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Abstract
In recent days, finding influential disseminators in social networks has become a crucial issue due to its importance in 
the spread control of information, product advertisement, and rumor control. Most current researches on influencer 
identification are focused on topological factors such as coreness, centrality, and degree distribution. But these meth-
ods do not consider the interest of receiver though it plays a vital role in carrying information forward. To consider the 
receiver’s interest in finding influential spreaders, this paper proposes a robust and reliable two-step influencer finder 
model which considers the individual’s interest on spreader as well as the spreading information. This approach com-
bines the individual’s location and the interest on the neighbor/topic. In step 1, a novel method to find a trust vertex of 
spreaders is proposed. In step 2, a weighted neighborhood centrality method is proposed to identify one or more influ-
ential spreaders using the trust vertex. The experiments conducted on six different datasets to prove the effectiveness 
of the proposed approach. The results show that the proposed approach is better than other recent and well-known 
state-of-the-art algorithms.

Keywords Spreading process · SIR model · Information dissemination · Influential individuals · Social networks · Opinion 
model · Temporal behavior · Individual interest

1 Introduction

The proliferation of social media applications and ample 
innovation on new age devices such as IoT devices and 
smartphones has led to the increased research interest 
on real-time analysis of information diffusion in social 
networks. Also, information spread in social networks is 
faster due to the flow of novel information from various 
sources with diverse viewpoints [1]. In this type of net-
works, the influence of some spreaders is often hinder 
or rapidly increase the spreading of Information on an 
unprecedented scale. So, understanding spreader’s influ-
ence on receivers has become crucial to study or control 
the information diffusion.

Influential spreaders are participants in social networks 
who can spread information/message rapidly among 
other participants. Identifying such most significant 

spreader in social media networks has been a critical fac-
tor in: (i) fast spreading the vital information and/or (ii) 
drastically reduce the rumor spreading.

At any point in time, a spreading process will have 
one or more influential spreaders across the communi-
ties or sub-networks. Finding u number of the influential 
spreader in a network can be defined as [2]:

In Eq. (1), SP is a spreading process, u is a set of influen-
tial originating nodes which can maximize the spreading 
process.

From Eq. (1), an influential spreader is having a higher 
probability of information acceptance by the neighbors. 
Hence, Information spreads faster through influential 
originators compared to the normal originators. The issue 

(1)
f ∶ S → Influenced Recivers∀SP

IN = {u|max(f (u))∀SP}
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of finding a u-set of participants who can lead to maximal 
spread is an NP-hard optimization problem [3].

Most of the influencer identifiers, discussed in Sect. 2, 
focus on topological factors such as centrality, coreness, 
and h-index. Topological factors clarify the information 
flow pattern within the network. But these are not enough 
since such factors do not consider the spreader or receiv-
er’s temporal behavior in the spreading process. In social 
networks, temporal behaviors like opinions of individual 
on neighbors affect the individual’s participation in infor-
mation diffusion. To the best of our knowledge, no model 
has been proposed to identify the influential spreaders 
by considering the temporal aspects. This paper focuses 
on evaluating the importance of a person with his/her 
neighbors by considering both topological and temporal 
aspects of the network.

In a typical social network, once the receiver receives 
the message, he/she decides to spread or ignore the mes-
sage. If the person decides to spread, the receiver becomes 
the spreader; otherwise, the message will be ignored. The 
same approach follows henceforth. This is generally called 
as spreading process. The interest of the receiver decides 
whether the person receives or ignores the message from 
the spreader. Therefore, the interest of the receiver on the 
spreading topic or spreader is the most important. Finding 
the impact of receiver’s interest in the spreading process is 
one of the important challenges in a dynamic social net-
working system. Receiver’s interest on topic or spreader 
changes over time in any dynamic social network. Hence, 
an Individual’s interest should be updated in a dynamic 
fashion. The proposed approach considers an individual’s 
interest on the topic as well as the person while finding 
influential spreaders.

We study the interest of interacting participants using 
opinion dynamics. Opinion dynamics is one of the widely 
studied temporal social behavior that impacts the individ-
ual persons in any social network. The opinion of a person 
in a network can be affected by their neighbors’ opinion. 
So, the person updates the opinion after each interaction 
with neighbors. Complex networks like Social networks 
can be attributed with continuous opinion update model 
[4]. A continuous update model can be categorized as lin-
ear and non-linear models [5]. In non-linear update model, 
first a confidence level value is set, and an individual will 
perform the synchronous update only when an average 
of all opinions is lower than the confidence level. In linear 
update model, the average of all opinions is considered as 
the weight of the individual.

In this paper, we propose a novel influential nodes 
finder measure, Interest Aware Neighborhood Central-
ity (IANC), to quantify and rank the spreading ability of 
one or more nodes using the trust values of neighbors. 
This is a two-step framework to rank influential nodes by 

acquiring topological and temporal aspects of social net-
works. The proposed approach first calculates the receiver 
interest after each interaction and consider the calculated 
value as the weight of an individual. We use a continuous, 
non-linear opinion update model inspired by the Heg-
selmann-Krause model [4, 6, 7] for this calculation. This is 
a completely localized approach which updates a pair of 
participants who involves in interaction at any given time. 
Then we rank influential spreaders based on a novel topo-
logical measure called Neighborhood Opinion Centrality 
(NPC) model. The global algorithm, NPC, is applied at the 
network level to rank the influential spreaders. The contri-
bution of this paper is three-fold: (i) We provide a domain-
based opinion update model that characterize the com-
munication of the network (ii) We formulate a matrix of 
opinions for each node in the network that acts as weight 
of the node (iii) Then we use this weight to identify the 
u-influential spreaders who can disseminate information 
in quick fashion.

The paper starts by discussing the various models pro-
posed so far on identifying the influential spreaders. Next, 
in Sect. 3, we define the nature of the proposed model and 
assumptions. Section 4, elaborates the proposed approach 
and explain how it identifies the influential spreaders. In 
Sect. 5, we will discuss the experimental approach and 
results and compare with existing models. This paper ends 
with conclusions and future works, in Sect. 6.

2  Related works

The spreading maximization process can be characterized 
by the topological structure of the network and interac-
tion dynamics among participants in the network [8, 9]. 
Most of the models which predict the number of influenc-
ers is based on the topological structure of the network. 
Various classical centrality measures have been proposed 
to identify the influential spreaders, such as degree cen-
trality, betweenness centrality [10], closeness centrality 
[11], k-shell coreness [12]. Among these, k-shell centrality 
[12] has been widely accepted and first majorly applied 
method for finding the influential spreader. But this 
method does not suit the problem for various reasons: 1. 
It tends to find core k set of influencing nodes with spread-
ing capacity overlaps each other, 2. It does not consider 
the impact of neighbors of influential spreaders. Naturally, 
neighbors of influential spreaders are also having a signifi-
cant impact on the spreading process.

Many different types of models have been proposed on 
the shortcomings of k-core decomposition such as k-hop 
[13], k-truss [14], Distributed k-core decomposition [15], IC 
and k-shell method for weighted networks [16]. Liu et al. 
[17] have shown the accuracy of k-shell decomposition 



Vol.:(0123456789)

SN Applied Sciences          (2019) 1:1456  | https://doi.org/10.1007/s42452-019-1436-x Research Article

can be improved by removing the redundant edges from 
the network. PageRank [18], LeaderRank [19] and HITS [20] 
are proposed to rank the nodes in the directed network. 
But, coreness of a network does not accurately define 
the higher influential nodes as the low-core nodes act as 
bridge elements that control the spreading process [21].

Kemp et al. [3] proved that the problem of identifying 
the optimal influencers is NP-hard problem and proposed 
a greedy algorithm. But this algorithm is not suitable for 
complex and high-density networks as the computation 
cost is high. Succeeding to that effort, there have been var-
ious greedy/heuristic based algorithms proposed such as 
CELF [22], DDH [23], DiDH [23] and IC [24]. CELF is a greedy 
algorithm, proposed by Dk et al., selects the seed nodes to 
reduce the running complexity. But, it does not improve 
much in terms of computational overhead. Degree dis-
count heuristic (DDH) is a heuristic based approach where 
selected seed node’s degree should be discounted from 
neighbors’ degree while calculating the influence maximi-
zation. Sankar et al. used Diffusion degree heuristic (DiDH) 
for influence maximization in large-scale complex social 
networks. Independent cascade (IC) model is a k-medoid 
clustering heuristic-based model that acts on community 
structured networks.

Neighborhood coreness centrality introduced by Bae 
et al. [25], considers the k-shell coreness index of neigh-
bors to identify the important nodes. Ma et al. [26] pro-
posed a neighborhood centrality-based model by the 
inspiration of gravity formula. Neighborhood centrality 
outperforms the other centrality methods in most of the 
cases [27].

All above researches are considering the static proper-
ties of the network in identifying the maximum spreader. 
But information spread in any complex network is also 
based on the interest of receivers. The opinion of the 
receiver on spreader and information plays a vital role in 
the spreading process. We are addressing the problem of 
influential spreaders by considering the opinion of partici-
pants in the network. The opinion of a participant keeps 
changing at every contact with the neighbor as the opin-
ion is time bounded based on communication between 
participants. The opinion of an individual is a continuous 
value based on various interactions with neighbors in the 
network. So, updating the opinion of each person is a local 
heuristic.

Basically, opinion models are used to study the conver-
gence or divergence of social behavior in social networks. 
Many different models have been emerged to study the 
phenomenon. Complex networks use local belief update 
models to characterize the interaction pattern in the net-
work. Local belief update is broadly classified into a. linear 
update and b. non-linear update models. In linear update 
model [28, 29] the weight for individuals is calculated 

based on their relative importance in the network. In non-
linear update models [30], a confidence level is set, and the 
synchronous interactions update the belief only when the 
average opinion value is above the confidence level. These 
models are widely called the Hegselmann-Krause model.

Non-linear update models are well suited for social 
networks, due to the complex nature of these networks. 
The first non-linear model was introduced and analyzed 
by Krause et al. [6]. Deffuent et al. [31]. has extended the 
model stating the agents can communicate with their 
immediate four neighbors. Weisbuch [32] has analyzed 
the convergence property on scale-free networks. The 
opinion dynamics discussed so far considers the opinion 
of an individual on a neighbor is the same for all the top-
ics. But a person can have a different kind of opinions with 
the same neighborhood on different topics. So, the pro-
posed approach considers the domain-specific opinion of 
an individual that is being updated after each interaction 
with other participants in the social network.

3  Model environment

We focus on unweighted and undirected networks to 
examine the proposed approach, IANC. For opinion mod-
eling in step 1, we consider the network as a social interac-
tion network. For weighted neighborhood modeling, we 
consider the network as SIR model. Let Gc =

{
� , �c

}
 be the 

connected graph network, where � = {1, 2, 3,… n} be the 
set of nodes in the networks and �c be the set of edges of 
graph Gc. We denote n = |�| and m = ||�c|| as the number of 
nodes and edges respectively.  Nj is the set of neighbors of 
the node j. i.e., kj =

|||Nj
||| is the degree of node j. Interaction 

takes place in a random fashion in this connected graph.

3.1  Hegselmann–Krause (HK) model

In this section, the social interaction network for step 1 is 
explained. To update the opinions of individuals after each 
interaction, we follow non-linear opinion update model 
called Hegselmann-Krause (HK) model: A finite number of 
individuals synchronously update their opinion based on 
the possible interactions among them. The opinion can 
be updated only if that differs by less than a confidence 
level €. In this section, we describe the discrete synchro-
nous opinion update model. Let us assume that we model 
the interactions of nodes of Gc that updates their opinion 
synchronously. It is assumed that each time step t = 0,1,2,.., 
the opinion of node i ∈ [�] can be represented by a vec-
tor Oi(t) =

[
O1,O2,… ,Oq

]
 . Here q is the possible number 

of outcomes of any interaction in the network. Neighbor-
hood function with opinion vectors can be defined as,
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With this, the opinion update model can be defined as,

This model is based on the idea that the topologi-
cal connection has a lesser influence on the information 
dissemination. The interaction between two persons is 
based on the common interest they possess. Though a 
person closely connects with the neighbor, if the inter-
est differs by more than a threshold, communication 
between the pair does not occur or the possibility of 
interaction is negligible [5].

3.2  SIR epidemic model

We follow Susceptible–Infected–Recovered (SIR) model 
to study the spreading process for calculating NPC in 
step 2. Recently, the SIR model is widely used in network 
related researches on studying information and rumor 
spreading in social interaction networks compared to 
other models such as SIS, Independent Cascade [16, 
33]. Nodes in SIR model belongs to any of three states: 
susceptible (S), infected (I) and recovered (R). S set of 
nodes are susceptible to information, I set of nodes are 
spreading information to susceptible nodes and R set 
of nodes are recovered from the information spreading 
process and not affected by the information anymore. At 
any given time t, S(t) + I(t) + R(t) = � . Figure 1 represents 
the model. At time 0, all the nodes in the network are in 
susceptible set S except only one node act as Spreader 
I. As time increases, the I nodes infect their neighbors 
at rate β. The infected nodes become recovered at a 
recovery rate ¥. At any given time, t, S(t) denotes the 
number of susceptible nodes, I(t) denotes the number 
of Infected nodes and R(t) denotes the number of recov-
ered nodes and the total number of nodes in this model 
is S(t) + I(t) + R(t) = �.

Ni(t) = {j ∈ [𝛾]||||Oi(t) − Oj(t)
||| > C}

(2)Oi(t + 1) =
1

||Ni(t)
||

∑

j∈Ni (t)

Oj(t)

4  Interest aware neighborhood centrality

In this paper, we propose a novel influential nodes finder 
measure called Interest aware neighborhood centrality 
(IANC) as a two-step approach. The two-step measure 
shown in Fig. 2 is proposed as an amalgam of network 
topology and temporal aspects of the network. In step 1, 
we propose a weight update model based on the inter-
action between any pair of nodes in the network. This 
process of updating the opinion weight of nodes occurs 
at the local level during each and every communication.

In step 2, the proposed approach uses this node 
weight in a novel node weighted neighborhood cen-
trality measure called Neighborhood Opinion Centrality 
(NPC) to rank the influential spreaders in the network.

NPC is a global centrality measure combines weights 
of each node and degree centrality.

4.1  Neighborhood opinion distance calculator step

In social networks, a participant of information diffu-
sion process might be interested in neighbors and/or 
the topic the neighbor shares. This interest plays a major 
role in the spreading of the information to neighbors 
in the network. As already discussed, a person decides 
to spread the information based on the interest on two 
major criteria: (i) The neighbor who passed the informa-
tion to him/her, and (ii) the topic on which the infor-
mation is being shared. Opinion dynamics are used to 
measure the interest factor of an individual in interaction 
networks. In general, a person neither completely agree 
nor disregard the opinion of the neighbor [6]. In the 
proposed model, we first calculate the opinion matrix 
of individuals i.e., nodes in the network and consider this 

S I R
β ¥

Fig. 1  SIR epidemic model
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Fig. 2  Interest aware neighborhood centrality framework



Vol.:(0123456789)

SN Applied Sciences          (2019) 1:1456  | https://doi.org/10.1007/s42452-019-1436-x Research Article

opinion as the weight of the node and rank the influ-
ential person by using weighted neighborhood ranker 
method.

The opinion matrix is based on the finite set of com-
mon topic domains every individual possesses. The pro-
posed opinion update model is inspired by the famous 
non-linear continuous opinion update model called the 
Hegselmann–Krause (HK) model. This opinion update model 
acts during every interaction between any pair of nodes in 
the network. After each interaction, the opinion matrix of 
both the individuals is updated.

An individual in the network might be more inter-
ested in one or more topic domains. The topic domain of 
an individual j in the network is a vector of p dimension 
dj =

[
d1, d2,… dp

]
 . Here p is a finite number of topic domains 

we consider in this model. Opinion of an individual j on any 
topic is a q dimension vector Oj =

[
O1,O2,… ,Oq

]
 . Here q is a 

uniform distribution as the possible outcomes of an interac-
tion between any pair of interactions for every topic domain.

Here Oj = 0 indicates the complete disagreement with 
other party on the given topic di and Oj = 1 indicates com-
plete agreement with other party on the given topic di . 
Hence, the opinion of an individual j is denoted as

It is a � ∶ p × q matrix. This matrix is an adjacent matrix 
with values representing the outcome of every interaction of 
an individual with neighbors in topics. DOj

d
 is opinion vector 

of topic d of node j.
The opinion of each node is updated on every commu-

nication on the respective topic domain. We measure this 
opinion factor as neighborhood opinion distance (NPD). The 
NPD between any pair of nodes for topic d is defined as,

NPD updates if threshold � is larger than the distance 
between the pairs. We assume threshold � is a distance 
threshold value for every topic domain beyond which the 
communication does not take place.

From NPD value in Eq. (5), we derive the trust value of a 
node j as �. This is a non-increasing function of NPD.

At any given time, the weight of a node j in the network 
i s  m e a s u r e d  w i t h  t h e  t r u s t  v a l u e  v e c t o r 

(3)Oj =

{
O1,O2,O3,… ,Oq|

q∑

i=1

Oi = 1&Oi ∫ [0, 1]

}

(4)DOj = dj × Oj

(5)NPDd(i, j) ∶ DOi
d
.DO

j

d
→ R+

(6)P
j

d
= 1 −

∑N

i∈Neighbours
NPDd(i, j)

N

�j =

{
�
j

1
, �

j

2
, �

j

3
,… , �

j
p

}
 respective to the topic domain vec-

tor dj =
[
d1, d2,… dp

]
 . i.e.,

where �j
d
 is trust for dj

i
�j in Eq. (7) is a p dimensional vec-

tor representing the weight of node j . Finally, we get the 
Weight of a node is �j

d
 is a continuous value and keep 

updating with respect to time.

4.2  Neighborhood opinion centrality model

Neighborhood Opinion Centrality model considers the 
opinion on different topics and degree of neighbors to 
quantify the spreading ability of nodes. This model is 
derived based on the assumption that contribution of 
neighbors in information spread is vital to increase the 
flow. The basic idea is that spreader with more trust value 
neighbors is having the ability to spread faster than other 
spreaders. Time-bounded trust value is considered as the 
weight of each node. The proposed model also focuses on 
topological factors such as degree distribution and cen-
trality of a node. In contrary to other influential spreader-
finding methods, this method considers topic domain 
while finding trust value of a node. So, the proposed 
method identifies different sets of influential spreaders 
specific to the topic domain. This algorithm applies at the 
global level.

In step two, trust vector �j and degree centrality is con-
sidered to analyze the global features of the network. 
A high influential node indicates that it has high trust 
value among its neighbors and it is surrounded by the 
nodes which can spread the message faster. This model is 
described in below algorithm.

Algorithm – Neighborhood Opinion Centrality model:

(7)�j = {�
j

1
, �

j

2
, �

j

3
,… , �j

p
|�j

i
≤ 1}
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Here � is equilibrium factor, in this case, we set this 
value as 1 and di is average degree coefficient. It is 
defined as,

To provide equal weight to degree centrality and 
trust value, we introduce a normalization factor �. � nor-
malizes the degree influence value IFj

d
 to be a fractional 

value, i.e.,

Finally, Id nodes in Eq. (10) represent the set of influ-
ential nodes by the rank for topic d.

5  Experimental results and discussions

We considered six social networking datasets from pub-
lic large dataset library SNAP [34] for the experiments 
to prove the effectiveness of the proposed model. The 
proposed model is compared with state-of-the-art and 
recent influential finder approaches and models. The 
experiments are performed on a server with 16 GB ram 
and a 4.0 GHz octa-core processor running 64-bit Python 
3.6. We have used NetworkX [35] to generate and load the 
datasets as the large graph. For the experiments in step 1 
and step 2, we have simulated the SIR epidemic model. 
The opinion of receivers on spreaders are randomly cho-
sen with values ranging from 0 to 1 during the interaction 
between them. Throughout the evaluation, we assume 
the neighbors interact on only one topic for every dataset 
and the spreading rate of infected is set to be 1. i.e., the 
infected node can infect maximum of 1 person and goes 
to the recovered state. The evaluation results presented 
at Sect. 5.2 are averaged at least for fifty runs. A single run 
ends only after a minimum 80% of the population goes 
into the recovered state.

(8)⟨di⟩ =
∑N

i ∫ Neighbors
ki .kj

N

(9)�.IFi
d
≤ 1

(10)Id =
{
I1, I2, I3,… , Iu

}

5.1  Datasets

To evaluate the effectiveness and efficiency of the proposed 
method, we apply it to six standard real-world networks. 
These real networks are all undirected and unweighted, 
investigated on SIR spreading process. Topological features 
of these networks are summarized in Table 1.

5.2  Results

We have compared recent as well as well-known influential 
finders such as degree centrality (k), k-shell decomposition 
(ks), and Weighted neighborhood centrality (Cnc+) with 
the proposed influential finder IANC. In every comparison, 
we have used box-plot to quantify and visualize the result 
distribution in all the algorithm. Box-plot helps to visualize 
the distribution of a set of values.

To measure the effectiveness of spreading capability 
of the proposed two-step influential finder, we use the 
imprecision function [38, 39]. The imprecision function is 
used to quantify the importance of influence finder meas-
ure. Imprecision function estimates the spreading effi-
ciency of a node chosen as the originator. We can identify 
the importance of the proposed measure by estimating 
chosen nodes spreading ability. Imprecision function is 
defined as,

Here, u is the set of nodes identified as influential 
spreaders, S(u) is the average spreading efficiency of u 
nodes and  Smax(u) is the highest spreading efficiency in u 
nodes. A lower value indicates the efficiency of the method.

(a) Dolphin
(b) Karate Club
(c) PowerGrid
(d) ca-HepPh
(e) ca-Condmat
(f ) ego-Twitter

(11)�(u) = 1 −
S(u)

Smax(u)
…

Table 1  Dataset for 
experiments

Here < k > is average degree, H = <k2 >/<k > 2—Degree Heterogenicity index [36], βth = <k >/<k2 > —epi-
demic threshold [37]

n E <k> H βth β

Karate Club 34 78 4.588 1.6895 0.129 0.242
Dolphins 62 159 5.129 1.3268 0.1723 0.2351
PowerGrid 4,941 6,594 2.669 1.4522 0.258 0.491
ca-HepPh 12,008 118,521 19.74 5.9823 0.01 0.02
ca-Condmat 21,363 196,972 22 2.99 0.02 0.035
ego-Twitter 81,306 1,768,149 42.02 3.45 0.134 0.15
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Figures 3, 4, 5, 6, 7, and 8 are the comparison of impre-
cision with various algorithms. We have analyzed the 
algorithms with influence node proportion between 
0.01 and 0.2. The proposed algorithm outperforms other 
algorithms in all proportional values for the bigger net-
work, ca-Condmat, and ego-Twitter. This algorithm gives 
better results when the number of people in the network 
is huge comparing to smaller networks. i.e., This implies 
an individual’s opinion gives the bigger difference in 
finding influential nodes for such networks. Overall, in 
all network studies, imprecision of the proposed method 
is at a lower level. This proves that IANC outperforms the 
other algorithms studied.

Next, to quantify the correctness of the proposed 
method, we use Kendell’s tau [40] as a rank correlation 
coefficient method. Kendall’s tau is a correlation metric 

that identifies the relationship between two set of values. 
This method quantifies the correlation between two dif-
ferent sets in spreading ability. A high tau value indicates 
the performance of the algorithm is better.

(a) Dolphin
(b) Karate Club
(c) PowerGrid
(d) ca-HepPh
(e) ca-Condmat
(f ) ego-Twitter

Figures 9, 10, 11, 12, 13, and 14 show the Correlation 
between SIR Epidemic model and various algorithms. 
Infection rates 0.01–0.15 are considered in this study. We 
set recovery rate ¥ as 1 to let an infected node to infect 

Fig. 3  Dolphin imprecision

Fig. 4  Karate Club imprecision
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only immediate neighbors and move to the recovered 
state. In all studies, IANC outperforms other algorithms. 
The Positive correlation between SIR and IANC is always 
high. This proves IANC algorithm gives better results com-
pared to other algorithms studied.

Next, the monotonicity of IANC ranking method is 
investigated. We rank the influential nodes by their influ-
ential factor which is directly proportional to neighbor 
opinion distance. Nodes with same influential factor are 
considered to have the same rank. With monotonicity M, 
we are quantifying the fraction of a tie in the ranking list. 
Higher monotonicity implies the number of tied ranking 

nodes is lesser in the ranking list. The method with higher 
monotonicity is more robust than other ranking meth-
ods. Figure  15 explains the monotonicity of different 
algorithms. Monotonicity of IANC is higher as the tied 
influenced nodes are very less compared to other algo-
rithms. The influence originators set identified by IANC 
is capable of affecting a large number of nodes as the 
influencers are diverse across different layers/communi-
ties of the network.

Imprecision rate, Kendell’s tau correlation and monoto-
nicity presented above show the effectiveness of our pro-
posed approach in all six social networks. From the results, 

Fig. 5  PowerGrid imprecision

Fig. 6  ca-HepPh imprecision
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IANC provides the most influential spreaders for larger 
datasets. Such influential spreaders diffuse the informa-
tion to a maximum number of people at the earliest. IANC 
perform moderately for smaller datasets when influencing 
circle of influencers overlaps more. But IANC outperforms 
state-of-the-art influence finder approaches in such cases 
also. Considering temporal features along with topological 
features have shown a greater result in finding influential 
spreaders.

6  Conclusions

Spread maximization/Control of spreading is an inter-
esting research topic in recent ever increasing social 
networking environments. Among all spread maximi-
zation researches, finding the influence spreaders in a 
complex network is a challenging research topic. In this 
paper, a two-step framework to find a set of influential 
originators in social networks is proposed. The proposed 

Fig. 7  ca-Condmat imprecision

Fig. 8  ego-Twitter imprecision
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approach considered the interest of receivers and their 
location with neighbors in identifying the influential 
spreaders. Unlike other methods, the proposed method 
focuses on temporal aspects of a network along with 
topological attributes. i.e., This method is an amalgam 
of opinion update model and neighborhood centrality 
model. To evaluate the performance of the proposed 
framework, we apply it on six real-world networks 

comparing with recent and well-known influential find-
ers. We evaluated imprecision function to quantify the 
spreading efficiency, Kendall’s tau correlation with SIR 
model to identify the correctness and monotonicity 
index to measure the ranking resolution. The experimen-
tal evaluation shows the proposed model gives a more 
accurate set of influential spreaders compared to other 
recent and well-known influential finders.

Fig. 9  Dolphin correlation

Fig. 10  Karate Club correlation



Vol.:(0123456789)

SN Applied Sciences          (2019) 1:1456  | https://doi.org/10.1007/s42452-019-1436-x Research Article

This work shed some light on considering temporal 
aspects of diffusion will provide reliable results in devis-
ing effective strategies to identify influential spreaders in 
social networks. This opens various future research pos-
sibilities on considering the temporal and topological 

attributes of the social network in this area. Other pos-
sible future work is to consider homogenous and hetero-
geneous natures of the network in parallel to identify the 
important spreader as the experiments in this paper con-
sidered heterogeneous nature of networks in this paper.

Fig. 11  PowerGrid correlation

Fig. 12  ca-HepPh correlation
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Fig. 13  ca-Condmat correlation

Fig. 14  Ego-Twitter correlation
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