 − 1) × 2 . The congestion on each edge is minimum. Among all the edges, cut edge incident at the root
vertex of is having maximum congestion.

The following theorem is easy consequence of Theorem 4

Theorem 7 : Let be a -rooted sibling tree . Theorem ( ) = 2 /2 /2 .

5. Conclusion

We have obtained the edge-forwarding indices of cylinder, torus and certain trees. We also provide an linear time
algorithm to solve it. The technique used in this paper is simple and elegant. It is also an interesting line of research to solve
the edge-forwarding index problem for all classes of graphs like butterfly, circulant, chord and so on.
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