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ABSTRACT

A linear stability analysis of a pressure driven, incompressible, fully developed laminar Poiseuille flow of immiscible two-fluids of
stratified viscosity and density in a horizontal channel bounded by a porous bottom supported by a rigid wall, with anisotropic and
inhomogeneous permeability, and a rigid top is examined. The generalized Darcy model is used to describe the flow in the porous
medium with the Beavers-Joseph condition at the liquid-porous interface. The formulation is within the framework of modi-
fied Orr-Sommerfeld analysis, and the resulting coupled eigenvalue problem is numerically solved using a spectral collocation
method. A detailed parametric study has revealed the different active and coexisting unstable modes: porous mode (manifests
as a minimum in the neutral boundary in the long wave regime), interface mode (triggered by viscosity-stratification across the
liquid-liquid interface), fluid layer mode [existing in moderate or O(1) wave numbers], and shear mode at high Reynolds numbers.
As a result, there is not only competition for dominance among the modes but also coalescence of the modes in some parameter
regimes. In this study, the features of instability due to two-dimensional disturbances of porous and interface modes in isodense
fluids are explored. The stability features are highly influenced by the directional and spatial variations in permeability for differ-
ent depth ratios of the porous medium, permeability and ratio of thickness of the fluid layers, and viscosity-stratification. The two
layer flow in a rigid channel which is stable to long waves when a highly viscous fluid occupies a thicker lower layer can become
unstable at higher permeability (porous mode) to long waves in a channel with a homogeneous and isotropic/anisotropic porous
bottom and a rigid top. The critical Reynolds number for the dominant unstable mode exhibits a nonmonotonic behaviour with
respect to depth ratio. However, it increases with an increase in anisotropy parameter ξ indicating its stabilizing role. Switching
of dominance of modes which arises due to variations in inhomogeneity of the porous medium is dependent on the permeability
and the depth ratio. Inhomogeneity arising due to an increase in vertical variations in permeability renders short wave modes to
becomemore unstable by enlarging the unstable region. This is in contrast to the anisotropic modulations causing stabilization by
both increasing the critical Reynolds number and shrinking the unstable region. A decrease in viscosity-stratification of isodense
fluids makes the configuration hosting a less viscous fluid in a thinner lower layer adjacent to a homogeneous, isotropic porous
bottom to be more unstable than the one hosting a highly viscous fluid in a thicker lower layer. An increase in relative volumetric
flow rate results in switching the dominant mode from the interface to fluid layer mode. It is evident from the results that it is
possible to exercise more control on the stability characteristics of a two-fluid system overlying a porous medium in a confined
channel by manipulating the various parameters governing the flow configurations. This feature can be effectively exploited in
relevant applications by enhancing/suppressing instability where it is desirable/undesirable.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5065780

I. INTRODUCTION

Viscosity/density stratified flows are more represen-
tative of real flows encountered in the environment and

industry. Flow stability investigations have revealed that strat-

ification in viscosity significantly affects the flow, and in

some cases there are unexpected switching of dominance of

Phys. Fluids 31, 012103 (2019); doi: 10.1063/1.5065780 31, 012103-1

Published under license by AIP Publishing



Physics of Fluids ARTICLE scitation.org/journal/phf

unstable modes and coalescence of unstable modes. Such fas-
cinating and interesting display of flow features of this sys-
tem has motivated several studies, in a variety of situations.
These studies have focussed on the understanding of stabil-
ity characteristics of the two-fluid system in confined com-
plex geometries that are crucial in many industrial applica-
tions and natural phenomena (oil-water two-phase flows, co-
extrusion of polymer melts, and cryolite/aluminiummelts in a
conventional reduction cell1,2).

Yiantsios and Higgins3 have investigated the stability of
Poiseuille flow of viscosity and density stratified superposed
immiscible fluids in a rigid channel and have shown that the
flow may be unstable to an interfacial mode at small Reynolds
numbers and to a shear mode of the Tollmien-Schlichting
type, if the Reynolds number is sufficiently large. Their predic-
tions agree qualitatively with the experimental results of Kao
and Park.4 Tilley et al.5 have extended the analysis by Yiantsios
and Higgins,3 and the conclusions are consistent with the
results observed by Kaffel and Riaz6 on the growth rates, the
wave speeds, and the amplitudes of the perturbations of both
the shear and interface modes of instability.

Apart from the above investigations, where a viscosity-
stratification is achieved by considering immiscible fluids in
contact with each other in a flow configuration with a discon-
tinuity in viscosity across a sharp interface (interface domi-
nated flows), there are other ways which include (i) varying
the temperature or concentration continuously in which case
a diffusive interface of nonzero thickness occurs and (ii) using
a non-Newtonian fluid.7 A recent review article by Govindara-
jan and Sahu8 and the references therein have discussed in
detail the instabilities arising due to viscosity-stratification.
They have remarked in this article that, although it is impor-
tant to gain knowledge about the nonlinear stages of growth
of unstable modes and about how transition from laminar to
turbulence occurs in simple flow systems, there are a num-
ber of issues to be addressed and understood in viscosity
stratified systems, even in the linear regime that would help
in improving the performance of many industrial processes
and in understanding typical flow features in nature and
environment.

The available literature on such investigations is large but
mentioning some studies might reveal the current state of
the art in viscosity stratified systems.9 ,10 These studies have
been performed in confined geometries with rigid walls, but
there are a number of applications in which the structure of
the solid surface adjacent to the fluid has a significant influ-
ence on the threshold for instability and on the growth/decay
of the unstable waves.11–19 This necessitates the inclusion
of bottom permeability and porosity of the substrate, when
the substrate is porous. This has led to increased interest
on the investigations on stability characteristics and dynam-
ics of fluid flows in confined geometries bounded by porous
walls.20–25 These studies have been sparked by the relevance
of wall permeability in numerous applications such as in
geophysics,11,26,27 in biomechanics,28,29 in aeronautics,14,30–32

and in industry.33,34

There are also several applications in which the veloc-
ity of a viscous fluid demonstrates a tangential velocity slip
at the walls. In fact, an apparent breakdown of the no-slip
condition for Newtonian fluids near the solid substrates has
been observed in the experiments on small scale pressure
gradient and shear driven flows.35–39 Such flows have dis-
played slip lengths (the ratio of the surface velocity to the
surface shear rate) as large as microns. In addition, large slip
lengths of the order of 50 µm have been observed in the case
of grooved substrates.39–42 The experiments by Ruckenstein
and Rajora,43 Tretheway and Meinhart,44 and Watanabe and
Udagawa45 reveal that no-slip boundary condition is not
appropriate for a hydrophilic liquid flow over hydrophobic
boundaries both at micro- and nanoscales. These suggest that
flow over rough or textured surfaces at the microscale and/or
hydrophobic substrates can be addressed by modelling such
substrates as smooth surfaces with an effective slip at the
surface.46

Motivated by the experimental observations on the exis-
tence of velocity slip at a substrate and the theoretical
predictions on the role of velocity slip in the stability char-
acteristics on flow systems in confined configurations,35–46

Chattopadhyay and Usha25 have examined the stability fea-
tures of a two-phase plane Poiseuille flow in a hydropho-
bic channel by modelling the channel walls as smooth sur-
faces with velocity slip. Their study reveals the possibility for
controlling instabilities in interface dominated rigid channel
flows by designing the walls of the channel as hydropho-
bic/rough/porous surfaces which can be modelled as one
with slip at the substrate.

The above model does not incorporate the transport of
fluid within the substrate (for example, within the underlying
porous medium, if the substrate is porous), and it accounts for
the dynamics only through the slip boundary condition; that is,
the effects of the presence of a porous layer are reduced to a
boundary condition at the liquid-porous interface. As a result,
the coupling between the surface flow above and the subsur-
face flow (flow in the porous medium) is neglected. This in
turn suppresses the porous-layer induced mode which is trig-
gered by the presence of the porous layer. Furthermore, the
stability characteristics predicted by the experimental inves-
tigations on Poiseuille flow of a single layer of Newtonian
fluid in a porous channel20,21,47,48 reveal that destabilisation
of channel flow with permeable walls is more significant than
that in a confined channel with impermeable walls. This has
motivated a number of investigations on single layer and two-
layer Poiseuille flow in a porous channel with isotropic and
homogeneous permeability.20–22,24,32,47–65

There are also flows occurring in nature such as in solidi-
fication of multi-component melts or passage of wind through
urban areas or forest canopies where we observe flow of fluids
in domains across a macroscopic interface between a porous
layer and a pure fluid. Such flows are also observed in var-
ious technological scenarios (air filtration systems and fuel
cells). Due to their applicability, dynamics and stability of flows
over porous layers have received considerable attention (flows
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in bounded domains such as Poiseuille flows,47,48,53,66 Cou-
ette flows,24,67 and free surface flows over inclined porous
surfaces68–72).

The fluid flow over a porous medium incorporating ther-
mal convection has been studied extensively.32,73–80 The above
studies have performed a linear stability analysis for the onset
of natural convection by using the Darcy law in the porous
region and the Stokes/Navier-Stokes equation in the fluid
region along with the Beavers-Joseph (B-J) condition at the
liquid-porous interface.58,61

There are also investigations based on a two-domain
approach where Darcy-Brinkman equations are the govern-
ing equations in the porous layer81–83 along with continuity
of both velocity and tangential stress at the liquid-porous
interface. Hirata et al.80 have reported that neutral stability
boundaries obtained using the above one and two domain
approaches are in good agreement with a window [1, 4] of
Beavers-Joseph constant αBJ, for all depth ratios.

In fact, the problem of fluid flow at the porous medium/
clean fluid interface has been first analysed by Beavers and
Joseph,58 and they have considered the Darcy law to describe
the flow in the porous bottom. Larson and Higdon84,85 have
studied the momentum transport in the neighbourhood of the
interface region, and a comprehensive survey of the literature
is available on this subject.49,86

Chen and Chen32 have addressed the thermal convective
instability of a fluid layer above a porous layer which is heated
from below. Their linear stability analysis predicts a bimodal
structure in the neutral boundaries. According to them, the

depth ratio, d̂, plays a significant role. As d̂ increases, there
is a switching of the dominance of unstable mode. The mode
which exists due to the onset of instability occurring in both
the porous and the fluid layers and characterized by its pres-
ence in the left hand lobe of the zero contour of the linear
growth rate in the α − Re parameter regime is the porous
layer mode.87 The stability of this mode is controlled by the
porous medium. If the onset of instability is within the layer of
fluid and the unstable mode is characterized by its presence
on the right side lobe of the neutral boundary, then the unsta-
ble mode is referred to as the odd fluid layer mode.87 The fluid

(porous) layer mode dominates for large (small) d̂.

It is worth mentioning here that there is a wealth of
results on the stability characteristics of flow of a single layer
of fluid in a porous channel. This is apart from investigations
on instabilities in such systems where instabilities due to the
thermal convection32,49,50 and dispersion-driven instability of
mixed convective flow in porous media88 are considered.

Chang et al.48 have addressed the linear stability of a
Poiseuille flow of a fluid overlying a porous medium saturated
with the same fluid, for perturbations of arbitrary wave num-
bers within the framework of Orr-Sommerfeld analysis. The
Darcy model along with the Beavers-Joseph interface con-
dition at the porous-liquid interface has been employed to
describe the dynamics in the porous medium. The resulting

eigenvalue problem has been numerically solved using the
Chebyshev tau method.51,52 They have observed neutral
boundaries with bi-modal and tri-modal structures as the
depth ratio is varied. It is the shear stress which is respon-
sible for triggering these instability modes. In addition to the
twomodes of instability shown by Chen and Chen,32 they have
observed a new unstable mode which manifests as a middle
lobe on the neutral boundary. It is clear that the existence of
this third mode of instability is due to fluid layer shear. This
mode is referred to as the even fluid-layer mode in accor-
dance with the even symmetry in the fluid layer displayed
by the corresponding perturbation eigenfunction. Thus, even-
fluid mode is associated with the local minimum of the middle
lobe of the neutral boundary. The Beavers-Joseph condition at
the liquid-porous (Darcy model) interface has been success-
fully employed in several investigations such as in the theoret-
ical89 and numerical18,90,91 investigations, and these studies
have justified the use of the Darcy model with the Beavers-
Joseph condition. Furthermore, the existence of a weak solu-
tion proved by Layton et al.92 for the flow through a Darcy
porous medium with a fluid layer overlying it and governed
by Stokes’ equations with the Beavers-Joseph condition at the
porous-liquid interface enhances one’s confidence to employ
the same in the formulation of stability problems involving a
porous medium.

Subsequently, the Brinkman model with appropri-
ate boundary conditions incorporating the viscous diffu-
sion effects close to the porous-liquid interface has been
employed,47,53 and the stability features of pressure driven
flow in a channel bounded by a porous bottom and a rigid wall
at the top have been analysed. The experimental observations
of Silin et al.62 serve as validation of the above results.

Based on the suggestions by Nield,74 a Brinkman model
has been used in the boundary-layer region where the fluid
enters the porous medium. Hill and Straughan47 have revis-
ited the problem and have examined the linear stability of
Poiseuille flow problem in which a Newtonian fluid layer over-
lies a transition layer composed of a Brinkman model and this
in turn overlies a Darcy porous layer. The fluid mode observed
by Chang et al.48 has been found to be absent in the result
by Hill and Straughan,47 as a result of the introduction of the

transition layer. Note that, apart from the depth ratio (d̂), the
depth of the transition layer also has played a key role in their
investigation. The above problem has also been the focus of
Goharzadeh et al.,26 and their experimental observations have
confirmed the theoretical predictions by Goyeau et al.;66 that
is δ1/Dgd ≃ O(1), where δ1 is the thickness of the transition
layer andDgd is the grain diameter. Furthermore, their conclu-
sions have agreed with the theoretical predictions by Ochoa-
Tapia and Whitaker,93 namely, δ1/K = O(50) (where K denotes
the permeability of the porous layer).

Tilton and Cortelezzi20,21 have examined the linear sta-
bility of a single fluid in a porous channel for the cases
when porous walls are identical and either one or both the
walls are porous (having different permeabilities). Their anal-
ysis is for three-dimensional disturbances of arbitrary wave
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numbers and is based on the modified Orr-Sommerfeld sys-
tem. Their results have revealed that the role of permeability
is to destabilize the flow system. In all the above investigations,
the permeability of the porous bottom considered is isotropic
and homogeneous. There are many practical scenarios, in
which the permeability of the porous layer has directional
as well as spatial variations.22,54–57,64 In view of this, Deepu
et al.22,56 have examined the linear stability of horizontal pres-
sure driven flow of a single layer of Newtonian fluid overlying
a porous medium with anisotropic and inhomogeneous per-
meability. They have formulated an eigenvalue problem of the
Orr-Sommerfeld type by modelling the porous medium with
the Darcy law, modified to account for inhomogeneous and
anisotropic permeability effects with an appropriate Beavers-
Joseph condition at the liquid-porous interface. The governing
system is numerically solved, and the results reveal interesting
effects of both anisotropy and inhomogeneous permeabilities
on the stability characteristics. They have observed that the
modulation of permeability of the porous bottom of the chan-
nel provides a potential strategy for controlling the stability of
the flow configuration.

Although the relevant literature on such confined flow
systems involving the stability of a fluid layer overlying a
porous layer at the bottom and a rigid wall on the top is quite
rich,20,21,24,48,50,53,54,58–64 such investigations on instabilities in
stratified flows in a porous channel have not been given much
attention. The only two studies that the authors have come
across are the investigations by Goyal et al.63 (inclined porous
channel) and Kumar et al.24 (horizontal porous channel), which
are devoted to instabilities in a two-layer Poiseuille/Couette
flow overlying a porous medium at the bottom and bounded
by a rigid wall at the top, based on Orr-Sommerfeld analysis.
They have explored the salient features of different instabil-
ity modes in the above flow system, by modelling the porous
medium as a Darcy-Brinkman porous layer. At the liquid-
porous interface, the velocities and the normal stresses are
continuous. In addition, the tangential stress at the liquid-
porous interface has a jump, and it is proportional to the
velocity in themean flow direction.65 The proportionality con-
stant or the jump coefficient takes account of the spatial het-
erogeneity of the liquid-porous interface. Their results for
two-layer Poiseuille flow in an inclined porous channel have
revealed the coexistence of shearmode at finite wave numbers
and interface mode at small wave numbers. There is reduction
in frictional resistance on the films due to the presence of the
porous layer, and this in turn significantly alters the length and
time scales of the shear mode; however, the interface mode is
unaffected by this effect.

In the case of a two-layer Couette flow in a horizontal
porous channel,24 they have observed a pair of finite-wave
number shear modes in addition to long-wave interface mode
of instability, occurring due to the movement of the top wall
of the channel and due to the presence of a porous bottom
(Darcy-Brinkman).

In the above two studies, the permeability of the porous
medium is assumed to be isotropic and homogeneous. This

opens up the possibility of exploring the effects of anisotropy
and inhomogeneity in the permeability of the porous medium
on the stability features of a Poiseuille flow of a viscosity
and/or density stratified two-fluid configuration in a porous
channel and that is addressed in the present study. The porous
channel is bounded by the porous medium with anisotropic
and inhomogeneous permeability, saturated with the same
fluid as that occupying the lower fluid layer adjacent to it and
by a rigid substrate on the top. Thus, the present study is
an extension of the analysis by Chang et al.48 to a viscosity-
stratified system in a porous channel with anisotropic and
inhomogeneous permeability. Furthermore, the study extends
the investigation by Deepu et al.56 in a porous channel to a
two-layer interface-dominated viscosity-stratified flow sys-
tem.

The paper is organized as follows: in Sec. II, the physi-
cal models along with appropriate boundary conditions at the
liquid-liquid interface, at the liquid-porous interface, at the
top rigid wall, and at the bottom rigid wall that supports the
porous layer are described. The base state velocity profiles
are obtained. The details of linear stability analysis are pre-
sented in Sec. III and in Sec. IV, and the observed stability
characteristics based on the numerical results are presented
and discussed. Section V contains the concluding remarks.

II. MATHEMATICAL FORMULATION

We consider a two-dimensional plane Poiseuille flow of
two-immiscible, incompressible, Newtonian liquid films with
constant density ρi and viscosity µi (i = 1 in the upper layer
and i = 2 in the lower layer; Fig. 1) in a channel bounded by a
porous layer of thickness d at the bottom and a rigid wall at the
top. The porous medium is saturated by the fluid in the lower
layer adjacent to it and is anisotropic and inhomogeneous with
constant porosity φ. The coordinate system is chosen with the
x-axis in the mean flow direction and the y-axis in the ver-
tical direction (Fig. 1). The vertical position is measured from
the flat interface between the two fluids in the unperturbed

FIG. 1. Schematic of the flow system considered: two-layer Poiseuille flow in a
channel bounded by a porous layer supported by a rigid substrate at the bottom
and a rigid wall at the top. The two-fluids are viscous, incompressible, and New-
tonian fluids having different viscosities and densities. The porous medium has
anisotropic and inhomogeneous permeability.
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configuration. The thickness of the upper and the lower layers
are, respectively, d1 and d2.

The continuity and momentum equations in the fluid
layers are given by

uix + viy = 0, (1)

ρi[uit + uiuix + viuiy] = −pix + µi[uixx + uiyy], (2)

ρi[vit + uivix + viviy] = −piy + µi[vixx + viyy], (3)

where 0 < y < d1 for i = 1 and −d2 < y < 0 for i = 2. Here
(ui, vi), i = 1, 2 denote the components of velocity along the
x and y-directions, respectively, in layers 1 and 2, pi is the
pressure in the fluid layers. The flow in the porous medium
(−dm < y < −d2, where dm = d2 + d) is governed by the Darcy
law, and the governing equations are56,57

umx + vmy = 0, (4)

1

φ
umt = −

1

ρ2
pmx −

µ2
ρ2

um

Kxγx(
y
d
)
, (5)

1

φ
vmt = −

1

ρ2
pmy −

µ2
ρ2

vm

Kyγy(
y
d
)
, (6)

where the components Kxγx(
y
d
) and Kyγy(

y
d
) of ~K are the per-

meabilities along the x and y directions, (um, vm) is the pore-
averaged component of fluid velocity in the porous medium,
and pm is the volume average intrinsic pressure in the porous
medium.65

The above model reduces to that of Chang et al.,48

when the porous medium is isotropic and homogeneous. It is
remarked that a two-domain approach has been employed in
this study; separate governing equations describe the dynam-
ics in the porous medium (Darcy model) and in the fluid layer
(Navier-Stokes equations).

The boundary conditions are

(i) at the bottom of the porous layer:

vm = 0 at y = −dm (7)

(no penetration at the bottom rigid wall).

(ii) At the top rigid plate:

u1 = 0 at y = d1, (8)

v1 = 0 at y = d1 (9)

(no-slip and no-penetration conditions).

(iii) At the material interface of layer 2 and the porous layer,
we have Beavers-Joseph conditions58 given by

u2y =
αBJ

√

Kxγx(− d2
d
)
(u2 − um) at y = −d2 , (10)

v2 = vm at y = −d2 , (11)

p2 − 2µ2v2y = pm at y = −d2 , (12)

where Eq. (10) is the Beavers-Joseph condition and αBJ is
the Beavers-Joseph coefficient.58,66 The condition (10)
accounts for the influence of thickness of the diffusion
layer generated near the porous-liquid interface; and
following Chen,94 the component of permeability at the
interface along the mean-flow direction is used in the
boundary condition (10).

(iv) At the interface between the two-fluids, the conditions
are given by

u1 = u2 at y = η(x, t), (13)

v1 = v2 at y = η(x, t), (14)

ηt = v1 − u1ηx at y = η(x, t), (15)

1

1 + η2
x

[2µηx(vy − ux) + µ(uy + vx)(1 − η2
x )]

2
1 = 0

at y = η(x, t),

(16)

[
p(1 + η2

x )− 2µ {η2
xux − (uy + vx)ηx + vy }

]2
1
=

−σ0ηxx

(1 + η2
x )

1
2

at y = η(x, t), (17)

where η(x, t) is the interface vertical deformation
around the flat interface position y = 0. Equations (13)
and (14) correspond to the continuity of components
of velocities at the liquid-liquid interface; Eq. (15) is the
kinematic boundary condition, and Eqs. (16) and (17) cor-
respond to the balance of shear and normal stresses
at the interface. Here, σ0 is the surface tension at the
interface of the two fluid layers.

The steady, fully developed two-layer base flow parallel to
the x-direction with flat interface (y = 0), over an anisotropic
and inhomogeneous porous medium, under constant pressure
gradient “P” is governed by

µ1u1yy − p1x = 0; p1y = 0 in 0 ≤ y ≤ d1, (18)

µ2u2yy − p2x = 0; p2y = 0 in − d2 < y ≤ 0, (19)

− 1

ρ2
pmx −

µ2
ρ2

um

Kxγx(
y
d
)
= 0; pmy = 0 in − (d + d2) ≤ y < −d2,

(20)

and satisfies
u1 = 0 at y = d1, (21)

u2y =
αBJ

√

Kxγx(− d2
d
)
(u2 − um) at y = −d2, (22)
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p2 = pm at y = −d2, (23)

u1 = u2 at y = 0, (24)

[µuy]
2
1
= 0 at y = 0, (25)

[p]21 = 0 at y = 0. (26)

The base state solution is given by

u1(y) =
A1

2
y2 + A2y + A3 in 0 ≤ y ≤ d1, (27)

u2(y) =
A1

2m
y2 +

A2

m
y + A3 in − d2 < y ≤ 0, (28)

um(y) = −
A1

m
Kxγx(

y

d
) in − d ≤ ym < −d2, (29)

p1 = p2 = pm = A1µ1x + Constant, (30)

where

A1 =
1

µ1
p1x, (31)

A2 =
A1

2

[2 d2
m

√

Kxγx(− d2
d
) + αBJ

d2
2
m + 2 αBJ

m Kxγx(− d2
d
) − αBJd

2
1
]

αBJd1 +
1
m

√

Kxγx(− d2
d
) + αBJ

d2
m

, (32)

A3 = −
A1d1
2

A3N

A3D
, (33)

where

A3N =


2
d2
m

√

Kxγx(−
d2
d
) + αBJ

d1d2
m

+
d1
m

√

Kxγx(−
d2
d
)


+

2
αBJ

m
Kxγx(−

d2
d
) + αBJ

d2
2

m


,

A3D = αBJd1 +
1

m

√

Kxγx(−
d2
d
) + αBJ

d2
m

,

and m =
µ2
µ1

is the ratio of viscosity of fluids in the two layers.

For a given streamwise pressure gradient, um(y) is dependent
on the permeability of the porous medium. In the absence of
the lower layer close to the porous medium (layer 2) and with
m = 1, the above coefficients A1, A2, and A3 reduce to those in
Eq. (2.9) of Deepu et al.56

The governing equations and the boundary conditions
in dimensionless form are obtained using the following
scales:

x∗ =
x

d1
, y∗ =

y

d1
, t∗ =

tU

d1
,u∗1 =

u1
U
, v∗1 =

v1
U
,

u∗2 =
u2
U
, v∗2 =

v2
U
,p∗1 =

p1

ρ1U2
,

(34)

p∗2 =
p2

ρ1U2
,η∗ =

η

d1
, x∗m =

x

d
, y∗m =

y

d
, t∗m =

tVm

d
,

p∗m =
pmd

µ2Vm
,u∗m =

um

Vm
, v∗m =

vm

Vm
,

(35)

where U is the velocity of the unperturbed fluid 1-fluid 2 inter-
face (U = u1—y=0 = u2—y=0) and Vm = um |y=−d2 is the velocity

in the porous medium at the porous-liquid interface and are
given by

U = A3 = −
A1d

2
1

2

[n + n2 + δd̂
αBJ

√

γx(
−n
d̂
) + 2

αBJ
nδd̂

√

γx(
−n
d̂
) + 2δ2d̂2γx(

−n
d̂
)]

m + n + δd̂
αBJ

√

γx

(

−n
d̂

)

, (36)

Vm = −
A1d

2
1

m
δ2d̂2γx

(

−n
d̂

)

, (37)

and n =
d2
d1

, δ =

√
Kx

d
, and d̂ =

d

d1
(the depth ratio of the

porous layer thickness to the thickness of the upper layer). In

terms of the dimensionless variables (after suppressing ∗), the
governing equations are given by

∇ · ~u(1) = 0, (38)

∂~u
(1)

∂t
+ (~u

(1) · ∇)~u(1) = −∇p1 +
1

Re
∇2~u(1) (39)
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in layer 1 (0 < y < 1), and

∇ · ~u(2) = 0, (40)

∂~u
(2)

∂t
+ (~u

(2) · ∇)~u(2) = − 1
r
∇p2 +

m

rRe
∇2~u(2) (41)

in layer 2 (−n < y < 0), where ~u
(1)
= (u1, v1), p1 and ~u

(2)

= (u2, v2), p2 denote the dimensionless velocities and pressure
distributions in the upper and lower layers, respectively, and

r =
ρ2
ρ1

is the ratio of densities in the two layers.

In this study, vertical variations of inhomogeneity of the
porous medium in both the horizontal and vertical directions
have been considered to be the same.57,95 This is based on the
model for a practical scenario described by Chen.94 The ratio
Kx

Ky
(= ξ) describes the anisotropy of the permeability of the

porous medium. A reduction in ξ corresponds to an increase
in permeability in the y-direction, and this causes reduction in
flow resistance. In this study, ξ ranges from its limiting value
for the porous layer with nearly vanishing horizontal perme-
ability (ξ = 10−4) to a value ξ = 3 that exceeds that for the
isotropic case (ξ = 1).

In the porous layer −(n + d̂) < y < −n or − (n+d̂)

d̂
< ym

< − n

d̂
, we have

∇m · ~um = 0, (42)

Rem
φ

∂~um

∂tm
= −∇mpm −

~a

δ2
, (43)

where ~um = (um, vm), pm denote the dimensionless velocities
and pressure distributions in the porousmedium, respectively.
Here,

~a =

(

um

γx(ym)
,

ξvm

γy(ym)

)

,γx(ym) = γy(ym) = e
A( n+d̂

d̂
+ym).

Note that y = d̂ym. The inhomogeneous permeability is unity at

the bottom (ym = −
(n+d̂)

d̂
) and increases with ym when A is pos-

itive and decreases with ym when A is negative. The value of A
ranges from zero (in homogeneous case) to a non-zero value
between −5 and 5 for an inhomogeneous porous medium.22,94

Positive and negative values of A, respectively, correspond to
an increase and a decrease in permeabilities in the x and y
directions. The effects of the degree of inhomogeneity along
the depth of the porous layer on the stability characteristics of
the system is analysed by varying the parameter A. It is impor-
tant to note that while variation in the mean permeability is
captured by the variations in the Darcy number, the variations
in A capture the inhomogeneous modulations of permeability
along the depth of the porous layer.

The boundary conditions in dimensionless variables are

vm = 0 at ym = −
(n + d̂)

d̂
or y = −(n + d̂), (44)

u1 = 0 at y = 1, (45)

v1 = 0 at y = 1, (46)

u2y =
αBJ

d̂δ
√

γx(− n

d̂
)
[u2 −

mRem

rd̂Re
um]

at ym = −
n

d̂
or y = −n,

(47)

v2 =
mRem

rd̂Re
vm at ym = −

n

d̂
or y = −n, (48)

p2 −
2m

Re
v2y =

m2Rem
rRe2

pm

d̂2
at ym = −

n

d̂
or y = −n,

(49)

u1 = u2 at y = η(x, t), (50)

v1 = v2 at y = η(x, t), (51)

ηt = v1 − u1ηx at y = η(x, t), (52)

m
[
(1 − η2

x )(u2y + v2x) − 4ηxu2x
]

−
[
(1 − η2

x )(u1y + v1x) − 4ηxu1x
]
= 0 at y = η(x, t),

(53)

[
p2(1 + η

2
x ) −

2m

Re
(η2

xu2x − (u2y + v2x)ηx + v2y)
]
−
[
p1(1 + η

2
x )

− 2

Re
(η2

xu1x − (u1y + v1x)ηx + v1y)
]
= − Sηxx

√

1 +η2
x

at y = η(x, t).

(54)

The flow is governed by the following dimensionless
parameters:

Re =
ρ1d1U

µ1
(the Reynolds number in the fluid layers),

Rem =

ρ2dVm

µ2
(the Reynolds number in the porous layer),

δ =

√
Kx

d
(the permeability parameter or the Darcy number),

and S =
σ0

ρ1d1U2
(the surface tension parameter). We note that

Vm

U
=

m

rd̂

Rem
Re

.

The dimensionless base flow is given by

U1B = 1 + C2y + C1y
2, (55)

U2B = 1 +
C2

m
y +

C1

m
y2, (56)

UmB =
γx(ym)

γx(− n

d̂
)
, (57)
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P1B = P2B = PmB = −
2

Re

m + n + δd̂
αBJ

√

γx(
−n
d̂
)

[n + n2 + δd̂
αBJ

√

γx(
−n
d̂
) + 2

αBJ
nδd̂

√

γx(
−n
d̂
) + 2δ2d̂2γx(

−n
d̂
)]
+ Constant, (58)

where

C1 = −
[m + n + δd̂

αBJ

√

γx(
−n
d̂
)]

[n + n2 + δd̂
αBJ

√

γx(
−n
d̂
) + 2

αBJ
nδd̂

√

γx(
−n
d̂
) + 2δ2d̂2γx(

−n
d̂
)]
, (59)

C2 = −
[−m + n2 + 2 nδd̂

αBJ

√

γx(
−n
d̂
) + 2δ2d̂2γx(

−n
d̂
)]

[n + n2 + δd̂
αBJ

√

γx(
−n
d̂
) + 2

αBJ
nδd̂

√

γx(
−n
d̂
) + 2δ2d̂2γx(

−n
d̂
)]
. (60)

Note that UmB is constant and takes the value 1, when the
porous medium is homogeneous (A = 0).

The base state velocity profiles (UiB, i = 1, 2 in fluid layers)
for stationary flows in a two-layer configuration are presented

as a function of y for different depth ratios (d̂ = 1, 5, 10) of the
homogeneous (A = 0) and isotropic (ξ = 1) porous bottom with
permeability δ = 0.002 in Figs. 2(a) and 2(b). In a configuration
with a low viscous fluid in a thinner layer close to the porous
bottom [m = 0.8 and n = 0.5, Fig. 2(a)], an increase in the depth

ratio d̂ decreases (increases) the base velocity at the thicker
upper layer (thinner lower layer). The above conclusions

remain the same as the viscosity-stratification is reversed
(m = 1.5) and n = 2 [Fig. 2(b)]. Note that the maximum base
velocity occurs in the upper (lower) fluid layer for a flow sys-
tem with m = 0.8 and n = 0.5 (m = 1.5 and n = 2). This happens

at the smallest (largest) d̂ considered in Fig. 2(a) [Fig. 2(b)]. The
streamwise velocity experiences a jump discontinuity atc the
liquid-porous interface, and it is consistent with the Beavers-
Joseph58 condition at this interface, which relates the relative
velocity at the interface with the shear stress. As velocities
are not scaled with the same quantities in the fluid layers
and in the porous medium, the base velocity in the porous

FIG. 2. Base flow profiles for different porous layer

thicknesses (d̂) when other parameters are αBJ = 0.1,

φ = 0.3, r = 1, S = 0.1, δ = 0.002, and d̂ = 1, 5, 10,
(a) m = 0.8, n = 0.5, A = 0, (b) m = 1.5, n = 2, A = 0,
(c) m = 0.8, n = 0.5, A = 1, and (d) m = 1.5, n = 2, A = 1.
The velocity in the porous layer is scaled with
the quantity Vm/U, that is, Um = umVm/U. Here,

yp = (ym + n)/d̂ − n and Up = UmB(Vm/U)103.
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medium had to be rescaled to be comparable with velocities
in the fluid layers. That is why, in the porous medium, the
base velocity corresponding to UmB(Vm/U)103 is plotted as a

function of (((ym + n)/d̂) − n) to normalise the porous medium
depth, where UmB is given by Eq. (57). As a result of this scal-
ing, the base velocity in the porous layer is constant for each

d̂. Note that the scaling is used only for plotting the base state
profiles in the porous layer and not in the subsequent sta-

bility analysis. At any d̂, the base state velocity decreases in
the porous layer with a decrease in permeability δ (figure not
shown).

When the porous medium is isotropic and homogeneous,
the velocity in the porous medium increases with an increase

in d̂ [Figs. 2(a) and 2(b)], the presence of inhomogeneity
reduces the porous layer velocity to values which are negli-
gibly small [Figs. 2(c) and 2(d)]. The velocity in the porous layer
is larger, when a thinner layer hosting a less viscous fluid is
adjacent to the porous medium [Figs. 2(a) and 2(c)], both in the
presence and absence of inhomogeneity.

In what follows, a linear temporal stability of the above
stationary flow is investigated within the framework of Orr-
Sommerfeld analysis.

III. LINEAR STABILITY ANALYSIS

The linear stability of the base flow to infinitesimal distur-
bances is analysed by considering two-dimensional perturba-
tions

flow variable = base state + perturbation f̃

and applying normal mode expansion to the perturbed vari-

able in the fluid layers as f̃ = f̂(y)eiα(x−ct), and in the porous layer

f̃m = f̂m(y)eiαm(xm−cmtm). Here, α is the streamwise wave number
of the disturbance, c = cr + ici is the complex phase speed, cr
is the wave speed, and ci is the time growth rate. Here f̂(y) and

f̂m(y) represent the amplitude of the perturbations of the vari-
ables in the liquid layers and porous layer, respectively. Note
that

α = d̂αm, c =
m

rd̂

Rem
Re

cm, x = d̂xm,

t =
r

m
d̂2

Re

Rem
tm, α(x − ct) = αm(xm − cmtm).

Substituting these in the linearized governing equations
and in the boundary conditions and following the standard
procedure, the modified Orr-Sommerfeld system of equations
is obtained96 and is given by

(D2 − α2)2φ1 = iαRe[(U1B − c)(D2 − α2)φ1

− (D2U1B)φ1], 0 < y < 1, (61)

m(D2 − α2)2φ2 = irαRe[(U2B − c)(D2 − α2)φ2

− (D2U2B)φ2],−n < y < 0, (62)

Rem
φ

iαmcm(D
2
m − α2

m)φm

= − ξ

δ2
α2
mφm

γy(ym)
+

D2
mφm

δ2γx(ym)
−
(Dmφm)(Dmγx)

δ2γ2x (ym)
,

−
(n + d̂)

d̂
< ym < −n

d̂
, (63)

φm = 0 at ym = −
(n + d̂)

d̂
, (64)

Dφ1 = 0 at y = 1, (65)

φ1 = 0 at y = 1, (66)

D2φ2 =
αBJ

d̂δ
√

γx(− n

d̂
)
[Dφ2 −

Rem

Re d̂

m

r
(Dmφm)] at ym = −

n

d̂
,

(67)

φ2 =
mRem
r Re

φm at ym = −
n

d̂
, (68)

− DU2B(2 − r)iαφ2 + 3α
2 m

Re
Dφ2 −

m

Re
D3φ2

+ iαrDφ2(U2B − c) +
mRem
φ Re

iαc

d̂
(Dmφm)

− m2Rem
rRe2

1

d̂3

Dmφm

δ2γx(ym)
= 0 at ym = −

n

d̂
,

(69)

m[Dφ2 − Dφ1] = hC2(m − 1) at y = 0, (70)

φ2 = φ1 at y = 0, (71)

m[D2φ2 + α
2φ2] − [D2φ1 + α

2φ1] = 0 at y = 0, (72)

iαRe[(U1B − c)Dφ1 −C2φ1]− iαRe r[(U2B − c)Dφ2 −
C2

m
φ2]

+m(D3φ2 − 3α2Dφ2) − (D3φ1 − 3α2Dφ1)

= iα3SRe h at y = 0, (73)

φ1 + h(U1B − c) = 0 at y = 0, (74)

where φ1, φ2, and φm denote the amplitudes of the stream
function perturbations in layer 1, layer 2, and porous layer,
respectively, h is the disturbance amplitude in deflection of

the fluid-fluid interface, D =
d

dy
, Dm =

d

dym
, and y = d̂ym.

In the limit m = 1, n = 1, and r = 1 with A , 0 and ξ , 1, the
above equations and the boundary conditions reduce to those
of Deepu et al.56 for the stability of Poiseuille flow of a single
fluid in a channel bounded by anisotropic and inhomogeneous
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porous medium at the bottom and a rigid wall at the top.
When A = 0 and ξ = 1, Eqs. (61)–(74) reduce to those of Chang
et al.,48 by taking into account the different velocity scale cho-
sen by them. In the absence of the porous medium at the
bottom, we recover the Orr-Sommerfeld system obtained by
Yiantsios and Higgins,3 for the linear stability of two-layer
Poiseuille flow in a rigid channel.

IV. RESULTS AND DISCUSSION

The coupled linear stability problem governed by (61)–(74)
is solved numerically using the Chebyshev spectral collo-
cation method96 for infinitesimal disturbances of arbitrary
wave numbers. Each perturbation amplitude function φ1(y),
φ2(y), and φm(y) is approximated using a truncated Chebyshev
expansion (in terms of Chebyshev polynomials)

φ1 =

N
∑

l=0

AlTl(y),φ2 =

N
∑

l=0

BlTl(y),φm =

N
∑

l=0

ClTl(ym) (75)

and is substituted in the Orr-Sommerfeld system (61)–(63).
Here Al, Bl, and Cl are unknowns to be determined. The
functions are then evaluated at the Gauss-Lobatto points

yj = cos(
π j
N ), j = 0, 1, 2, 3, . . .,N.96 This results in the generalized

eigenvalue problem

A
∗
x = cB

∗
x (76)

for the eigenvalues (c, cm) and eigenvector x = (φ1(y), h, φ2(y),
φm(y)), whereA∗ and B

∗ are (3N + 4) × (3N + 4) matrices and x

is a (3N + 4) × 1 vector.

For a given N, the relative error (EN) is defined by

EN =
| |cN+1 − cN | |2
| |cN | |2

,

where | | · | |2 is the L2-norm.20,23 Here, the components of the
vectors cN and cN+1 are the eigenvalues corresponding to the
twenty least stable modes of the eigenvalue problem (76),
obtained using N and N + 1 Chebyshev polynomials, respec-
tively, in each layer. The number of Chebyshev polynomials
(N) required to resolve the problem accurately is deter-
mined. The convergence of the eigenvalues with different N
is checked. In all the computations, the porosity parameter φ
is taken as 0.3.

Figure 3 show the relative error, EN, as a function of
the number of Chebyshev polynomials (N) employed in the
computations, for an isotropic (ξ = 1) and homogeneous
(A = 0) porous bottom, when m = 1.5, n = 2, αBJ = 0.1, φ = 0.3,

r = 1, and S = 0.1 for different depth ratios d̂ and Darcy
numbers δ. We observe that the relative error of the
order 10−6 is achieved for permeabilities of the order of
0.0002–0.002 with N ≥ 110 polynomials and there is no sig-
nificant change in the above conclusions with a decrease

in the depth ratio d̂. In the case of anisotropic (ξ , 1)
and inhomogeneous (A , 1) porous medium, Fig. 4 shows
that the accuracy of order 10−6 is attained with N ≥ 100.
Hence, the computations are performed for each case with
the minimum N required for convergence of the order
of 10−6.

FIG. 3. The relative error EN as a function of the Cheby-
shev collocation number N. The other parameters are
m = 1.5, n = 2, αBJ = 0.1, φ = 0.3, r = 1, S = 0.1,

A = 0, and ξ = 1, (a) d̂ = 5, δ = 0.0002, (b) d̂ = 10,

δ = 0.0002, (c) d̂ = 5, δ = 0.002, and (d) d̂ = 10,
δ = 0.002.
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FIG. 4. The relative error EN as a function of the Cheby-
shev collocation number N. The other parameters are
m = 1.5, n = 2, αBJ = 0.1, φ = 0.3, r = 1, S = 0.1, and

δ = 0.002, (a) d̂ = 10, ξ = 3, A = 0, (b) d̂ = 10, ξ = 3,

A = 1, (c) d̂ = 5, ξ = 1, A = 1, and (d) d̂ = 10, ξ = 1,
A = 1.

The correctness of the developed code is also assessed
by validating the results obtained in the limiting cases for a
single layer Poiseuille flow (a) confined between anisotropic/
isotropic and homogeneous/inhomogeneous porous bottom
and rigid top (critical Reynolds numbers56), (b) for isotropic
and homogeneous porous bottom and rigid top (spectral
results48), and (c) for a two-layer Poiseuille flow in a rigid
channel (spectral results3) and the results are in good agree-
ment (Tables I and II) for αBJ = 0.1 and porosity φ = 0.3.

The presence of the porous bottom alters the velocity
profile (base state) as the parameters describing the porous
medium are varied (see base state profiles, Fig. 2) and there-
fore influences the stability results; furthermore, it introduces
nonzero disturbance velocities at the porous-liquid layer 2
interface; in addition, due to viscosity-stratification, there are
perturbations at the interface of the two immiscible layers.
We examine the effects of these perturbations on the stability
properties as the anisotropy parameter (ξ), the inhomogeneity

TABLE I. Comparison of eigenvalues in the limiting cases when αBJ = 0.1 and porosity φ = 0.3.

Description Parameter values Eigenvalues available Computed eigenvalues

Single layer Poiseuille flow Re = 104, α = 1, d̂ = 10, δ = 0.001 c = cr + ici = 0.479 424 76 + i0.032 74867 0.479 35298 + i0.03266849
overlying a homogeneous,
isotropic porous layer at the
bottom and a rigid top48

Two-layer Poiseuille flow m = 5, S = 0.1, Re = 1, α = 10 0.99998 − i0.008 199 0.99998 − i0.008 198
in a rigid channel3

TABLE II. Comparison of critical Reynolds numbers in the limiting cases (m = 1, n = 1) in the limiting cases when αBJ = 0.1 and porosity φ = 0.3.

Description Parameter values Critical Re available Computed critical Re

Single layer Poiseuille flow overlying ξ = 3, A = 0, d̂ = 10, δ = 0.002 4795 4799
an anisotropic, homogeneous porous medium
at the bottom and a rigid top56

Single layer Poiseuille flow overlying an ξ = 1, A = 1, d̂ = 10, δ = 0.002 2866 2807
isotropic, inhomogeneous porous medium
at the bottom and a rigid top56
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parameter (A), the depth ratio (d̂), and the Darcy number (δ)
are varied.

Our preliminary computations performed for a wide
range of all parameters governing the system have revealed
the coexistence of different types of modes (porous mode,
interface mode, fluid layer mode, and shear mode) and coales-
cence of the modes in different bandwidths of wave numbers
and low to high Reynolds numbers.

Furthermore, there are a number of dimensionless
parameters governing the stability characteristics. As a result,
the presentation of the results about different unstable modes
becomes cumbersome and complicated; so we have restricted
the discussions to porous mode and interface mode and we
have only made a mention of the occurrence of the other
modes with no further details and have postponed the discus-
sion to our future study.

In the following, we have focused on the stability char-
acteristics of two-dimensional disturbances of the base state
of two-layer Poiseuille flow in a channel bounded by an
inhomogeneous, anisotropic porous bottom and a rigid top.

A. Two-layer flow in a channel with homogeneous,
isotropic/anisotropic porous bottom and rigid top

The spectral results obtained through the numerical
computations are presented in Figs. 5(a) and 5(b), when a
high viscous fluid (m = 1.5) occupies a thicker (n = 2) layer
adjacent to the porous medium with isotropic (ξ = 1) and

homogeneous (A = 0) permeability. At Re = 3000, d̂ = 10, and

δ = 0.01, for a lower wave number α = 0.2, an unstable mode
with cr < 1 emerges [Fig. 5(b)]; an increase in α to α = 0.75
shifts the dominant unstable mode to one with cr > 1 [Fig. 5(a)].
When inhomogeneous permeability effects are incorporated
(A = 1), then two unstable modes: one with cr < 1 and the other
with cr > 1 emerge at α = 0.6, when Re = 10 000 and δ = 0.002
[Fig. 5(d)]. The occurrence of these modes may be associated
with the presence of viscosity-stratification and the presence
of the porous medium as a lower channel wall. In the reverse
arrangement of the flow system (m = 0.8, n = 0.5), the unstable
mode with cr < 1 alone exists [Fig. 5(c)]. The other parameters

in Fig. 5 are fixed as d̂ = 10, αBJ = 0.1, φ = 0.3, r = 1, S = 0.1, ξ = 1.
It is to be noted that an increase in ξ reduces the growth rate
of the unstable mode (figure not shown).

The growth rates as a function of wave number for dif-

ferent values of δ [Figs. 6(a) and 6(b)], d̂ [Figs. 6(c) and 6(d)],
and ξ [Figs. 6(e) and 6(f)] are presented for a configuration
with isotropic (ξ = 1)/anisotropic (ξ , 1) and homogeneous
(A = 0) porous bottom. Figure 6(a) reveals that there is an
unstable mode in a window of moderate to O(1) wave num-
bers for each δ considered and the maximum growth rate is
non-monotonic as the permeability parameter δ increases. As

this mode exists in this window of wave numbers for any per-
meability considered for the two-layer configuration, we refer
to this mode as the interface mode.3

Simultaneously, there exists another mode with a nega-
tive growth rate at smaller permeability [δ = 0.0002 Fig. 6(b)]
of the homogeneous porous bottom. An increase in δ

(δ = 0.002) gives rise to a dispersion curve with two humps,

FIG. 5. Spectral results for an isotropic porous bottom
(ξ = 1) with porosity φ = 0.3, when αBJ = 0.1, S = 0.1,

r = 1, and d̂ = 10. The influence of viscosity-stratification
and inhomogeneity in permeability of the porous medium
is presented for (a) m = 1.5, n = 2, δ = 0.01, Re = 3000,
α = 0.75, A = 0, (b) m = 1.5, n = 2, δ = 0.01, Re = 3000,
α = 0.2, A = 0, (c) m = 0.8, n = 0.5, δ = 0.002, Re = 10
000, α = 0.6, A = 1, and (d) m = 1.5, n = 2, δ = 0.002,
Re = 10 000, α = 0.6, A = 1.
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FIG. 6. Dispersion curves for different δ [(a) and (b)], d̂
[(c) and (d)], and ξ [(e) and (f)] for the first two unsta-
ble modes with the other parameters as m = 1.5, n = 2,
αBJ = 0.1, φ = 0.3, r = 1, S = 0.1, and A = 0, (a) inter-
face mode (solid lines), (b) porous mode (dashed lines),
δ = 0.0002 (no symbol), δ = 0.002 (filled circles),
δ = 0.005 (squares), and δ = 0.01 (plus) at Re = 6000

and d̂ = 10, ξ = 1, (c) interface mode (solid lines), (d)

porous mode (dashed lines), d̂ = 5 (no symbol), d̂ = 10

(filled circles), d̂ = 20 (squares) at Re = 10 000 and
δ = 0.002, ξ = 1, (e) interface mode (solid lines), and
(f) porous mode (dashed lines), ξ = 0.75 (no symbol),
ξ = 1 (filled circles), and ξ = 3 (squares) at Re = 10 000

and d̂ = 10, δ = 0.002.

exhibiting positive growth rate, one close to the short wave-
length regime [wave number closer to O(1)] and the other in
the long wavelength regime. Of the two local maxima, the one
in the short wave regime exhibits a global maximum. With a
further increase in δ (δ = 0.005), the two hump structure in
the dispersion curve disappears and becomes a single hump
structure, stabilizing short wave modes. This single hump is
in the long wave regime, having a higher growth rate. This
mode is referred to as a porous mode.23 A non-monotonic
behaviour is observed as δ is increased to δ = 0.01, destabiliz-
ing the long waves and the growth rate is smaller than that for
δ = 0.005.

Figure 6(c) shows that as porous layer thickness d̂
increases, the growth rate for the interface mode decreases;
however, an increase in d̂ changes the bimodal structure

displayed by the dispersion curve of the porous mode to a
unimodal structure and this is accompanied by a shift of the
window of unstable wave numbers to long wavelength regimes
[Fig. 6(d)]. The growth rate of the interface mode is not sig-
nificantly affected by an increase in the anisotropy parame-
ter ξ [Fig. 6(e)]. An increase in ξ preserves the two-humped
shape of the dispersion curve in the moderate wave numbers
[Fig. 6(f)]; there is stabilization in the low wave number regime
with a further increase in ξ .

The investigation by Yiantsios and Higgins3 predicts that
two-layer viscosity-stratified flow of immiscible fluids in a
channel is stable to long waves, when a thicker (thinner)
layer hosts the more (less) viscous fluid. What happens to the
stability characteristics when the bottom rigid wall in such
a channel flow is replaced by a porous wall is of interest.
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FIG. 7. Neutral stability boundaries for different perme-
abilities (δ = 0.01, 0.005, 0.002, 0.0002), in the α − Re
plane when a high viscous fluid (m = 1.5) is in a thicker
(n = 2) lower layer adjacent to the porous bottom. The
other parameters are αBJ = 0.1, φ = 0.3, r = 1, S = 0.1,

d̂ = 10, and A = 0, (a) ξ = 1, interface mode, (b) ξ = 1,
porous mode, (c) ξ = 3 interface mode, and (d) ξ = 3,
porous mode. The neutral stability curve for two-layer flow
in a rigid channel is marked in the figure.

Figures 7(a)–7(d) present the neutral boundaries, when a high
viscous fluid (m = 1.5) occupies a thicker lower layer (n = 2)
adjacent to the porous channel wall. The parameters are fixed

at αBJ = 0.1, φ = 0.3, r = 1, S = 0.1, and d̂ = 10. At d̂ = 10 and
n = 2, the porous layer is thicker than the adjacent lower layer.
It is clear that the flow system is stable for all wave num-
bers in a window of low Reynolds numbers when the porous
bottom is homogeneous and isotropic [Figs. 7(a) and 7(b)] and
anisotropic [Figs. 7(c) and 7(d)]. When the porous channel wall
is homogeneous (A = 0) and isotropic (ξ = 1), the flow per-
turbations permeate through the thicker porous layer; as a
result, the porous mode destabilizes a bandwidth of low wave
numbers at a higher permeability (δ = 0.01) beyond a criti-
cal value of Reynolds number, say, Rep [the critical Reynolds
number for the porous mode, Fig. 7(b)] and dominates the
interface mode existing at moderate toO(1) wave number win-
dow beyond Rei [the critical Reynolds number for the inter-
face mode, Fig. 7(a)]. The reason for the dominance of porous
mode at this large value of permeability can be understood
as follows; the shear stress at the porous-liquid interface
is weakened at this moderately large value of permeability
(δ = 0.01); furthermore, there is a weakening of the resistance
offered by the viscous force that arises due to the porous
medium’s solid phase. As a result, the fluid permeates eas-
ily through the porous medium. This causes reduction in the
intensity of the instability induced by the interface and con-
sequently the unstable porous mode dominates. The above
trend is also observed for δ = 0.005; for this permeability, the
bandwidth of unstable wave numbers decreases (increases)

for the interface (porous) mode. With a further decrease in
permeability (δ = 0.002), the interface mode dominates the
coexisting porous mode and fluid layer mode occurring due
to the confinement of flow perturbations in the fluid layer.
The neutral boundary has a bi-modal shape at this value
of δ [Fig. 7(b)]. These two modes coalesce with each other
and destabilize higher Reynolds numbers for a wide range of
wave numbers. The critical Reynolds number for the inter-
face mode (Rei) displays a non-monotonic trend as the per-
meability parameter is increased, for a system with a homo-
geneous and isotropic/anisotropic bottom wall [Figs. 7(a) and
7(c)]. Furthermore, in the parameter regimes where the inter-
face mode is dominant, a configuration with a homogeneous
and isotropic/anisotropic bottom wall can either destabilize
or stabilize the corresponding system with a rigid bottom
wall [as is evident from the neutral boundary for a rigid wall,
Figs. 7(a) and 7(c)]; this neutral boundary has been obtained
using the code developed to generate the results for the NSW
case in Chattopadhyay and Usha.25 The striking observation
is that the two-layer flow in a rigid channel which is stable
to long waves when a high viscous fluid occupies a thicker
layer can be made unstable in the low wave number regimes
by the presence of homogeneous and isotropic/anisotropic
porous bottom wall at higher permeabilities. The existence of
an unstable dominant porous mode in this region is respon-
sible for destabilization of the long wave regime. As per-
meability decreases to δ = 0.0002, the porous mode disap-
pears and there exists only the dominant unstable interface
mode for the parameter values considered here. Note that
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FIG. 8. Neutral stability boundaries for different values of
the anisotropy parameter (ξ = 0.75, 1, 3), in the α − Re
plane when a high viscous fluid (m = 1.5) is in a thicker
(n = 2) lower layer adjacent to the porous medium. The
other parameters are αBJ = 0.1, φ = 0.3, r = 1, S = 0.1,

δ = 0.002, and A = 0, (a) d̂ = 10 and (b) d̂ = 5.

decreasing the permeability enhances the viscous drag and
this does not favour viscous diffusion of the momentum across
the layer resulting in stabilization of the mode. The porous
layer velocity is weaker than that in the liquid region, as
permeability decreases.

Figures 7(c) and 7(d) reveal that anisotropic effects (ξ = 3,
A = 0) stabilize the porous mode and the interface mode.
This is because an increase in ξ corresponds to a decrease in
permeability in the vertical direction, and this provides suffi-
cient flow resistance, thus enabling stabilization. The stabiliz-
ing effect is more prominent for the porous mode at smaller
permeability [δ = 0.002, Fig. 7(d)].

At this d̂(= 10), enhancing the anisotropic (ξ) effects sta-
bilizes the dominant interface mode [Figs. 7(a), 7(c), and 8(a)]
which coexists with the coalescence of the porous and the
fluid layer modes, displaying a bi-modal shape in the neutral
stability boundary which is also stabilized. As ξ increases to ξ =
3 from ξ = 0.75, a local maximum occurs both at the lobe in the
lower branch and at the lobe in the upper branch of the neu-
tral stability boundary but the global maximum is at the upper
branch of this neutral stability boundary. It is worth investi-
gating that the changes arise due to a decrease in porous layer

thickness [d̂ = 5, Fig. 8(b)]. This results in an increase in critical
Reynolds number (Rei) when δ = 0.002, ξ = 1 keeping the other
parameters the same as in Fig. 7(a). The long waves are stabi-
lized for all Reynolds numbers. The porous mode disappears
and the fluid mode destabilizes higher Reynolds numbers in a
window of moderate to O(1) wave numbers. At this depth ratio

(d̂ = 5), an increase in the permeability in the mean flow direc-
tion (ξ increases) stabilizes the interface mode. Thus, incorpo-
rating anisotropy effects is found to stabilize both the porous
and interface modes. This is because an increase in ξ corre-
sponds to a decrease in permeability in the y-direction which
provides sufficient flow resistance enabling stabilization.

Forced by the curiosity to see what happens to the stabil-

ity of the porous mode if d̂ is increased above or decreased

below d̂ = 10, the computations are performed and Fig. 9
presents the details for the system with homogeneous (A = 0)
and isotropic (ξ = 1) porous bottom. It is interesting to note

that while for d̂ > 10, the low to moderate wave number

regimes are destabilized for Reynolds numbers ranging from
low to high values, only the short wave modes are destabi-

lized at higher Reynolds numbers when d̂ is decreased below

10. Both increase and decrease in d̂ cause the bi-modal shaped
neutral boundary to approach a uni-modal shape in different

wave number regimes. As d̂ decreases, the instability shifts
from a low wave number mode in which the onset of insta-
bility occurs, to a high wave number mode. The same sce-
nario is observed for variations in permeability, anisotropy,
and inhomogeneity of the porous medium (figure not shown).

The above results show that variations in d̂which corresponds
to changes in porous layer thickness have a significant effect
on the stability characteristics of the system considered. An
increase in the thickness of the porous layer enhances this
instability of the porous mode near long wave number region,
whereas it stabilizes the disturbances due to fluid layer mode
near short wave regime.

In order to understand the influence of permeability (δ)
and anisotropy (ξ) of the porous bottom on the onset of insta-
bility (dominant unstable mode), the critical Reynolds number

FIG. 9. The neutral stability boundaries for the porous mode, as the thickness

(d̂) of the homogeneous and isotropic porous layer increases when the other
parameters are m = 1.5, n = 2, αBJ = 0.1, φ = 0.3, r = 1, S = 0.1, and
δ = 0.002.
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FIG. 10. Critical Reynolds number (Rec) and the critical
wave number (αc) for the dominant unstable mode [(a) and
(b)] influence of permeability δ of a homogeneous (A = 0)
and isotropic (ξ = 1) porous bottom. [(c) and (d)] Influence
of the anisotropy parameter (ξ ) on the critical Reynolds
number (Rei ) and critical wave number (αim) when
δ = 0.002. The porous bottom is homogeneous (A = 0).
The other parameters are m = 1.5, n = 2, αBJ = 0.1,

φ = 0.3, r = 1, S = 0.1, and d̂ = 10.

(Rec), and the critical wave number (αc) as a function of per-
meability [δ, Figs. 10(a) and 10(b)] and anisotropy parameter
[ξ , Figs. 10(c) and 10(d)] are obtained and are presented in
Figs. 10(a)–10(d). At small values of permeabilities, the critical
wave number (αc) decreases and is in a window of moder-
ate wave numbers [Fig. 10(b)]. The critical Reynolds numbers
decrease in this δ-window [Fig. 10(a)]. A close look at Figs. 7(a),
10(a), and 10(b) confirms that, in this δ-window, the dominant
unstable mode is the interface mode for a system that hosts
a high viscous fluid in a thicker lower layer adjacent to an
isotropic (ξ = 1) and homogeneous (A = 0) porous bottom with

depth ratio d̂ = 10. The other parameters are αBJ = 0.1, φ = 0.3,
r = 1, and S = 0.1 in Fig. 10.

Taking a typical value of δ in this δ-window, namely,
δ = 0.002, the critical Reynolds number (Rei) and the criti-
cal wave number (αim) for the interface mode are obtained.
The decreasing trend of αim [Fig. 10(d)] and the increas-
ing trend of Rei [Fig. 10(c)], as the anisotropy parameter ξ

increases, indicate that the flow system with isotropic and
homogeneous porous bottom can be stabilized by enhanc-
ing (decreasing) the permeability of the homogeneous porous
bottom along the mean flow direction (transverse direction),
keeping the other parameters the same as in Figs. 10(a) and
10(b). As δ increases further, the critical wave number αc

decreases further and is now in a window of small wave num-
bers [Fig. 10(b)]. The critical Reynolds number (Rec) decreases
in this δ-window [Fig. 10(a)], thereby destabilizing the sys-
tem at low Reynolds numbers, indicating that the dominant

unstable mode in this δ-window is the porous mode [as is evi-
dent from the results in Fig. 7(b)]. It is worth mentioning here
that Tilton and Cortelezzi20 have reported a similar trend for
a critical Reynolds number and a critical wave number for sin-
gle fluid Poiseuille flows in a porous channel. Increasing the
permeability of the isotropic and homogeneous porous bot-

tom with d̂ = 10 results in switching of the dominance of the
unstable mode for the flow system and the parameter values
considered.

Figure 11(a) presents the critical Reynolds number for

the dominant mode as a function of d̂ for a typical value of
permeability (δ = 0.002), when the porous bottom is homo-
geneous and isotropic. The interface mode is dominant till

d̂ ≈ 13 and beyond this d̂, the porous mode is dominant. The
critical Reynolds number for the dominant interface mode

(Rei) exhibits a non-monotonic behaviour in this d̂-window,
whereas the critical Reynolds number for the dominant porous

mode (Rep) decreases with an increase in d̂ showing that it
destabilizes the long waves at low Reynolds numbers. The crit-

ical wave number αc as a function of d̂ presented in Fig. 11(b)
indicates that αc decreases for both interface and porous
modes, as thickness of the porous layer increases.

When a less viscous, thinner fluid layer (m = 0.8, n = 0.5;
Fig. 12) is adjacent to the anisotropic porous layer (ξ = 0.75),
with αBJ = 0.1, φ = 0.3, δ = 0.002, then in the absence of
inhomogeneity (A = 0), the porous, interface, and the fluid
layer modes coalesce and a large unstable region covering a
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FIG. 11. Critical Reynolds number [Rec ; (a)] and the crit-
ical wave number [αc ; (b)] for the dominant unstable

mode as a function of porous layer thickness d̂, with
the other parameters as m = 1.5, n = 2, αBJ = 0.1,
φ = 0.3, r = 1, S = 0.1, A = 0, δ = 0.002, and ξ = 1.

wide range of wave numbers and Reynolds numbers is seen,
indicating that this configuration is more unstable than the
one with high viscous fluid in a thicker layer adjacent to the

porous layer at depth ratio d̂ = 10. In contrast to the case,
where m = 0.8, n = 0.5, there exists two unstable modes—the
interface mode destabilizing a bandwidth of moderate wave
numbers beyond Rei and the coalescence of porous and fluid
layer modes displaying bi-modal shape of neutral boundary
destabilizing a large window covering low to O(1) wave num-
bers at moderate to large Reynolds numbers when m = 1.5,
n = 2. At very large Re, we see a third mode, possibly, the
shear mode/fluid layer mode making its appearance at mod-
erate/O(1) wave numbers for m = 1.5, n = 2/m = 0.8, and
n = 0.5, respectively.

At this stage, one is curious to understand the influence
of relative volumetric flow rate in the two fluid layers with
a high viscous fluid in the lower layer overlying a homoge-
neous, anisotropic porous bottom and Fig. 13 presents the
details when αBJ = 0.1, φ = 0.3, r = 1, S = 0.1, δ = 0.002, and

ξ = 0.75. The depth ratio is fixed at d̂ = 10 with viscosity-
stratification m = 1.5. The neutral stability boundary displays
a bi-modal shape at n = 1.5, and a local maximum occurs at
the lower branch as well as at the upper branch; the global
maximum for the dominant mode of instability occurs in the

FIG. 12. Neutral stability boundaries for different viscosity ratios (m) and thick-
ness ratios (n). The other parameters are αBJ = 0.1, φ = 0.3, r = 1,

S = 0.1, δ = 0.002, A = 0, ξ = 0.75, and d̂ = 10.

lobe in the lower branch near the long-wave region (critical
Re ≈ 4500 and critical wave number α ≈ 0.34). As the depth of
the lower layer increases (n = 2), the lobe at the upper branch
is pushed towards the lower branch and the dominant mode
of instability appears at the lobe in the lower branch (critical
Reynolds number ≈ 4850 and critical wave number ≈ 0.3). The
bi-modal neutral boundary encloses a bandwidth of unstable
wave numbers at moderate to large Reynolds numbers. With
a further increase in thickness of the lower layer, bi-modal
shape still persists, but the lobe displaying local maximum at
the upper branch in the short wave region is further pushed
towards the lower branch close to the long-wave region and
the dominant mode of instability appears in the short wave

region, displaying the global maximum. At this depth ratio d̂ =
10, the porous layer thickness is larger than that of the layer
adjacent to it (for n = 1.5, 2, and 3). As the thickness of the lower
layer increases with an increase in n, more disturbances pen-
etrate into the lower layer dragging the upper branch towards
smaller wave numbers. This results in pushing the unstable
region near the upper branch to smaller Reynolds numbers
and that near the lower branch to higher Reynolds numbers.
At this value of n (n = 3), a new mode appears and destabilizes
moderate to short waves at small to large Reynolds numbers.

FIG. 13. Neutral stability boundaries in the α − Re plane for different relative
volumetric flow rates as thickness ratio varies (n = 1.5, 2, 3), when a high viscous
fluid (m = 1.5) is in the lower layer adjacent to the porous medium. The other
parameters are αBJ = 0.1, φ = 0.3, r = 1, S = 0.1, δ = 0.002, A = 0, ξ = 0.75, and

d̂ = 10.
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FIG. 14. Neutral stability boundaries in the α − Re plane
for different inhomogeneities (A = 0, 1, −1) in the porous
medium when a high viscous fluid (m = 1.5) is in a thicker
(n = 2) lower layer adjacent to the porous medium. The
other parameters are αBJ = 0.1, φ = 0.3, r = 1, S = 0.1,

δ = 0.002, and ξ = 1, (a) d̂ = 10 and (b) d̂ = 5.

At each n considered, an interface mode coexists desta-
bilizing a window of moderate wave numbers beyond a critical
Rei and the critical Reynolds number for the interface mode
decreases with increase in n. It is interesting to note that an
increase in relative volumetric flow rate (n) results in switch-
ing the dominant mode from the interface mode to a new
mode.

B. Two-layer flow in a channel with inhomogeneous
and anisotropic porous bottom and rigid top

While for a system with a homogeneous, isotropic porous
layer (ξ = 1 and A = 0), the interface mode is the dominant
one and a bi-modal shaped neutral boundary encloses a large
unstable region created due to the coalescence of porous and
fluid layer modes, inclusion of inhomogeneity by increasing

the permeability in the x and y-directions (A = 1) shifts the
dominance to porous mode [Fig. 14(a)], when a high viscous
fluid is in a thicker lower layer adjacent to the porous medium

with d̂ = 10. The parameters are fixed as αBJ = 0.1, φ = 0.3,
r = 1, S = 0.1, and δ = 0.002. This scenario is also accompa-
nied by a change in the bandwidth of unstable wave numbers.
The long waves are stabilized for small Reynolds numbers.
The lobe at the upper branch almost disappears and the neu-
tral stability boundary tends to have a uni-modal shape with
its lobe near lower branch, being pushed to low Reynolds
numbers, displaying a reduction in critical Reynolds number;
this can be understood as due to lower flow resistance in
the porous medium at this higher value of A(=1). The inter-
face mode is stabilized at this value of A(=1) as is evident by
the increase in critical Reynolds number as compared to that
for A = 0.

FIG. 15. Phase diagrams showing the stable and unstable
regions at Re = 1500 and α = 0.5 in the m–n plane. The
other parameters are αBJ = 0.1, φ = 0.3, r = 1, S = 0.15,

δ = 0.002, A = 0, and d̂ = 10.
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On the other hand, a decrease in the permeabilities in
the x and y-directions (A = −1) results in stabilization of the

flow system when d̂ = 10 for a whole range of wave numbers
and Reynolds numbers considered {neutral boundary does not
appear in the regime of parameters considered in [Fig. 14(a)]}.
This can be associated with the increased flow resistance in
the porous medium at this value of A(=−1).

In the presence of inhomogeneity (A = 1), a reduction in

depth ratio d̂ (from d̂ = 10 to d̂ = 5) pushes the window of

unstable wave numbers (the long-wave regime to moderate

wave numbers) to a window frommoderate to O(1) wave num-

bers. At this d̂ (d̂ = 5), there is no switching of the dominance
of the unstable mode. The interface mode is the dominant

unstable mode for d̂ = 5, for all the values of A considered;
but it is stabilized by an increase in permeability in the porous
medium (A = 1); however, it is destabilized by decreasing the
permeability along and transverse to the mean flow direction
(A = −1).

When anisotropy effects are incorporated in a configu-
ration with inhomogeneous porous bottom, the flow system
is further destabilized for a decrease in ξ , which arises due
to a decrease in permeability along the mean flow direction
or an increase in permeability along the transverse direction.
Note that an increase in ξ increases the critical Reynolds
number and this is analogous to the scenario for a system
with homogeneous anisotropic porous medium (figure not
shown).

FIG. 16. The spectra and eigenfunctions in the unstable
regions I–III in Fig. 15(a) with all parameter values same
as Fig. 15(b), (a) spectrum at m = 4, n = 6, (b) eigen-
function at m = 4, n = 6, (c) spectrum at m = 0.5, n = 3,
(d) eigenfunction at m = 0.5, n = 3, (e) spectrum at m = 3,
n = 0.5, and (f) eigenfunction at m = 3, n = 0.5.
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Figure 15 displays the boundaries separating the unsta-
ble and stable regions in the m–n plane at Re = 1500, α = 0.5,

and d̂ = 10 for a configuration with a porous bottom (homoge-
neous, A = 0) for three different values of anisotropy param-
eter ξ . The stable regions are well separated for ξ = 0.75
[Fig. 15(a)]. An increase in ξ results in merging of the stable
regions and separation of unstable regions [ξ = 1, Fig. 15(b);
ξ = 3, Fig. 15(c)]. The spectra [Figs. 16(a), 16(c), and 16(e)] and the
corresponding profiles of the real (φr) and imaginary (φi) parts
of the streamfunction disturbances are presented [Figs. 16(b),
16(d), and 16(f)], at typical points in the regions I (m = 4, n = 6),
II (m = 0.5, n = 3), and III (m = 3, n = 0.5) marked in Fig. 15(a).
This corresponds to examining the influence of relative mag-
nitude of volumetric flow rate in the two fluid layers of dif-
ferent viscosities overlying the porous medium on the corre-
sponding eigenfunctions (changes in thickness ratio, n). From
the spectral figures on the left panels in Fig. 16, we see that
a reduction in viscosity-stratification and thickness of the
lower layer adjacent to the porous layer shifts the domi-
nant unstable mode [Figs. 16(a) and 16(e)] from region I to
region III and increases the wave speed cr from cr < 1 to
cr > 1. From the structure of the perturbation stream func-
tion at α = 0.5, we infer that the real parts of the stream
function disturbance cover the whole region of the porous
medium, they are localized near the liquid-liquid interface
for the two-liquid layers. The amplitude of the perturbation
streamfunction in the porous layer vanishes at the rigid sup-
port of the porous bottom and decreases monotonically within
the porous layer. The amplitude of perturbation streamfunc-
tion in layer 2 (layer 1) vanishes at the liquid-porous interface
(at the upper wall) and decreases monotonically till the liquid-
liquid interface [Fig. 16(b)]. When the flow configuration holds
a less viscous fluid (m = 0.5) in a thicker lower layer adjacent
to the porous bottom, the above scenario is displayed but the
amplitude monotonically increases within the porous layer, it
decreases from its zero value at the liquid-porous interface to
its value −0.2 at the center of the liquid layer 2 and beyond
this it increases monotonically [Fig. 16(d)]. In this case, the
co-existence of two unstable modes with one having cr < 1
and the other with cr > 1 is observed [Fig. 16(c)]. Further-
more, the critical motions of the streamfunction disturbances
cover the porous layer as well as the whole of the two-fluid
domains [Fig. 16(d)]. The corresponding values of φr are higher
as compared to the other values of viscosity-stratification m
and thickness ratio n considered in Figs. 16(b) and 16(f). For
the three types of flow configurations considered, the dom-
inant unstable mode induces disturbances and these propa-
gate deep within the porous layer. This may be attributed to
exchange of flux between the two-fluid layers and the porous
layer.

V. CONCLUSION

We have analysed the linear temporal stability of a two-
layer plane Poiseuille flow in a channel consisting of viscos-
ity and/or density stratified, incompressible Newtonian fluids
overlying an anisotropic and inhomogeneous porous bottom

saturated by the fluid in the lower layer adjacent to it. The
upper layer is bounded by a rigid wall. The dynamics in the
porous layer is governed by the Darcy model with appropriate
boundary conditions at the liquid-porous interface proposed
by Beavers and Joseph,58 which accounts for the discontinu-
ity in the velocity between the fluid and the porous layers.
The resulting Orr-Sommerfeld coupled eigenvalue problem is
then numerically solved using a spectral collocation method
and the significant characteristics of the stability of the sta-
tionary flow are examined. The features of instability are influ-
enced (i) by the presence of the porous bottom, which alters

the base flow velocity profiles as the parameters (δ,A, d̂) char-
acterizing the porous bottom are varied, (ii) by the nonzero
velocity perturbations at the liquid porous interface, and (iii)
by the perturbation at the liquid-liquid interface arising due
to stratification in viscosity. As a result, the neutral bound-
aries are multi-branched in this system. A detailed parametric
study revealed the co-existence of different types of modes:
porous mode—manifests as a minimum in the neutral stabil-
ity curve in the longwave regime, interface mode (triggered by
the stratification of viscosity97 across the liquid-liquid inter-
face), fluid layer mode (existing in moderate wave numbers
or O(1) wave numbers), and the shear mode and the coales-
cence of modes in different bandwidths of wave numbers and
low to high Reynolds numbers. In the present study, we have
focused on the features of instability (due to two-dimensional
disturbances) of porous and interface modes and plan to dis-
cuss the details about other modes of instability in our future
investigation.

Associated with changes in depth ratio d̂, there is switch-
ing of the dominance of unstable mode (interface mode to

porous mode as d̂ increases; Fig. 11), for fixed permeability δ.
While the critical Reynolds numbers (Rep) for the dominant
porous mode decrease with an increase in depth ratio, Rei
displays a nonmonotonic behaviour with respect to the depth

ratio d̂.

An increase in permeability of a homogeneous, isotropic/
anisotropic porous layer results in a decrease in critical
Reynolds number for the porousmode for a configuration with
m = 1.5 in a thicker lower layer. This suggests that at perme-
abilities higher or equal to those considered in the present
study, transitionmight be initiated by themode that exists due
to the presence of the porous mode. A dedicated and thorough
non-linear analysis might shedmore light on the above remark
as it is known that there is a considerable reduction in the crit-
ical parameter values for the onset of instability predicted by
the non-linear stability analysis as compared to those by lin-
ear temporal stability analysis and this also forms a part of our
future study.

An increase in ξ corresponds to either a relative increase
in permeability (Kx) in the x-direction or a relative decrease in
permeability in the y-direction (Ky). A relative increase in per-
meability in the mean flow direction offers less resistance to
flow disturbance at the fluid-porous layer interface and thus
stabilizes the interface mode.
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The two-layer flow in a rigid channel which is stable
to longwaves when a highly viscous fluid occupies a thicker
lower layer can become unstable at higher permeabilities
(porous mode) to longwaves in a channel with a homoge-
neous and isotropic/anisotropic porous bottom and a rigid
top. Due to sufficient flow resistance provided by a decrease in
permeability in the vertical direction which occurs due to an
increase in ξ , the porous and the interface modes are stabi-
lized (Fig. 7). The critical Reynolds number, Rei, and critical
wave number, αim, for the interface mode exhibit a nonmono-
tonic behaviour with respect to δ. However, Rei increases with
an increase in anisotropy parameter ξ indicating the stabiliz-
ing role of ξ in the interface mode for a flow system hosting a
highly viscous, isodense fluid (m = 1.5, r = 1) in the thicker lower
layer adjacent to a homogeneous porous bottom [Figs. 10(c)
and 10(d)].

A decrease in viscosity-stratification makes the configu-
ration hosting a less viscous fluid in a thinner lower layer near
the porous bottom (homogeneous, anisotropic) to be more
unstable than the one hosting a highly viscous fluid in a thicker
lower layer.

An increase in thickness ratio n results in switching of the
dominant mode from interface to fluid layer mode. An expo-
nentially decreasing inhomogeneity in the permeability of the
porous medium in the cross-stream direction is found to have
effect on the interface modes. Longwaves are stabilized for
all Reynolds numbers. An increase in A results in switching of
dominant unstable mode (interface mode at A = 0 to porous
mode at A = 1) for a thicker porous layer [Fig. 14(a)] resulting
in destabilization of longwaves. The depth ratio has a crucial

role in the primary instability. The depth ratio (d̂ = d/d1) sig-
nifies the relative importance of the porous layer thickness
as compared to the thickness of the upper fluid layer. It is
evident that an increase in depth ratio is responsible for low
wave number instability at smaller Reynolds numbers (Fig. 9),
by the porous layer mode. The porous layer thickness thus
has a destabilizing effect on the porous layer mode but plays
a stabilizing role for the fluid-layer mode. An important fea-
ture of the obtained results is the bimodal structure displayed
in the neutral stability boundaries, indicating the existence of
longwave minima.

Switching of dominance of modes which arises due to
variations in anisotropy (ξ) of the porous medium is depen-

dent on the permeability (δ) and the depth ratio (d̂). It is
evident from the results that it is possible to exercise more
control on the stability characteristics of the system by incor-
porating variations in permeability due to inhomogeneity than
mean permeability modulations that arise due to changes in
permeability parameter δ.

Inhomogeneity (due to an increase in vertical variation
in permeability) renders short wave modes to become more
unstable by enlarging the region of instability. This is in con-
trast to the anisotropic modulations (an increase in ξ) causing
stabilization by both increasing the critical Reynolds num-
ber and shrinking the unstable region. Thus, we observe that

the directional and spatial variations in permeability have
a strong influence on the stability characteristics, for dif-
ferent depth ratios and ratio of thickness of fluid layers.
A reduction in anisotropy destabilizes the system, but this
trend is reversed with an increase in anisotropy parameter. A
variation in inhomogeneity which enhances the overall per-
meability of the porous medium destabilizes the flow sys-
tem. The stability properties can be exploited effectively in
accordance with the relevant applications and thus facilitates
the fabrication of devices involving two-layer channel flows.
It is possible to stabilize/destabilize flows which were other-
wise unstable/stable in a rigid channel by designing the walls
as porous/rough for appropriate ratio of viscosity and layer
thickness.
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