
108 Int. J. Mobile Network Design and Innovation, Vol. 6, No. 2, 2015

Copyright © 2015 Inderscience Enterprises Ltd.

Improved round robin queue management algorithm
for elastic and inelastic traffic flows

S. Nandhini
School of Advanced Sciences,
VIT University,
Vellore, India
Email: nandhini.s@vit.ac.in
Email: nandhuraja@hotmail.com

Abstract: In current scenario, network traffic flows need a start-time fair queuing algorithm
which is computationally efficient and also which can achieve maximum fairness regardless of
variation in a network capacity. To enhance the situation of congestion, an improved round robin
(IRR) queue management algorithm for elastic and inelastic traffic flows is proposed. In this
approach, the traffic flows are categorised into elastic traffic flows and in-elastic traffic flows.
The scheduling process in the inelastic flows is handled by the BRR scheduler algorithm since
they have large capacity requirements and delay constraints and elastic flows will be scheduled
using DRR-SFF. The results are simulated with NS-2 and they show consistent improvement in
the performance of the network.

Keywords: real time traffic flow; non-real time traffic flow; inelastic flows; elastic flows; round
robin queue; DRR-SFF scheduler; BRR scheduler; NS2; performance enhancement in networks;
advanced queue models.

Reference to this paper should be made as follows: Nandhini, S. (2015) ‘Improved round robin
queue management algorithm for elastic and inelastic traffic flows’, Int. J. Mobile Network
Design and Innovation, Vol. 6, No. 2, pp.108–113.

Biographical notes: S. Nandhini is currently an Assistant Professor in the School of Advanced
Sciences at VIT University, Vellore, India. She received her PhD in Science and Humanities
from Anna University, Chennai, India. Her main areas of research interest are queuing theory
particularly in communication networks, graph theory and fuzzy logic.

1 Introduction

Today, the traditional end-to-end network protocols cannot
guarantee the fair allocation of network resources in current
high bandwidth-delay-product networks. To support this
issue, Fair queuing algorithm, which is a scheduling
algorithm used in telecommunication networks to allow
multiple packet flows to share the link capacity fairly and to
ensure minimum throughput for users or flows sharing a
wire line link (Khawam and Kofman, 2006) is implemented.
When VBR video sources and data sources of integrated
service networks coexist, the bandwidth for data applications
may vary with time. Hence, fairness property must ignore
variation in server capacity (Goyal et al., 1996). Unfair
scheduling algorithms penalise channels for the use of idle
bandwidth and do not provide any QoS guarantee in the
presence of congestion. Fair scheduling algorithms ensure
allocation of bandwidth fairly regardless of prior usage or
congestion to enable throughput-intensive, flow-controlled
applications in heterogeneous, large-scale, decentralised
networks. Hence, fair scheduling algorithms are desirable
for video applications (Goyal et al., 1996; Lin and Hamdi,
2010). A weighted version of fair queuing is called
weighted fair queuing (WFQ). WFQ allocates an equal

share of bandwidth to each flow. The variations of fair
queuing includes, class-based weighted fair queuing
(CBWFQ) and low latency queuing (LLQ) which are
queuing methods based on WFQ (Balchunas, 2010).

2 Proposed queuing model

2.1 Overview

Deficit round robin with short flow first (DRR-SFF) (Sun
et al., 2007) is a novel scheduling mechanism used to
enhance the performance of short flows with limited
penalising long flows. DRR-SFF uses weighed DRR for
scheduling short and long flows respectively and treats long
flows more fairly. The mean transmission time and loss rate
of short flows under DRR-SFF are significantly reduced
comparing to FIFO scheduling using drop tail is revealed
through trace-driven simulation. Flows are organised as two
groups, prioritised group (PQ) and best-effort group (BQ).

In Lin and Hamdi (2010), a two-stage FQ algorithm
called ‘budget round robin’ (BRR) is proposed. It works in
two steps. First, a high-bandwidth, high-storage buffer is
designed using multiple DRAMs. It further divides the
entire storage space into separated blocks, each block is of

 Improved round robin queue management algorithm for elastic and inelastic traffic flows 109

megabytes in size and these blocks are organised as circular
linked list. Second, newly arrived packets are pushed into
these blocks under the control of BRR while the outputs are
popped from DRAMs continuously.

In our case, after categorising the flows as elastic
(non-real time) and inelastic (Nandhini and Palaniammal,
2013a, 2014), the inelastic flows having large capacity
requirements and delay constraints will be scheduled using
BRR and the elastic flows will be scheduled using
DRR-SFF.

Figure 1 Architectural diagram

Figure 1 illustrates the overall process of our proposed
queuing model, where the flows are differentiated into two
types, elastic and inelastic flows. Based on the differentiated
flows, the queuing algorithms BRR and DRR-SFF are
implemented. The inelastic flows are scheduled with BRR
scheduler and the elastic flows with DRR-SFF algorithm.

2.2 Flow classification – a remainder

The flow classifier identifies the ingress traffic flow as
inelastic or elastic based on the estimated delay and loss as
in Nandhini and Palaniammal (2013b).

The egress updates the average packet delay, PDavi for
delay sample Di(t) at time t using an exponential weighted
moving average (EWMA).

avi avi iPD (t) μ*PD (t 1) (1 μ)*D (t)= − + − (1)

where μ is a small fraction 0 ≤ μ ≤ 1 to emphasise recent
history rather than the current sample alone.

At egress router, the difference in loss ratios can be then
estimated as,

T T
actD L L= − (2)

where T
act(L) is the actual loss ratio and LT is the measured

loss ratio at the interval T.
If the value of loss ratio [as per equation (2)] exceeds to

a threshold T1 and if the delay [as per equation (1)] exceeds
a threshold T2, then the flows are marked as inelastic flows
by the egress node, otherwise they are considered as elastic
traffic.

2.3 Deficit round robin with short flow first

DRR-SFF is a fair scheduling scheme which is widely
deployed. DRR-SFF can be considered as the round robin
scheduling for variable-length packets. DRR-SFF inherits
the characteristics of DRR and may be simply enforced by
hardware or software system. Flow size with a less
threshold T is known as short flows and otherwise they are
known as long flows. (ie)

Short, FS T
Flow

Long, Otherwise
<⎛

= ⎜
⎝

 (3)

where FS is the flow size.
Here, FS represents the total data packets in a flow. The

network divides the queues into two groups, prioritised
queue group (PQ) and best-effort queue group (BQ). Each
flow is first put n to PQ and then moved to BQ after Tth byte
have been scheduled. As PQ is assigned higher priority than
BQ, flows with flow size less than Tth bytes are favoured,
while long flows in BQ would not be starved since PQ does
not have strict priority over BQ. Both these PQ and BQ
serve flows using a DRR discipline. Every group in the
network is offered services proportional to its allocated
weight. For each group, a deficit counter (DC) is associated.
This DC is incremented by a quantum for every round of
scheduling which represents the weight of the group.

i i i(ie) DC DC Q= + (4)

where DCi is the DC of flow i and Qi is the quantum of flow
i given by

()i iQ R / C F= × (5)

Here, Ri is the rate of the flow i, C is the service rate of the
link and F is the frame size given by

n

i
i 1

F Q
=

=∑ (6)

The group in the network is been served as long as the DC
is greater than the zero. The DC is decremented by the
number of bytes served and which is carried over to
succeeding spherical.

DC DC NBS= − (7)

where NBS is the number of bytes served.
The DC is immediately reset to zero when the group

becomes empty.

(ie) DC 0, if PQ or BQ= = φ = φ (8)

By setting their quanta the priority of the two groups is
determined through this weighted DRR.

Figure 2 illustrates DRR-SFF working in the network.
Here, the DRR-SFF uses T = 2 (threshold is two packets)
during the scheduling in the network. Let us assume that the
external buffer contains five flows. The flows 1, 2 and 3 are
served in BQ since they are short parts of flow. In the PQ,
the news flows 4 and 5 are served. The flow 4 will be
emptied after the first two packets of flow 4 are served. The

110 S. Nandhini

emptied flow 4 will be removed and flow 5 would be moved
to BQ.

Figure 2 DRR-SFF

Algorithm of enqueueing and dequeueing module of
DRR-SFF
Initiation: on arrival of packet p
high_low_turn = 1;
FreeBuffer(); //if no free buffers left
i = ExtractFlow(p);
i→pkts ++;
if(i→pkts == 1) //new flow
i→DC = Q;
// Q is the Quantum
if(i→bytes_scheduled < T) //active in PQ group
i←InsertActivelist_PQ;
Else // active in BQ group
i←InsertActvielist_BQ;
Enqueue(i,p); //enqueue packet p to queue i

In the enqueuing algorithm, if the buffer is indicated as full
and when a new data packet has arrived, the network drops
the data packet using buffer stealing. Buffer stealing drops
the first data packet from BQ, then from PQ. A flow ‘i’ is
introduced at the end of the active list of PQ, when the flow
has only one packet and its bytes scheduled is below the
threshold T. If in case bytes scheduled are not below the
threshold T then the flow with a single data packet is added
at the end of BQ.

To implement the dequeueing algorithm the PQ or BQ
should be null.

if(high_low_turn && AL_PQ) ≠ null; //AL is the activelist
if(high_DC <= 0)
high_DC += Q_high_;
if(i→DC <= 0) i->DC += Q; //Remove the head of

AL_PQ(i)
pkt=Dequeue(i);
Packetsize = Length(pkt);
high_DC-= Packetsize;
i→DC-= Packetsize;

if(high_DC <= 0) high_low_turn = 0;
i→bytes_scheduled += Packetsize;
if(i→bytes_scheduled >= T) {
if(empty i)
eliminate i from AL_PQ
else transfer i to AL_BQ
}else if(i→DC <=0)
transfer i to AL_PQ tail
else if(!high_low_turn && AL_BQ) ≠ null;
if(low_DC <= 0) low_DC+=Q_low;
if(i→DC <= 0) i→DC += Q; //Remove the head of

AL_BQ(i)
pkt=Dequeue(i);
Packetsize = Length(pkt);
low_DC-= Packetsize;
i→DC-= Packetsize;
if(low_DC <= 0) high_low_turn = 1;
if(empty i)
eliminate i from AL_BQ
if(i→DC <=0)
transfer i to AL_BQ tail

In the dequeuing algorithm, DC is added by PQ’s quantum
when the DC is not more than zero. By subtracting the bytes
of packet p, from flow ‘i’s’ DC, PQ active list is dequeued.
If in case flow i’s DC is not more than zero, the entry head
will be changed to the following entry of flow ‘i’ in the PQ
active list. If DC of PQ is not more than zero, then the next
turn is BQ else data packets will be scheduled in the PQ.
During PQ’s scheduling, the scheduled flow bytes is not
less than the threshold T and not empty then the flow is
moved to BQ. The scheduling in BQ is same as that in PQ.

2.4 Budget round robin

BRR technique tries to save the received packets in their
output series. BRR keeps the track of the buffered packets
and records the connections which are in active and then the
BRR estimates the storage quota for each connection which
is active. When a new data packet is received, the BRR
assumes the number active connections are stable and target
block number is calculated. Thus, once the storage quota for
the present block is exhausted, the available space of
succeeding block is allotted before hand. BRR omits the
trivial connections by setting up a threshold value in order
to maintain the accuracy of such estimation. The
connections with larger buffered data size than threshold
will be considered as active connection. Moreover, BRR
additionally prevents any connection from assembling an
unnecessary quantum. Quantum which is maximal
accumulated has been strictly restricted, so the algorithm
can be precise the inaccuracy as soon as the connections are
updated which are active.

 Improved round robin queue management algorithm for elastic and inelastic traffic flows 111

Qi is the current quantum, LR(i) is the last paid round,
TB(i) is the total number of bytes and MAQ is the maximal
accumulated quantum.

Enqueuing:
Initialization:
Assume (Qi, LR(i), TB(i)) to zeros for all i.
Define NewArrivalPacket as p; i = GetConnectionID(p);
UpdataConnection(p, i);
Qi = ((Qi + (TB(i) – LR(i)) * QU) > MAQ)? MAQ: (Qi + (TB(i)
– LR(i)) * QU);
LR(i)= TB(i);
if(Qi ≥ GetPacketSize(pkt)) then
bn = (TB(i)> INPUTPointer)? TB(i):
INPUTPointer;

//bn is the blocknum

else bn = TB(i) + Ceil((GetPacketSize(pkt) – Qi) / QU);
SaveToBlock(pkt, bn); TB(i) = bn;
if the INPUTPointer-th block is full, then
update INPUTPointer to the next non-full block in ascending
order;

Dequeuing:
Initialization:
ActiveConnection=0; INPUTPointer=0; OUTPUTPointer=0;
Get one packet pkt from the OUTPUTPointer-th block;
i = GetConnectionID(pkt);
Updata ActiveConnection (pkt, i);
if (OUTPUTPointer == (INPUTPointer-1)) then
update INPUTPointer to the next non-full block in ascending
order;
if (OUTPUTPointer-th block is null)
OUTPUTPointer++;

3 Simulation results

3.1 Simulation model and parameters

In this section, we examine the performance of our
improved round robin (IRR) technique with an extensive
simulation study based on network simulator (NS-2). We
compare the results with the drop tail queue technique. The
topology used in the simulation is shown in Figure 3.

3.2 Performance metrics

In the simulation experiments, for elastic (non-real-time),
TCP traffic is used. For inelastic (real-time), VoIP and
video traffic are used. The traffic rate is varied from 100 Kb
to 500 Kb. We measure the following metrics.

• throughput

• delay.

The results are described in the next section.

Figure 3 Simulation topology

3.3 Results

3.3.1 Results based on VoIP traffic

In this experiment, two set of TCP and three set of VoIP
flows are used.

Figure 4 Rate vs. delay (VOIP) (see online version for colours)

Figure 5 Rate vs. throughput (VOIP) (see online version
for colours)

From Figures 4 and 6, we can see that the delay (in case of
VoIP and TCP respectively) of IRR model is less than drop
tail technique and from Figures 5 and 7, it is clear that the
received bandwidth (VoIP and TCP, respectively) of IRR
model is fairly higher than drop tail technique.

112 S. Nandhini

Figure 6 Rate vs. delay (TCP) (see online version for colours)

Figure 7 Rate vs. throughput (TCP) (see online version
for colours)

Figure 8 Rate vs. delay (video) (see online version for colours)

Figure 9 Rate vs. throughput (video) (see online version
for colours)

3.3.2 Results based on video traffic

In this experiment, two set of TCP and three set of video
flows are used.

Figures 8 and 10 show less delay if IRR model is
implemented when compared with drop tail technique.
From Figures 9 and 11, it is clear that the received
bandwidth of IRR higher than drop tail technique in case of
video flows.

Figure 10 Rate vs. delay (TCP) (see online version for colours)

Figure 11 Rate vs. throughput (TCP) (see online version
for colours)

4 Conclusions

In this paper, an IRR queue management algorithms for
elastic and inelastic traffic flows has been proposed. This
approach is proposed in order to achieve maximum fairness
independent of deviation in network capacity. In this
approach, the traffic flows are scheduled by the two kinds of
scheduler algorithm which are BRR scheduler algorithm
and DRR-SFF scheduler algorithm. BRR scheduler
algorithm schedules the inelastic traffic flows and DRR-SFF
scheduler algorithm schedules the elastic traffic flows.
Through this approach, it is possible to achieve fairness in
the network for throughput-intensive and also this approach
is computationally efficient.

References
Balchunas, A. (2010) ‘QoS and queuing’, Router Alley

Description, v1.31, ©2010.

 Improved round robin queue management algorithm for elastic and inelastic traffic flows 113

Goyal, P., Vin, H.M. and Cheng, H. (1996) ‘Start-time fair
queuing: a scheduling algorithm for integrated services packet
switching networks’, in the Proceedings of SIGCOMM 1996.

Khawam, K. and Kofman, D. (2006) ‘Opportunistic weighted fair
queueing’, Vehicular Technology Conference, IEEE 64th,
Montreal, Que, pp.1–5.

Lin, D. and Hamdi, M. (2010) ‘Two-stage fair queuing using
budget round-robin’, Proceedings of IEEE, ICC 2010.

Nandhini, S. and Palaniammal, S. (2013a) ‘Fuzzy based
congestion detection technique for queuing in IP
networks’, International Review on Computers and Software
(IRESCOS), April, Vol. 8, No. 4, pp.941–948,

Nandhini, S. and Palaniammal, S. (2013b) ‘Stateless aggregate fair
marking scheduler for differentiated service networks’,
Journal of Computer Science, Vol. 9, No. 1, pp.63–73.

Nandhini, S. and Palaniammal, S. (2014) ‘Enhanced core stateless
fair queuing with multiple queue priority scheduler’,
International Arab Journal of Information Technology,
March, Vol. 11, No. 2, pp.159–167.

Sun, C., Shi, L., Hu, C. and Liu, B. (2007) ‘DRR-SFF: a practical
scheduling algorithm to improve the performance of short
flows’, Proceeding of International Conference on
Networking and Services (ICNS ‘07), Athens, Greece.

