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Abstract 

Distributing the overall workload evenly among a set of processors in VLSI designs to achieve high speed-ups in computation has been 
widely studied as a graph partitioning problem. Determining induced matching k-partition number even when k = 2 is an NP-complete 
problem. In this paper we deal with the induced matching partition for Petersen graphs and circulant graphs and determine their induced 
matching partition numbers. 
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Nomenclature 

G          Graph 
(G)          maximum degree of Graph G  

imp           induced matching partition number 
P (n, 2)          Petersen graph 
G (n; ± {1, 2, ..., j})     Circulant graph 

1. Introduction 

Identifying parallelism in a problem by partitioning its data and tasks among the processors of a parallel computer is a 
fundamental issue in parallel computing. This problem can be modeled as a graph partitioning problem in which the 
vertices of a graph are divided into a specified number of subsets such that few edges join two vertices in different subsets 
[1]. Graph partition problems are some of the most well-studied problems both in graph theory and in computer-science. 
Standard examples of partition problems include k-colorability. Most of these problems are computationally hard even to 
approximate, but it was observed in the 90's [2-3] that many of these partition problems have good approximations when the 
input graph is dense. 

A matching in a graph G = (V, E) is a subset M of edges, no two of which have a vertex in common. A matching is called 
induced if the subgraph of G induced by the endpoints of edges in M is 1-regular. A matching is called M perfect if every 
vertex in G is an endpoint of one of the edges in M. A near-perfect matching covers all but exactly one vertex. Let G be a 
graph with a perfect matching. An induced matching k-partition of a graph G which has a perfect matching is a k-partition 
(V1, V2, ..., Vk) of V (G) such that, for each i (1 i k), E (Vi) is an induced matching of G that covers Vi, or equivalently, the 
subgraph G [Vi] of G induced by Vi is 1-regular. The induced matching partition number of a graph G, denoted by imp (G), 
is the minimum integer k such that G has an induced matching k-partition. The induced matching k-partition problem asks 
whether a given graph G has an induced k-partition or not. 
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Historically, the induced matching k-partition problem was first studied as a combinatorial optimization problem [4]. The  
induced matching k-partition problem is NP-complete. Further the problem is NP-complete even for k = 2 and for 3-regular 
planar graphs, respectively [4-5]. Aifeng et al. [6] studied the computational complexity of the induced matching k-partition 
problem for graphs with small diameters. They proved that the induced matching 2-partition problem of graphs with 
diameter 6 and induced matching 3-partition problem of graphs with diameter 2 are NP-complete. Further they showed that 
the induced matching 2-partition problem of graphs with diameter 2 is polynomially solvable. Yuan and Wang [7] have 
characterized graphs G with imp (G) = 2 (G)  1 where (G) is the maximum degree of G. The induced matching 
partition problem has been studied for certain interconnection networks such as butterfly networks, hypercubes, cube-
connected cycles and grids [8]. 

The induced matching partition number has been determined for augmented and wrapped butterfly networks [9], 
honeycomb networks, honeycomb torus and sierpinski gasket graphs of even dimension. Further the induced matching 
partition numbers of sierpinski gasket graphs of odd dimension and sierpinski graphs have been determined for which there 
exists a near perfect matching [10]. This motivates us to introduce the concept of induced matching partition number for 
graphs with near-perfect matching. Further, in this paper, we find algorithms to identify induced matching partition of 
Petersen graphs and circulant graphs thereby determining their induced matching partition numbers. 
 
Definition 1 Let G be a graph with a near-perfect matching. An induced matching k-partition of a graph Gv = G  {v} 
which has a perfect matching is a k-partition (V1, V2, ..., Vk) of V (Gv) such that, for each i (1 i k), E (Vi) is an induced 
matching of Gv that covers Vi, or equivalently, the subgraph Gv [Vi] of Gv induced by Vi is 1-regular. The induced matching 
partition number of Gv denoted by imp (Gv), is the minimum integer k such that Gv has an induced matching k-partition. 

If Gv does not have perfect matching, imp (Gv) is taken as infinity. The induced matching partition number of G denoted 
by imp (G) is defined as imp (G) = min v V imp (Gv). 

 
Remark 1 If G is vertex-transitive, imp (G) is equal to imp (Gv) for any v V and hence it is enough to study imp (Gv) for 
an arbitrarily chosen vertex v in G. 

 
Theorem 1 Let G be a cycle of length 4k, k 1. Then imp (G) = 2. 

 
Proof. Let V = {1, 2, 3, ..., 4k} be the vertex set of G. Let V1 = {1, 2, 5, 6, 9, 10, ..., 4k  3, 4k  2} and V2 = {3, 4, 7, 8, 11, 
12, ..., 4k  1, 4k} be a partition of V. For any x  V, we have either x V1 or x V2. Without loss of generality let x V1. 
Now the open neighborhood of x denoted by N (x) is given by N (x) = {x  1, x + 1}. Therefore either x  1 V1 and x + 1 
V2 or x + 1 V1 and x  1 V2. Thus G [V1] and G [V2] are 1-regular. Hence imp (G) = 2.  

 
Theorem 2 [7] If a graph G has a perfect matching then imp (G) 2 (G)  1 and imp (G) = 2 (G)  1 if and only if G is 
isomorphic to either K2 or C4k + 2 or the Petersen graph, where Cn is the cycle of length n. 

 
Corollary 1 imp (C4k + 2) = 3. 

 
As in Theorem 1, when n is odd, we obtain the induced matching partition number of Cn. 
 

Theorem 3 For a cycle Cn of odd length, imp (Cn) = 2.  

2. Petersen Graph 

The Petersen graph has fascinated many graph theorists over the years because of its appearance as a counterexample in 
many places. Because of its ambiguity, it seemed a natural graph to be used in many places. The graph is named after Julius 
Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring. In 1950 Coxeter 
[11] introduced a family of graphs generalizing the Petersen graph. The Petersen graph is the most efficient small network 
in terms of node degree, diameter, and network size. Due to its unique and optimal properties, several network topologies 
based on the Petersen graph have been proposed and investigated in the literature [12]. 

A generalized Petersen graph P (n, m), n m n  1) / 2 , consists of an outer n-cycle u1, u2, ..., un, a set of n 
spokes (ui, vi), 1 i n and n inner cycle edges (vi, vi+m) with indices taken modulo n. It is a 3-regular graph and contains 2n 
vertices and 3n edges. For 1 i n, we call the vertices ui and vi of P (n, m) as outer rim and inner rim vertices respectively. 
In this section we consider Petersen graphs with m = 2 and call a generalized Petersen graph P (n, 2) simply a Petersen 
graph. See Fig. 1(a). 
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Theorem 4 Let G be the Petersen graph P (n, 2). Then imp (G) 3. 

 
Proof. Suppose on the contrary that V1, V2 form an induced matching 2-partition of G. It is clear that every 5-cycle in G has 
exactly one edge in E (V1) or E (V2). All other edges are in E (V1)  E (V2). 
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Fig. 1. (a) P (8, 2) (b) The 5-cycle a, b, c, d, e and b, h, f, g, c 

The girth of G is 5 and we consider a 5-cycle in G say a, b, c, d, e in which the edge (a, e) is in E (V1) or E (V2). See Fig. 
1 (b). Without loss of generality let us assume that (a, e) is in E (V1). Now N (b) = {a, c, h} and N (c) = {b, d, g}. Then there 
exists a 5-cycle say b, h, f, g, c in which the edge (b, h) E (V2) and (c, g) E (V1), which is a contradiction.  

 
Procedure INDUCED MATCHING PARTITION P (n, 2) 
 
Input: A generalized Petersen graph P (n, 2), n > 10. 
 
Algorithm: 
 
(i) Label the inner rim vertex vi as 1, 2, or 3 according as i (mod 12) lies in the interval [1, 4], [5, 8] or [9, 12] 

respectively, whenever (a) i n  4 if n 0 mod 4 (b) i n  5 if n 1 mod 4 (c) i n  10 if n 2 mod 4 and (d) i 
n  7 if n 3 mod 4. Go to (ii) if n 0 mod 4, to (iii) if n 1 mod 4, to (iv) if n 2 mod 4 and to (v) if n 3 mod 4. 

(ii) Label the four vertices vn-3, vn-2, vn-1 and vn as 3 if label of vn-4 is 2 and as 2 otherwise. Go to (vi). See Fig. 2 (a). 
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Fig. 2. (a) P (12, 2) (b) P (15, 2) 

(iii) Label the four vertices vn-4, vn-3, vn-2 and vn-1 as 3 if label of vn-5 is 2 and as 2 otherwise. Label vn as 2 or 3 according 
as the label of vn-1 is 3 or 2 respectively. Go to (vi). 

(iv) Label vn-1 and vn as 2 and 3 respectively and the four vertices vn-5, vn-4, vn-3, vn-2 as 1. Label the remaining vertices vn-9, 
vn-8, vn-7 and vn-6 as 2 or 3 according as the label of vn-10 is 3 or 2 respectively. Go to (vi). 

(v) Label the five vertices vn-6, vn-5, vn-4, vn-3 and vn as 2 or 3 according as the label of vn-7 is not equal to 2 or 3 
respectively. Label vn-2 as 1. Label vn-1 as 2 or 3 according as the label of vn is 3 or 2 respectively. Go to (vi). See Fig. 
2 (b). 
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 (vi) Label un as 1 when n 0 mod 4 and as the label of vn otherwise. Label vertex un-1 as that of vn-1 when n 2, 3 mod 4 
and the vertex un-2 as that of vn-2 when n 3 mod 4.  

(vii) On the outer cycle, move simultaneously from u1 in the clockwise direction and from un-i in the anticlockwise 
direction according as n i mod 4, i = 0, 1, 2 or 3 respectively. If vi and ui-1 receive the same label in the clockwise 
direction then label ui as that of vi-1 and if vi and ui+1 receive the same label in the anticlockwise direction then label ui 
as that of vi+1. Otherwise ui, vi, ui-1 receive distinct labels and ui, vi, ui+1 receive distinct labels. 

(viii) Having labeled ui let its adjacent vertex ui+1 in the clockwise direction and ui-1 in the anticlockwise direction receive 
the same label till we arrive at uk where k = 2 n / 4   1 in the clockwise direction and k = 2  n / 4  + 2 in the 
anticlockwise direction. 

End INDUCED MATCHING PARTITION P (n, 2) 
 

Output: imp (P (n, 2)) = 3. 
 
Proof of Correctness: The vertices that receive labels 1, 2 or 3 are in V1, V2 and V3 respectively. For any u Vi, i = 1, 2, 3, 
exactly one vertex in N (u Vi. Thus G [V1], G [V2] and G [V3] are 1-regular. Therefore imp (G   

3. Circulant Networks 

Circulant graphs have been used for decades in the design of computer and telecommunication networks due to their 
optimal fault-tolerance and routing capabilities [13]. The undirected circulant networks arise in the context of Mesh 
Connected Computer suited for parallel processing of data, such as the well-known ILLIAC type computers [14]. Generally, 
the ILLIAC network with n2 processors can be represented as a circulant graph G (n2; ± {1, n}). Circulant graphs are 
intensively researched in computer science, graph theory and discrete mathematics [15]. 

The circulant network is a natural generalization of double loop network, which was first considered by Wong and 
Coppersmith [16]. A circulant undirected graph, denoted by G (n; ± {1, 2, ..., j}), 1 j n / 2 , n 3 is defined as an 
undirected graph consisting of the vertex set V = {0, 1, ..., n  1} and the edge set E = {(i, j): j  i   s (mod n), s {1, 2, ..., 
j}}. The graph in Fig. 3 is the circulant graph G (8; ± {1, 2}). It is clear that G (n; ± 1) is an undirected cycle Cn and G (n; ± 
{1, 2, ..., n / 2 }) is the complete graph Kn. We observe that Cn = G (n, ± 1) is a subgraph of G (n; ± {1, 2, ..., j}) for every j, 
1 j n / 2 . The circulant graph is a vertex-transitive graph. 
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Fig. 3. G (8, ± {1, 2}) 

Lemma 1 For the complete graph Kn, imp (Kn) = n / 2 . 
 

Theorem 5 For the circulant graph G (n, ± {1, 2, ..., j}), imp (G (j + 1) / 2  + 1. 
 
Proof. Let V1, V2, ..., Vk be a k-partition of V (G) such that the subgraph G [Vi] of G induced by Vi is 1-regular. Let x be any 
vertex in G (n, ± {1, 2, ..., j}) and N (x) = {x1, x2, ..., xj, y1, y2, ..., yj}. Suppose x V1, then exactly one of xi or yi V1 i 
j. Without loss of generality let xi V1. Since the graph induced by the vertices x, y1, y2, ..., yj is a complete graph on j + 1 
vertices, in view of Lemma 1, imp (G  (j + 1) / 2)   

 
Theorem 1 together with Corollary 1 implies the following theorem. 
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Theorem 6 For the circulant graph G (n, ± {1, 2}), imp (G) equals 2 or 3 according as n = 4k or n = 4k + 2 respectively. 
 
Proof. Let n = 4k or 4k + 2. Then G (n, ± {1, 2}) is comprised of the outer cycle of length n and two disjoint inner cycles of 
length n / 2. Without loss of generality let (0, 1) E (V1). Then either (2, 4) E (V2) or (2, 3) E (V2). If (2, 4) E (V2), 
then 3 must be in V3. On the other hand if (2, 3) E (V2), proceeding in the clockwise direction, we get V1 = {0, 1, 4, 5, 8, 9, 
..., n  4, n  3} and V2 = {2, 3, 6, 7, 10, 11, ..., n  2, n  1} if n = 4k. Again V1 = {0, 1, 4, 5, 8, 9, ..., n  6, n  5}, V2 = {2, 
3, 6, 7, 10, 11, ..., n  4, n  3} and V3 = {n  2, n  1} if n = 4k + 2.   

 
G (n, ±{1, 2}) when n = 4k + 1 or 4k + 3 is a near-perfect graph. Since G is vertex-transitive it is enough to consider G \ 

{v} for any v V. Without loss of generality let v be the vertex labeled 0. Proceeding as in Theorem 6, we have the 
following theorem. 
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Fig. 4. G (6k + 2, ± {1, 2, 3}) 

Theorem 7 For the circulant graph G (n, ± {1, 2}), imp (G) equals 2 or 3 according as n = 4k + 1 or n = 4k + 3 respectively. 
 
Theorem 8 For the circulant graph G (n, ± {1, 2, 3}), n > 15, imp (G) = 3. 
 
Proof. The cycle Cn is a subgraph of G (n; ± {1, 2, 3}). Divide the cycle Cn into two arcs such that number of vertices in arc 
C  is a multiple of 6 and the number of vertices in arc C  is n (mod 6) + 12, n > 15. Without loss of generality let the 
vertices on C  be labeled 1, 1, 2, 2, 3, 3 for every consecutive six vertices in the clockwise sense. 

If n mod 6 = 0, the remaining 12 vertices in C  are labeled as 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3 in the clockwise sense. If n 
mod 6 = 2, the remaining 14 vertices in C  are labeled as 1, 2, 2, 1, 3, 3, 2, 2, 1, 1, 3, 2, 2, 3 in the clockwise sense. If n mod 
6 = 4, the remaining 16 vertices in C  are labeled as 1, 1, 2, 2, 3, 1, 1, 3, 2, 2, 1, 1, 3, 2, 2, 3 in the clockwise sense. It can be 
manually checked that Vi containing vertices labeled i, 1 i 3 yield an induced matching partition of G. The case when n 
mod 6 = 1, 3, 5 leads to a near perfect matching which can be obtained in a similar manner.  
 
Conjecture For the circulant graph G (n, ± {1, 2, ..., j}), imp (G) = (j + 1) / 2  + 1, j . 

4. Conclusion 

In this paper, the induced matching partition numbers of Petersen graphs and Circulant graphs have been determined. As the 
induced matching k-partition problem is NP-complete even for k = 2, it is worth investigating the same for interconnection 
networks for all k. We have also identified classes of Petersen and Ciruculant graphs with k = 3.  
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