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Abstract: In current scenario, network traffic flows need a start-time fair queuing algorithm 
which is computationally efficient and also which can achieve maximum fairness regardless of 
variation in a network capacity. To enhance the situation of congestion, an improved round robin 
(IRR) queue management algorithm for elastic and inelastic traffic flows is proposed. In this 
approach, the traffic flows are categorised into elastic traffic flows and in-elastic traffic flows. 
The scheduling process in the inelastic flows is handled by the BRR scheduler algorithm since 
they have large capacity requirements and delay constraints and elastic flows will be scheduled 
using DRR-SFF. The results are simulated with NS-2 and they show consistent improvement in 
the performance of the network. 
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1 Introduction 

Today, the traditional end-to-end network protocols cannot 
guarantee the fair allocation of network resources in current 
high bandwidth-delay-product networks. To support this 
issue, Fair queuing algorithm, which is a scheduling 
algorithm used in telecommunication networks to allow 
multiple packet flows to share the link capacity fairly and to 
ensure minimum throughput for users or flows sharing a 
wire line link (Khawam and Kofman, 2006) is implemented. 
When VBR video sources and data sources of integrated 
service networks coexist, the bandwidth for data applications 
may vary with time. Hence, fairness property must ignore 
variation in server capacity (Goyal et al., 1996). Unfair 
scheduling algorithms penalise channels for the use of idle 
bandwidth and do not provide any QoS guarantee in the 
presence of congestion. Fair scheduling algorithms ensure 
allocation of bandwidth fairly regardless of prior usage or 
congestion to enable throughput-intensive, flow-controlled 
applications in heterogeneous, large-scale, decentralised 
networks. Hence, fair scheduling algorithms are desirable 
for video applications (Goyal et al., 1996; Lin and Hamdi, 
2010). A weighted version of fair queuing is called 
weighted fair queuing (WFQ). WFQ allocates an equal 

share of bandwidth to each flow. The variations of fair 
queuing includes, class-based weighted fair queuing 
(CBWFQ) and low latency queuing (LLQ) which are 
queuing methods based on WFQ (Balchunas, 2010). 

2 Proposed queuing model 

2.1 Overview 

Deficit round robin with short flow first (DRR-SFF) (Sun  
et al., 2007) is a novel scheduling mechanism used to 
enhance the performance of short flows with limited 
penalising long flows. DRR-SFF uses weighed DRR for 
scheduling short and long flows respectively and treats long 
flows more fairly. The mean transmission time and loss rate 
of short flows under DRR-SFF are significantly reduced 
comparing to FIFO scheduling using drop tail is revealed 
through trace-driven simulation. Flows are organised as two 
groups, prioritised group (PQ) and best-effort group (BQ). 

In Lin and Hamdi (2010), a two-stage FQ algorithm 
called ‘budget round robin’ (BRR) is proposed. It works in 
two steps. First, a high-bandwidth, high-storage buffer is 
designed using multiple DRAMs. It further divides the 
entire storage space into separated blocks, each block is of 
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megabytes in size and these blocks are organised as circular 
linked list. Second, newly arrived packets are pushed into 
these blocks under the control of BRR while the outputs are 
popped from DRAMs continuously. 

In our case, after categorising the flows as elastic  
(non-real time) and inelastic (Nandhini and Palaniammal, 
2013a, 2014), the inelastic flows having large capacity 
requirements and delay constraints will be scheduled using 
BRR and the elastic flows will be scheduled using  
DRR-SFF. 

Figure 1 Architectural diagram 

 

Figure 1 illustrates the overall process of our proposed 
queuing model, where the flows are differentiated into two 
types, elastic and inelastic flows. Based on the differentiated 
flows, the queuing algorithms BRR and DRR-SFF are 
implemented. The inelastic flows are scheduled with BRR 
scheduler and the elastic flows with DRR-SFF algorithm. 

2.2 Flow classification – a remainder 

The flow classifier identifies the ingress traffic flow as 
inelastic or elastic based on the estimated delay and loss as 
in Nandhini and Palaniammal (2013b). 

The egress updates the average packet delay, PDavi for 
delay sample Di(t) at time t using an exponential weighted 
moving average (EWMA). 

avi avi iPD (t) μ*PD (t 1) (1 μ)*D (t)= − + −  (1) 

where μ is a small fraction 0 ≤ μ  ≤ 1 to emphasise recent 
history rather than the current sample alone. 

At egress router, the difference in loss ratios can be then 
estimated as, 

T T
actD L L= −  (2) 

where T
act(L )  is the actual loss ratio and LT is the measured 

loss ratio at the interval T. 
If the value of loss ratio [as per equation (2)] exceeds to 

a threshold T1 and if the delay [as per equation (1)] exceeds 
a threshold T2, then the flows are marked as inelastic flows 
by the egress node, otherwise they are considered as elastic 
traffic. 

2.3 Deficit round robin with short flow first 

DRR-SFF is a fair scheduling scheme which is widely 
deployed. DRR-SFF can be considered as the round robin 
scheduling for variable-length packets. DRR-SFF inherits 
the characteristics of DRR and may be simply enforced by 
hardware or software system. Flow size with a less 
threshold T is known as short flows and otherwise they are 
known as long flows. (ie) 

Short, FS T      
Flow

Long, Otherwise
<⎛

= ⎜
⎝

 (3) 

where FS is the flow size. 
Here, FS represents the total data packets in a flow. The 

network divides the queues into two groups, prioritised 
queue group (PQ) and best-effort queue group (BQ). Each 
flow is first put n to PQ and then moved to BQ after Tth byte 
have been scheduled. As PQ is assigned higher priority than 
BQ, flows with flow size less than Tth bytes are favoured, 
while long flows in BQ would not be starved since PQ does 
not have strict priority over BQ. Both these PQ and BQ 
serve flows using a DRR discipline. Every group in the 
network is offered services proportional to its allocated 
weight. For each group, a deficit counter (DC) is associated. 
This DC is incremented by a quantum for every round of 
scheduling which represents the weight of the group. 

i i i(ie) DC DC Q= +  (4) 

where DCi is the DC of flow i and Qi is the quantum of flow 
i given by 

( )i iQ R / C F= ×  (5) 

Here, Ri is the rate of the flow i, C is the service rate of the 
link and F is the frame size given by 

n

i
i 1

F Q
=

=∑  (6) 

The group in the network is been served as long as the DC 
is greater than the zero. The DC is decremented by the 
number of bytes served and which is carried over to 
succeeding spherical. 

DC DC NBS= −  (7) 

where NBS is the number of bytes served. 
The DC is immediately reset to zero when the group 

becomes empty. 

(ie) DC 0, if PQ or BQ= = φ = φ  (8) 

By setting their quanta the priority of the two groups is 
determined through this weighted DRR. 

Figure 2 illustrates DRR-SFF working in the network. 
Here, the DRR-SFF uses T = 2 (threshold is two packets) 
during the scheduling in the network. Let us assume that the 
external buffer contains five flows. The flows 1, 2 and 3 are 
served in BQ since they are short parts of flow. In the PQ, 
the news flows 4 and 5 are served. The flow 4 will be 
emptied after the first two packets of flow 4 are served. The 
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emptied flow 4 will be removed and flow 5 would be moved 
to BQ. 

Figure 2 DRR-SFF 

 

Algorithm of enqueueing and dequeueing module of  
DRR-SFF 
Initiation: on arrival of packet p 
high_low_turn = 1; 
FreeBuffer(); //if no free buffers left 
i = ExtractFlow(p); 
i→pkts ++; 
if(i→pkts == 1) //new flow 
i→DC = Q; 
// Q is the Quantum 
if(i→bytes_scheduled < T) //active in PQ group 
i←InsertActivelist_PQ; 
Else // active in BQ group 
i←InsertActvielist_BQ; 
Enqueue(i,p); //enqueue packet p to queue i 

In the enqueuing algorithm, if the buffer is indicated as full 
and when a new data packet has arrived, the network drops 
the data packet using buffer stealing. Buffer stealing drops 
the first data packet from BQ, then from PQ. A flow ‘i’ is 
introduced at the end of the active list of PQ, when the flow 
has only one packet and its bytes scheduled is below the 
threshold T. If in case bytes scheduled are not below the 
threshold T then the flow with a single data packet is added 
at the end of BQ. 

To implement the dequeueing algorithm the PQ or BQ 
should be null. 

if(high_low_turn && AL_PQ) ≠ null; //AL is the activelist 
if(high_DC <= 0) 
high_DC += Q_high_; 
if(i→DC <= 0) i->DC += Q; //Remove the head of 

AL_PQ(i) 
pkt=Dequeue(i); 
Packetsize = Length(pkt); 
high_DC-= Packetsize; 
i→DC-= Packetsize; 

if(high_DC <= 0) high_low_turn = 0; 
i→bytes_scheduled += Packetsize; 
if(i→bytes_scheduled >= T) { 
if(empty i) 
eliminate i from AL_PQ 
else transfer i to AL_BQ 
}else if(i→DC <=0 ) 
transfer i to AL_PQ tail 
else if(!high_low_turn && AL_BQ) ≠ null; 
if(low_DC <= 0) low_DC+=Q_low; 
if(i→DC <= 0) i→DC += Q; //Remove the head of 

AL_BQ(i) 
pkt=Dequeue(i); 
Packetsize = Length(pkt); 
low_DC-= Packetsize; 
i→DC-= Packetsize; 
if(low_DC <= 0) high_low_turn = 1; 
if(empty i) 
eliminate i from AL_BQ 
if(i→DC <=0) 
transfer i to AL_BQ tail 

In the dequeuing algorithm, DC is added by PQ’s quantum 
when the DC is not more than zero. By subtracting the bytes 
of packet p, from flow ‘i’s’ DC, PQ active list is dequeued. 
If in case flow i’s DC is not more than zero, the entry head 
will be changed to the following entry of flow ‘i’ in the PQ 
active list. If DC of PQ is not more than zero, then the next 
turn is BQ else data packets will be scheduled in the PQ. 
During PQ’s scheduling, the scheduled flow bytes is not 
less than the threshold T and not empty then the flow is 
moved to BQ. The scheduling in BQ is same as that in PQ. 

2.4 Budget round robin 

BRR technique tries to save the received packets in their 
output series. BRR keeps the track of the buffered packets 
and records the connections which are in active and then the 
BRR estimates the storage quota for each connection which 
is active. When a new data packet is received, the BRR 
assumes the number active connections are stable and target 
block number is calculated. Thus, once the storage quota for 
the present block is exhausted, the available space of 
succeeding block is allotted before hand. BRR omits the 
trivial connections by setting up a threshold value in order 
to maintain the accuracy of such estimation. The 
connections with larger buffered data size than threshold 
will be considered as active connection. Moreover, BRR 
additionally prevents any connection from assembling an 
unnecessary quantum. Quantum which is maximal 
accumulated has been strictly restricted, so the algorithm 
can be precise the inaccuracy as soon as the connections are 
updated which are active. 
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Qi is the current quantum, LR(i) is the last paid round, 
TB(i) is the total number of bytes and MAQ is the maximal 
accumulated quantum. 

Enqueuing: 
Initialization: 
Assume (Qi, LR(i), TB(i)) to zeros for all i. 
Define NewArrivalPacket as p; i = GetConnectionID(p); 
UpdataConnection(p, i); 
Qi = ((Qi + (TB(i) – LR(i)) * QU) > MAQ)? MAQ: (Qi + (TB(i) 
– LR(i)) * QU); 
LR(i)= TB(i); 
if(Qi ≥ GetPacketSize(pkt)) then 
bn = (TB(i)> INPUTPointer)? TB(i): 
INPUTPointer; 

//bn is the blocknum 

else bn = TB(i) + Ceil((GetPacketSize(pkt) – Qi) / QU); 
SaveToBlock(pkt, bn); TB(i) = bn; 
if the INPUTPointer-th block is full, then 
update INPUTPointer to the next non-full block in ascending 
order; 

 
Dequeuing: 
Initialization: 
ActiveConnection=0; INPUTPointer=0; OUTPUTPointer=0; 
Get one packet pkt from the OUTPUTPointer-th block;  
i = GetConnectionID(pkt); 
Updata ActiveConnection (pkt, i); 
if (OUTPUTPointer == (INPUTPointer-1)) then 
update INPUTPointer to the next non-full block in ascending 
order; 
if (OUTPUTPointer-th block is null) 
OUTPUTPointer++; 

3 Simulation results 

3.1 Simulation model and parameters 

In this section, we examine the performance of our 
improved round robin (IRR) technique with an extensive 
simulation study based on network simulator (NS-2). We 
compare the results with the drop tail queue technique. The 
topology used in the simulation is shown in Figure 3. 

3.2 Performance metrics 

In the simulation experiments, for elastic (non-real-time), 
TCP traffic is used. For inelastic (real-time), VoIP and 
video traffic are used. The traffic rate is varied from 100 Kb 
to 500 Kb. We measure the following metrics. 

• throughput 

• delay. 

The results are described in the next section. 

Figure 3 Simulation topology 

 

3.3 Results 

3.3.1 Results based on VoIP traffic 

In this experiment, two set of TCP and three set of VoIP 
flows are used. 

Figure 4 Rate vs. delay (VOIP) (see online version for colours) 

 

Figure 5 Rate vs. throughput (VOIP) (see online version  
for colours) 

 

From Figures 4 and 6, we can see that the delay (in case of 
VoIP and TCP respectively) of IRR model is less than drop 
tail technique and from Figures 5 and 7, it is clear that the 
received bandwidth (VoIP and TCP, respectively) of IRR 
model is fairly higher than drop tail technique. 
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Figure 6 Rate vs. delay (TCP) (see online version for colours) 

 

Figure 7 Rate vs. throughput (TCP) (see online version  
for colours) 

 

Figure 8 Rate vs. delay (video) (see online version for colours) 

 

Figure 9 Rate vs. throughput (video) (see online version  
for colours) 

 

3.3.2 Results based on video traffic 

In this experiment, two set of TCP and three set of video 
flows are used. 

Figures 8 and 10 show less delay if IRR model is 
implemented when compared with drop tail technique. 
From Figures 9 and 11, it is clear that the received 
bandwidth of IRR higher than drop tail technique in case of 
video flows. 

Figure 10 Rate vs. delay (TCP) (see online version for colours) 

 

Figure 11 Rate vs. throughput (TCP) (see online version  
for colours) 

 

4 Conclusions 

In this paper, an IRR queue management algorithms for 
elastic and inelastic traffic flows has been proposed. This 
approach is proposed in order to achieve maximum fairness 
independent of deviation in network capacity. In this 
approach, the traffic flows are scheduled by the two kinds of 
scheduler algorithm which are BRR scheduler algorithm 
and DRR-SFF scheduler algorithm. BRR scheduler 
algorithm schedules the inelastic traffic flows and DRR-SFF 
scheduler algorithm schedules the elastic traffic flows. 
Through this approach, it is possible to achieve fairness in 
the network for throughput-intensive and also this approach 
is computationally efficient. 
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