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Abstract The present study investigates the effects of heat transfer on MHD laminar viscous flow

in a pipe with expanding or contracting permeable wall. The pipe wall expands or contracts

uniformly at a time dependent rate. The governing equations are reduced to ordinary differential

equations by using a similarity transformation. An analytical approach, namely the homotopy

analysis method (HAM) is applied in order to obtain the solutions of the ordinary differential equa-

tions. The effects of various emerging parameters on flow variables have been discussed numerically

and explained graphically. Further, we find a good agreement between the HAM solutions and

solutions already reported in the literature.
� 2014 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.
1. Introduction

A lot of attention has been given to the studies pertaining to
laminar flow in a porous pipe or channel with expanding or
contracting walls due to their wide applications in technologi-

cal as well as biological flows, for example in the transport of
biological fluids through expanding or contracting vessels, the
synchronous pulsation of porous diaphragms, the air circula-

tion in the respiratory system and the regression of the burning
surface in solid rocket motors [1–7]. The viscous flow inside an
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impermeable tube of contracting cross section was first exam-

ined by Uchida and Aoki [8]. Therein, the Navier–Stokes equa-
tions for a semi-infinite tube were reduced to a single
differential equation. They investigated a similar solution for

the unsteady flows produced by a singe contraction or expan-
sion of the wall of a semi-infinite circular pipe. Goto and Uch-
ida [9] carried out a theoretical analysis of the unsteady flow in

a semi-infinite expanding or contracting circular pipe into
which an incompressible fluid is injected or sucked in through
the wall surface. Bujurke et al. [10] have studied the unsteady
flow in a contracting or expanding pipe by using a computer

extended series solution. Boutros et al. [11] have applied the
Lie-group method for unsteady flows in a semi-infinite expand-
ing or contracting pipe with injection or suction through a por-

ous wall. In their investigation the Lie-group method was
applied to the equations of the motion for determining symme-
try reductions in partial differential equations, the resulting

fourth order differential equation was then solved using
in Shams University.
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Figure 1 Porous pipe with expanding or contracting wall.

2 S. Srinivas et al.
small-parameter perturbations and the results were compared
with numerical solutions using a shooting method coupled
with a Runge–Kutta scheme. Xinhui et al. [12] have analyzed

the problem of laminar flow in a porous pipe with suction at
slowly expanding or contracting wall. Majdalani and Zhou
[13] studied moderate to large injection and suction driven

channel flows with expanding or contracting walls. In this
investigation the governing equation is first integrated and
the resulting third-order differential equation is solved using

the method of variation in parameters, for the large injection
case. For the large suction case, the governing equation is first
simplified near the wall and then solved using successive
approximations.

There has been growing interest in studying the magnetohy-
drodynamic (MHD) flow and heat transfer characteristics of
electrically conducting fluids because of many practical appli-

cations such as in MHD flowmetry, MHD power generation
MHD pumps, high temperature plasmas, chemical processing
equipment, power generation systems and cooling of nuclear

reactors [14–18]. Hayat et al. [19] have obtained explicit analyt-
ical solutions for MHD pipe flow of a fourth grade fluid.
Xinhui et al. [20] discussed the unsteady flow in a porous chan-

nel with expanding or contracting walls in the presence of a
transverse magnetic field using the singular perturbation meth-
od. Turkyilmazoglu [21] obtained exact solutions for the steady
Navier–Stokes equations governing the incompressible viscous

Newtonian electrically conducting fluid flow due to rotating
disk. Makinde et al. [22] have examined wall driven steady flow
of a viscous fluid and heat transfer in a uniformly porous tube

using perturbation series. Nakhi and Chamkha [23] analyzed
the conjugate natural convection around a finned pipe in a
square enclosure with internal heat generation. Recently,

Srinivas et al. ([24] several references therein) studied the ther-
mal diffusion and diffusion thermo effects in a two-dimensional
viscous flow between slowly expanding or contracting walls

with weak permeability. Reddy et al. [25] analyzed the influence
of heat transfer and chemical reaction on asymmetric laminar
flow between two slowly expanding or contracting walls using
a double perturbation in the permeation Reynolds number

and the wall expansion ratio. More recently, Srinivas et al.
[26] have examined the effects of mass transfer and chemical
reaction on laminar flow in a porous pipe with expanding or

contracting wall by using the homotopy analysis method.
A literature survey reveals that no attempt regarding heat

transfer effects on MHD flow of viscous fluid in a porous pipe

with expanding or contracting wall has been made so far. Such
a study is of great value in biological and engineering research.
Hence the main aim of this work is to study the effect of heat
transfer on MHD viscous flow in a porous pipe with expand-

ing or contracting wall. The governing equations in cylindrical
coordinates are introduced and transformed into ordinary dif-
ferential equations using similarity transformations and then

solved using a powerful technique recently developed by Liao
[27] namely the homotopy analysis method (HAM). This tech-
nique has been applied successfully to many interesting prob-

lems ([28-35]). The features of the flow characteristics are
analyzed by plotting graphs and are discussed in detail. The
present paper is organized in the following manner. In Sec-

tion 2, details of the mathematical formulation are presented.
Sections 2.1 and 2.2 include the solution procedure of the
problem. Numerical results and discussion are given in Sec-
tion 3 and the conclusions have been summarized in Section 4.
Please cite this article in press as: Srinivas S et al., Influence of heat transfer
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2. Formulation of the problem

Consider the laminar and incompressible electrically conduct-
ing fluid flow in a porous pipe of a semi-infinite length with an

expanding or contracting wall. The radius of the pipe is a(t).
The wall has equal permeability and expands or contracts uni-
formly at a time dependent rate _aðtÞ. A magnetic field of uni-

form strength B0 is applied perpendicular to the wall. A
coordinate system can be chosen with the origin at the center
of the pipe as shown in Fig. 1. Take the ẑ coordinate axis par-
allel to the pipe wall and the r̂ coordinate axis perpendicular to

the wall. Under these assumptions the governing equations are
([8], [11], and [12])

›û

›ẑ
þ ›v̂

›r̂
þ v̂

r̂
¼ 0; ð1Þ

›û

›t
þ û

›û

›ẑ
þ v̂

›û

›r̂
¼ � 1

q

›p̂

›ẑ
þ m

›2û

›ẑ2
þ ›2û

›r̂2
þ 1

r̂

›û

›r̂

� �
� rB2

0

q
û; ð2Þ

›v̂

›t
þ û

›v̂

›ẑ
þ v̂

›v̂

›r̂
¼ � 1

q
›p̂

›r̂
þ m

›2v̂

›ẑ2
þ ›2v̂

›r̂2
þ 1

r̂

›v̂

›r̂
� v̂

r̂2

� �
; ð3Þ

›T

›t
þ û

›T

›ẑ
þ v̂

›T

›r̂
¼ j

qcp

›2T

›ẑ2
þ ›2T

›r̂2
þ 1

r̂

›T

›r̂

� �
ð4Þ

where û; v̂ are the components of velocity along the ẑ and r̂

directions respectively, q is density, p̂ is dimensional pressure,
t is time, m is kinematic viscosity, r is electrical conductivity,
B0 is the strength of applied magnetic field, cp is specific heat

at constant pressure, j is thermal conductivity, and T is the
temperature of the fluid.

The boundary conditions are as follows:

û ¼ 0; v̂ ¼ �vw ¼ �A _a; T ¼ Tw at r̂ ¼ aðtÞ ð5Þ

›û

›r̂
¼ 0; v̂ ¼ 0;

›T

›r̂
¼ 0 at r̂ ¼ 0 ð6Þ

û ¼ 0; v̂ ¼ 0 at ẑ ¼ 0 ð7Þ
on MHD flow in a pipe with expanding or contracting permeable wall,
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Influence of heat transfer on MHD flow 3
The injection/suction coefficient A that appears in Eq. (5) is the

measure of wall permeability. Introduce a stream function
which satisfies the continuity Eq. (1)bw ¼ mẑ bFðg; tÞ ð8Þ

where g ¼ r̂
a
is the dimensionless radial position.

The axial and radial velocity components can be written as

û ¼ 1

r̂

›bw
›r̂
¼ mẑ bFgðg; tÞ

a2g
and v̂ ¼ � 1

r̂

›bw
›ẑ
¼ � m bFðg; tÞ

ag
ð9Þ

Substituting Eq. (9) into Eqs. (2) and (3) and then eliminating

pressure, one obtains

g2 bFgggg þ ðag3 � 2gÞ bFggg þ ðg2aþ 3Þ bFgg � gaþ 3

g

� �bFg

þ bF2
g � g bFg

bFgg þ g bF bFggg � 3 bF bFgg

þ 3

g
bF bFg �M2ðg2 bFgg � g bFgÞ �

a2

m
g3

bFg

g

 !
gt

¼ 0 ð10Þ

where aðtÞ ¼ a _a=m is the non-dimensional wall dilation rate
and is defined to be positive for expansion and negative for

contraction and M ¼
ffiffi
r
p

B0affiffi
l
p is the Hartmann number and l is

dynamic viscosity. The boundary conditions given by Eqs.
(5) and (6) translate intobFð0; tÞ ¼ 0; bFð1; tÞ ¼ R; bFgð1; tÞ

¼ 0; lim
g!0

@

@g
1

g
@ bFðg; tÞ
@g

 !
¼ 0 ð11Þ

where R is the permeation Reynolds number and is defined by
R= avw/m = Aa. Note that R is positive for injection and neg-
ative for suction. A similar solution with respect to both space

and time can now be developed by following the transforma-
tion described by Uchida and Aoki [8] and Majdalani and

Zhou [13] independently. For constant a and bF ¼ bFðgÞ, it fol-
lows that

bFg

g

� �
gt

¼ 0. To realize this condition, the value of the

expansion ratio a must be specified by the initial value

a ¼ a _a

m
¼ a0 _a0

m
¼ constant; or

_a0
_a
¼ a

a0
; ð12Þ

where a0 and _a0 denote the initial height and expansion rate.

Forthwith, the temporal similarity transformation can be
achieved by integrating Eq. (12) with respect time. The result is

a

a0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2mata�20

q
: ð13Þ

Since vw ¼ A _a, an expression for the injection velocity can be
determined, proved that the injection coefficient A is constant.
From Eqs. (12) and (13), it is clear that

_a0
_a
¼ vwð0Þ

vwðtÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2mata�20

q
:

Under these provisions (10) becomes,

g3 bFIV þ aðg4 bF000 þ g3 bF 00 � g2 bF 0Þ � 2g2 bF000 þ 3g bF00
� 3 bF 0 þ g bF2 � g2 bF 0 bF 00 � 3g bF bF00 þ 3 bF bF 0 þ g2 bF bF 000
�M2ðg3 bF 00 � g2 bF 0Þ
¼ 0 ð14Þ
Please cite this article in press as: Srinivas S et al., Influence of heat transfer
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The corresponding boundary conditions are

bFð0Þ ¼ 0; bFð1Þ ¼ R; bF 0ð1Þ ¼ 0; lim
g!0

bF 0
g

 !0
¼ 0 ð15Þ

Eqs. (9), (14), and (15) can be normalized by putting

w ¼
bw
a _a
; u ¼ û

_a
; v ¼ v̂

_a
; z ¼ ẑ

a
; f ¼

bF
R

ð16Þ

and sou ¼ zAf 0

g
; v ¼ �Af

g

g3fIV þ aðg4f 000 þ g3f 00 � g2f 0Þ � 2g2f 000 þ 3gf 00 � 3f 0

þ gRf02 � g2Rf 0 f 00 � 3gRff 00 þ 3Rff 0

þ g2Rff 000 �M2ðg3f 00 � g2f 0Þ ¼ 0 ð17Þ

fð0Þ ¼ 0; fð1Þ ¼ 1; f 0ð1Þ ¼ 0; lim
g!0

f 0

g

� �0
¼ 0 ð18Þ

When a = 0 and M = 0, Eq. (17) is the case that Majdalani

and Flandro [7] have described.
The temperature of the fluid in the pipe can be expressed as

[22]

T ¼ T0 þ B
ẑ

a
hðgÞ ð19Þ

where T0 is the reference temperature at the center, B is con-
stant of the fluid.

The dimensionless form of temperature from Eq. (19) is

h ¼ T� T0

Tw � T0

ð20Þ

where Tw is the temperature at the wall.
Substituting Eq. (19) into Eq. (4), one obtains

gh00 þ aPrðg2h0 þ ghÞ � RPrf 0hþ RPrfh0 þ h0 ¼ 0 ð21Þ

where Pr ¼ lcp
j is Prandtl number. The corresponding bound-

ary conditions are

h0ð0Þ ¼ 0; hð1Þ ¼ 1 ð22Þ
2.1. Solution of the problem

To develop analytical solutions by HAM as a polynomial base

function, the boundary conditions in Eq. (18) become:

fð0Þ ¼ 0; fð1Þ ¼ 1; f 0ð1Þ ¼ 0; f 0ð0Þ ¼ 0 ð23Þ

For the HAM solution of Eqs. (17) and (21), the initial

approximations f0 and h0 and auxiliary linear operators L1

and L2 are

f0ðgÞ ¼ 3g2 � 2g3 ð24Þ

h0ðgÞ ¼ 1 ð25Þ

L1ðfÞ ¼
d4f

dg4
; L2ðhÞ ¼

d2f

dg2
ðð26Þ-27Þ

where L1ðc1g3 þ c2g
2 þ c3gþ c4Þ ¼ 0 ð28Þ

L2ðc5gþ c6Þ ¼ 0 ð29Þ
on MHD flow in a pipe with expanding or contracting permeable wall,
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and ci(i= 1 – 6) are constants.

2.1.1. Zero-order deformation equations

Let p e [0, 1] be an embedding parameter and h be the auxiliary
non-zero parameter. The deformation equations at zero-order

can be written as follows

ð1� pÞL1½bfðg; pÞ � f0ðgÞ� ¼ phN1½bfðg; pÞ� ð30Þ

bfð0; pÞ ¼ 0; bfð1; pÞ ¼ 1; bf 0ð1; pÞ ¼ 0; bf 0ð0; pÞ ¼ 0; ð31Þ

ð1� pÞL2½bhðg; pÞ � h0ðgÞ� ¼ phN2½bhðg; pÞ; bfðg; pÞ� ð32Þ

bhð1; pÞ ¼ 1; bh 0ð0; pÞ ¼ 0 ð33Þ

where

N1½bfðg; pÞ� ¼ g3 @
4bfðg; pÞ
@g4

þ a g4 @
3bfðg; pÞ
@g3

þ g3 @
2bfðg; pÞ
@g2

� g2 @
bfðg; pÞ
@g

" #

� 2g2 @
3bfðg; pÞ
@g3

þ 3g
@2bfðg; pÞ
@g2

� 3
@bfðg; pÞ
@g

þ Rg
@bfðg; pÞ
@g

" #2
� Rg2 @

bfðg; qÞ
@g

@2bfðg; pÞ
@g2

� 3Rgbfðg; pÞ @
2bfðg; pÞ
@g2

þ 3Rgbfðg; qÞ

� @bfðg; pÞ
@g

þ Rg2bfðg; qÞ @
3bfðg; pÞ
@g3

�M2 g3 @
2bfðg; pÞ
@g2

� g2 @
bfðg; pÞ
@g

" #
ð34Þ

N2½bhðg; pÞ; bfðg; pÞ� ¼ g
@2bhðg; pÞ
@g2

þ aPr g2 @
bhðg; pÞ
@g

þ gbhðg; pÞ
" #

� RPr
@bfðg; pÞ
@g

bhðg; pÞ þ RPrbfðg; pÞ

� @bhðg; pÞ
@g

þ @
bhðg; pÞ
@g

ð35Þ

For p= 0 and p = 1, we havebfðg; 0Þ ¼ f0ðgÞ; bfðg; 1Þ ¼ fðgÞ ð36Þ

bhðg; 0Þ ¼ h0ðgÞ; bhðg; 1Þ ¼ hðgÞ ð37Þ

Further by Taylor’s series expansion one obtains

fðgÞ ¼ f0ðgÞ þ
X1
m¼1

fmðgÞpm where fmðgÞ

¼ 1

m!

@mbfðg; pÞ
@pm

�����
p¼0

ð38Þ

and
Please cite this article in press as: Srinivas S et al., Influence of heat transfer
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hðgÞ ¼ h0ðgÞ þ
X1
m¼1

hmðgÞpm where hmðgÞ

¼ 1

m!

@mbhðg; pÞ
@pm

�����
p¼0

ð39Þ

We choose proper h in such a way that these series are conver-
gent at p = 1, therefore we have the solution expressions from

Eqs. (38) and (39) as follows:

fðgÞ ¼ f0ðgÞ þ
X1
m¼1

fmðgÞ ð40Þ

hðgÞ ¼ h0ðgÞ þ
X1
m¼1

hmðgÞ ð41Þ
2.1.2. The high-order deformation equations

Differentiating the zero-order deformation Eqs. (30) and (32)

m times with respect to p, then dividing by m!, and finally set-
ting p = 0, one obtains the following m th order deformation
equations:

L1½fmðgÞ � vmfm�1ðgÞ� ¼ hR1;mðgÞ ð42Þ

L2½hmðgÞ � vmhm�1ðgÞ� ¼ hR2;mðgÞ ð43Þ

together with the conditions

fmð0Þ ¼ fmð1Þ ¼ f0mð1Þ ¼ f0mð0Þ ¼ 0 ð44Þ

hmð1Þ ¼ h0mð0Þ ¼ 0 ð45Þ

vm ¼
1; m–1

0; m ¼ 1

���� ð46Þ

where

R1;m ¼ gf IVm�1 þ a½g4f 00m�1 þ g3f 00m�1 � g2f 0m�1� � 2g2f 000m�1

þ 3gf 00m�1 � 3f 0m�1 þ Rg
Xm�1
k¼0

f 0m�1�kf
0
k

� Rg2
Xm�1
k¼0

f 0m�1�kf
00
k � 3Rg

Xm�1
k¼0

fm�1�kf
00
k þ 3R

Xm�1
k¼0

fm�1�kf
0
k

þ Rg2
Xm�1
k¼0

fm�1�kf
000
k �M2½g3f 00m�1 � g2f 0m�1� ð47Þ

R2;m ¼ gh 00m�1 þ aPr½g2h 0m�1 þ ghm�1� � RPr
Xm�1
k¼0

f 0m�1�khk

þ RPr
Xm�1
k¼0

fm�1�kh
0
k þ h 0m�1 ð48Þ

For each m, to solve Eqs. (42) and (43) with the conditions (44)

and (45) we follow [27–33].

2.2. Convergence of HAM solution

As pointed out by Liao [27], the convergence of the series de-
pends upon h which determines the convergence region for
HAM. If h is properly chosen, the homotopy series solution
may converge fast. For this purpose h-curves are plotted in

Fig. 2 for the 20th order approximation. From Fig. 2, the re-
on MHD flow in a pipe with expanding or contracting permeable wall,
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gion of convergence for admissible values of h is
�1.1 6 h 6 �0.2.

One can define the square residual error to prove the cor-

rectness of the h-curves. Substituting the approximate solu-
tions of f(g) and h(g) obtained by the HAM into Eqs. (17)
and (21) yields the residual error as follows:

E1 ¼ g3fIV þ aðg4f 000 þ g3f 00 � g2f 0Þ � 2g2f 000 þ 3gf 00

� 3f 0 þ gRf02 � g2Rf 0f 00 � 3gRff00 þ 3Rff 0

þ g2Rff000 �M2ðg3f 00 � g2f 0Þ
¼ 0 ð49Þ

E2 ¼ gh00 þ aPrðg2h0 þ ghÞ � RPrf 0hþ RPrfh0 þ h0 ð50Þ

where E1 and E2 correspond to the residual error for f(g) and
h(g)respectively. We show the square residual error (SRE) for
f(g) and h(g)obtained by different approximations in Tables 1a

and 1b. From this table it can be seen that the different values
of h lead to minimum average square residual error for f(g)
and h(g). It is clear that the average square residual error de-

creases monotonically as the order of approximation increases.
Further, the shear stress can be obtained from Newton’s law of
viscosity

bs ¼ l
@v̂

@ẑ
þ @û
@r̂

� �
¼ l

@û

@r̂
ð51Þ

Introducing dimensionless shear stress s ¼ bs
qv2w
, Eq. (51)

becomes

s ¼ zR�1
1

g
f 00 � 1

g2
f 0

� �
ð52Þ

At the pipe wall the dimensionless shear stress is [8]
Figure 2 h Curves for the 20th order a

Please cite this article in press as: Srinivas S et al., Influence of heat transfer
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s ¼ zR�1f 00ð1Þ ð53Þ

To obtain the radial pressure drop, substituting the velocity
components into Eq. (3), one obtains
Pg ¼ �R�1af� 1

2

f2

g2

� �
� R�1

f 0

g

� �� �0
ð54Þ

The radial pressure distribution can now be determined by

integrating Eq. (54). Letting Pc be the centerline pressure,
one may proceed fromZ PðgÞ

Pc

dP ¼ �
Z g

0

R�1afþ 1

2

f2

g2

� �
þ R�1

f 0

g

� �� �0
dg ð55Þ

The resulting radial pressure distribution will be [8]

DPr � PðgÞ � Pc

¼ R�1
f 0

g

� �
g¼0
� aR�1fþ 1

2

f2

g2
þ R�1

f 0

g

� �� �
ð56Þ

The heat transfer rate in terms of Nusselt number is defined as

Nu ¼ hma

j
ð57Þ

where hm is the heat transfer coefficient defined as

hmðTw � T0Þ ¼ �j
dT

dr̂
ð58Þ

Hence the dimensionless Nusselt number at the pipe wall is de-

fined as

Nu ¼ �h0ð1Þ ð59Þ
pproximations for the functions f, h.

on MHD flow in a pipe with expanding or contracting permeable wall,
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Table 1a 15th and 20th order approximations for the optimal convergence-control parameter h and corresponding average square

residual error (SRE) in the case of R= 2, a = 1, M= 0.5 for the solution of f and R = 2, a = 1, Pr = 0.71, M= 0.5 for the solution

of h.

Convergence Control parameter (h) SRE of f SRE of h

15th order 20th order 15th order 20th order

�0.6 2.59856 · 10�1 1.27499 · 10�1 6.82445 · 10�4 3.0693 · 10�4

�0.7 1.74033 · 10�1 8.48657 · 10�2 4.41923 · 10�4 1.9797 · 10�4

�0.8 1.22491 · 10�1 5.9593 · 10�2 3.02535 · 10�4 1.35094 · 10�4

�0.85 1.04359 · 10�1 5.07573 · 10�2 2.54548 · 10�4 1.13496 · 10�4

�0.9 8.97064 · 10�2 4.36352 · 10�2 2.16201 · 10�4 9.62649 · 10�5

�0.95 7.77335 · 10�2 3.78265 · 10�2 1.85051 · 10�4 8.2355 · 10�5

�1 6.78515 · 10�2 3.30383 · 10�2 1.6157 · 10�4 7.11092 · 10�5

�1.05 5.96203 · 10�2 2.90531 · 10�2 2.74247 · 10�4 6.60378 · 10�5

Table 1b 15th and 20th order approximations for the optimal convergence-control parameter h and corresponding average square

residual error (SRE) in the case of R = 2, a = �1, M= 0.5 for the solution of f and R = 2, a = �1, Pr = 0.71, M= 0.5 for the

solution of h.

Convergence control parameter (h) SRE of f SRE of h

15th order 20th order 15th order 20th order

�0.6 6.47564 · 10�1 2.25058 · 10�1 4.12343 · 10�4 1.86556 · 10�4

�0.7 3.51498 · 10�1 1.22582 · 10�1 2.67269 · 10�4 1.20351 · 10�4

�0.8 2.06482 · 10�1 7.32308 · 10�2 1.82983 · 10�4 8.22146 · 10�5

�0.85 1.62404 · 10�1 5.82367 · 10�2 1.53973 · 10�4 6.91258 · 10�5

�0.9 1.29713 · 10�1 4.70693 · 10�2 1.30667 · 10�4 5.86886 · 10�5

�0.95 1.05068 · 10�1 3.8596 · 10�2 1.110875 · 10�4 5.03123 · 10�5

�1 8.6205 · 10�2 3.20578 · 10�2 1.08353 · 10�4 4.4445 · 10�5

�1.05 7.1561 · 10�2 2.6935 · 10�2 8.43809 · 10�4 8.21756 · 10�5
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3. Results and discussion

In order to get physical insight into the problem, dimensionless
velocity components, temperature, shear stress, radial pressure
drop and Nusselt number distributions have been discussed by

assigning numerical values to various parameters that have
been emerged in the mathematical formulation and the results
are shown graphically in Figs. 3–17 for the proper value of

h= �1. In order to illustrate the influence of permeation Rey-
nolds number R, wall expansion ratio a, and Hartmann num-
ber M on the dimensionless axial velocity Figs. 3–5 are

plotted. From these figures one can observe that the dimension-
less axial velocity always reaches a maximum at the center.
Fig. 3a and b shows the behavior of dimensionless axial velocity
u/Az for a = 2 and a = �2 respectively, over a range of perme-

ation Reynolds number R. For a constant wall expansion ratio
a, the dimensionless axial velocity near the center increases with
increasing suction (i.e. increasing |R|) while it decreases with

increasing injection. More over the dimensionless axial velocity
near the center for the case of suction combined with wall
expansion is higher than the case of suction combined with wall

contraction. Similar conclusions can be drawn by a comparison
of the cases of injection combined with wall expansion and wall
contraction. The dimensionless axial velocity for permeation

Reynolds number R= 2 and R = �1 respectively, over a
range of wall expansion ratio a is plotted in Fig. 4a and b.
For every level of suction or injection, for the case of wall
expansion (a > 0), increasing a leads to higher axial velocity

near the center and lower near the wall. This is because when
the wall is in expansion, the flow toward the center becomes
Please cite this article in press as: Srinivas S et al., Influence of heat transfer
Ain Shams Eng J (2014), http://dx.doi.org/10.1016/j.asej.2014.01.006
greater to make up for the space caused by the expansion of
the wall and as a result the axial velocity also becomes greater
near the center. The behavior is reversed for the case of wall
contraction (a < 0). In the limit of low expansion ratio, the

dimensionless axial velocity distribution tends to parabolic
for both a > 0 and a < 0. These observations are qualitatively
in agreement with results of Majdalani et al. [1] and Srinivas

et al. [24] for the case of hydrodynamic viscous flow in porous
channel with expanding or contracting walls and with that of
Uchida and Aoki [8] for the case of hydrodynamic viscous flow

in a pipe with expanding or contracting wall. Fig. 5a–d depict
the effect of Hartmann number on the dimensionless axial
velocity. For a given increase in magnetic field strength, the

dimensionless axial velocity decreases a little away the pipe
wall. This is reasonable because we can assume that the mag-
netic force acts as a resistive drag force. The velocity is zero
at the pipe wall and increases to maximum near the center. This

non-uniform force reduces the axial flow velocity of the central
stream of the pipe. To keep the mass flow uniform the fluid has
to flow adjacent to the pipe wall and hence the dimensionless

axial velocity near the pipe wall increases. Further, from these
figures one can notice that the velocity profile becomes flatter
with an increase in the Hartmann number.

Figs. 6–8 show the effects of R, a, and M on the dimension-
less radial velocity. Fig. 6a and b demonstrate the effect of per-
meation Reynolds number R on the dimensionless radial

velocity for a = 2 and a = �2. For constant a, the absolute
dimensionless radial velocity increases with increasing suction
while it decreases with increasing injection. The effect of wall
expansion ratio a on the dimensionless radial velocity is shown
on MHD flow in a pipe with expanding or contracting permeable wall,
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Figure 5 Axial velocities for different M. (a) R = 2, a = 2, (b) R = 2, a = �2, (c) R = �1, a = 1, (d) R = �1, a = �1.

Figure 3 Axial velocity over a range of R. (a) a = 2, M= 1, (b) a = �2, M = 1.

Figure 4 Axial velocity over a range of a. (a) R = 2, M = 1, (b)R = �1, M= 1.
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Figure 8 Radial velocity for different M. (a) R = 2, a = 2, (b) R = 2, a = �2, (c) R= �1, a = 1, (d) R= �1, a = �1.

Figure 6 Radial velocity over a range of R. (a) a = 2, M= 1, (b) a = �2, M = 1.

Figure 7 Radial velocity over a range of a. (a) R = 2, M = 0.5, (b) R = �1, M= 0.5.
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Figure 11 Temperature distribution. (a) R= 2, M= 1, a = 2, (b) R= 2, M= 1, a = �2, (c) R= 2, Pr = 0.71, a = 2, (d) R= 2,

Pr = 0.71, a = �2.

Figure 9 Effect of R on temperature distribution. (a) a = 2, M= 1, Pr = 0.71, (b) a = �2, M= 1, Pr = 0.71.

Figure 10 Effect of a on temperature distribution. (a) R = 2, M = 1, Pr = 0.71, (b) R = �1, M = 1, Pr = 0.71.
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Figure 14 Wall shear stress distribution for different M. (a) R= 2, a = 2, (b) R = 2, a = �2 (c) R = �1, a = 1, (d) R = �1, a = �1.

Figure 12 Effect of R on wall shear stress distribution. (a) a = 2, M= 1 (b) a = �2, M= 1.

Figure 13 Effect of a on wall shear stress distribution. (a) R= 2, M= 1, (b) R = �1, M = 1.
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Figure 17 Nusselt number distribution. (a) Effect of a when M = 0.5, Pr = 1, (b) effect of Pr when a = 2, M= 0.5.

Figure 15 Radial pressure drop over a range of a. (a) R = 2, M= 1, (b)R= �1, M= 1.

Figure 16 Radial pressure drop for different M. (a) R = 2, a = 2, (b) R = 2, a = �2, (c) R = �1, a = 1, (d) R = �1, a = �1.
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Table 2 Radial velocity observations in case of suction for different values of a.

a g m/A m/A m/A

Boutros et al. (Ref. [11]) HAM(15th order) HAM(20th order)

(a) M= 0, R = �100
50 0.91652 �1.039776 �1.03942 �1.03641
20 0.88318 �1.053519 �1.05628 �1.05519
0 0.86023 �1.067444 �1.06864 �1.06842
�5 0.86023 �1.071578 �1.07157 �1.07151
�10 0.84853 �1.076252 �1.07491 �1.07492

(b) M= 0, R = �1000
50 0.87178 �1.062978 �1.06573 �1.06527
20 0.86023 �1.065272 �1.06781 �1.06736
0 0.86023 �1.066926 �1.06897 �1.06859
�5 0.86023 �1.067339 �1.06926 �1.06889
�10 0.86023 �1.067752 �1.06954 �1.06919
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in Fig. 7a and b. For every level of injection or suction, for the

case ofwall contraction, the absolute dimensionless radial veloc-
ity decreases as increasing |a| whereas it increases as a increases
for the case of wall expansion. Fig. 8a–d shows the influence of

Hartmann number on the dimensionless radial velocity. From
these figures one can observe that the absolute dimensionless ra-
dial velocity decreases as Hartmann number increases. The rea-
son of this is the magnetic field is normal to the flow and has the

tendency to slow down the radial movement of the fluid in pipe
because it gives rise to a resistive force namely the Lorentz force
which acts opposite to the flow and radial directions.

Figs. 9–11 illustrate the effects of R, a and Pr on dimension-
less temperature distribution h. Fig. 9a and b shows the effect
of permeation Reynolds number R on the dimensionless tem-

perature distribution. For a given increase in injection the
boundary layer thickness decreases and as a result h decreases
for both the cases of injection combined with wall expansion

and contraction. The behavior is reversed for suction com-
bined with wall expansion and contraction. Fig. 10a and b
demonstrates the effect of wall expansion ratio a on h. For
every level of suction or injection, h increases as a increases

for the case of wall expansion while it decreases as |a| increases
for the case of wall contraction. Fig. 11a and b depict the effect
of Prandtl number Pr (i.e. Pr = 0.015, 0.67, 0.71, 7 for mer-

cury, Argon at 250c, air and water respectively) on h. As antic-
ipated with increasing Prandtl number Pr (i.e. with decreasing
thermal diffusivity), the thermal boundary layer thickness de-

creases. So the dimensionless temperature decreases. From
Fig. 11c and d it is clear that near the center h increases for
a given increase in the Hartmann number M and decreases
apart from the center for both the cases wall expansion and

contraction combined with injection.
The effects of R, a, and M on the dimensionless wall shear

stress are shown in Figs. 12–14. The absolute wall shear stress

increases along the wall surface in proportion to z. Fig. 12a
and b shows that for constant wall expansion ratio a the abso-
lute wall shear stress decreases as increasing R while it in-

creases as |R| increases. The effect of wall expansion ratio on
dimensionless wall shear stress is shown in Fig. 13a and b.
For every level of injection or suction, for the case of wall

expansion the absolute wall shear stress decreases as a in-
creases while it increases as |a| increases for the case of wall
contraction. Fig. 14a–d illustrates the effect of Hartmann
number M on dimensionless wall shear stress. From these fig-
Please cite this article in press as: Srinivas S et al., Influence of heat transfer
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ures one can observe that the absolute wall shear stress in-

creases as M increases which may be due to an increase in
velocity gradient at the pipe wall (see Fig. 5).

Figs. 15 and 16 illustrate the effects of a and M on the

dimensionless radial pressure distribution. Fig. 15a and b
shows the effect of wall expansion ratio a on the dimensionless
radial pressure distribution. For every level of injection or suc-
tion, the absolute radial pressure distribution |DPr|is lower

near the central portion. For the case of wall expansion,
increasing a leads to lower |DPr| and for the case of wall con-
traction increasing |a| leads to higher |DPr|. Fig. 16a–d shows

the effect of Hartmann number M on the dimensionless radial
pressure distribution. From these figures one can see that |DPr|
decreases as M increases.

Fig. 17 indicates the variation in Nusselt number distribu-
tion Nu for different values of a and Pr against R. Fig. 17a de-
picts for the case of wall expansion, Nu increases with the

increase of a, while it decreases as |a| increases at the pipe wall
g = 1. Fig. 17b shows that Nu increases as Pr increase at the
wall g = 1, which is due to the progressive thinning of the
thermal boundary layer.

The radial velocity observations for different values of a,
for the case of hydrodynamic viscous flow in a semi-infinite
expanding or contracting porous pipe have been shown in

Table 2. Tables 2(a) and (b) correspond to the case of suction
i.e. for R= �100, R= �1000 respectively. The numerical val-
ues presented in these Tables are in good agreement with the

results reported by Botrous et al. [11].

4. Conclusions

This investigation deals with the analysis of heat transfer and
MHD viscous flow in a porous pipe with expanding or con-
tracting wall. Using suitable similarity transformations, the

governing equations are reduced to a system of coupled non-
linear differential equations. The resulting equations are solved
by employing the homotopy analysis method (HAM). The
influence of pertinent parameters (such as the permeation

Reynolds number, wall expansion ratio, and Hartmann num-
ber) on dimensionless velocity components, temperature, wall
shear stress, radial pressure drop and Nusslet number distribu-

tions has been discussed through graphs. The results show that
they have a strong influence on the flow variables. The main
findings are summarized as follows:
on MHD flow in a pipe with expanding or contracting permeable wall,
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� For a constant wall expansion ratio a, the dimensionless

axial velocity near the center increases with increasing suc-
tion while decreases with increasing injection.
� For given increase in M, the dimensionless axial velocity

decreases little away the pipe wall. For every level of injec-
tion or suction, for the case of wall contraction, the abso-
lute dimensionless radial velocity decreases with increasing
|a| whereas it increases as a increases for the case of wall

expansion. The absolute dimensionless radial velocity
decreases as M increases.
� For every level of suction or injection, h increases as a
increases for the case of wall expansion while it decreases
as |a| increases for the case of wall contraction. Further, h
decreases with increasing Pr .

� The absolute wall shear stress increases as M increases.
� The absolute axial pressure distribution |DPr| decreases as
M increases.
� The problem related to the porous pipe flow with stationary

wall can be recovered from our analysis in the limiting case
of a = 0.
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