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Abstract: This paper discusses the application of Lagrange 

interpolation and cubic spline interpolation to predict 

 acceleration/velocity and to adapt better window lengths 

for any range of target acceleration. The estimated 

 velocity/acceleration is then smoothed using Kalman and 

adaptive Kalman filters. Simulation results show that in a 

‘high-level noise’ scenario, the interpolated adaptive filter 

gives a more accurate estimation than the existing method 

of using a rectangular window function. Track initializa-

tion error minimized with spline interpolation was com-

parable to that minimized with Lagrange interpolation.
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1  Introduction

The Doppler effect [1] comes into play when a signal is 

transmitted and received after being reflected by a moving 

target. Papic et al. [2, 3] estimated the Doppler shift 

through time-dependent Fourier analysis, using a rectan-

gular window function. The rectangular window having 

an abrupt transition from and to zero outside the selected 

range is known to introduce ripples in the Fourier  analysis. 

To alleviate the presence of large oscillations in both the 

pass band and the stop band, one should use a window 

function that ramps up and down towards zero gradually 

[4]. Hence the Kaiser window can be used in place of a 

rectangular window to obtain the finite sequence [5].

In [2], three consecutive peaks obtained from the 

spectrum were considered to minimize the error intro-

duced by the estimated frequency. The optimized fre-

quency was obtained using a simple interpolation proce-

dure based on second-order polynomial approximation. 

Valarmathi et al. [6] considered three consecutive peaks 

of the finite sequence obtained with a Kaiser window [4], 

and used Lagrange’s polynomial interpolation and semi- 

Newtonian iteration to determine the Doppler shift. Simu-

lations showed that the above methods did not offer much 

improvement in the estimation. In these methods, the 

look-up table [2] was directly used to adapt the window 

length. In [7], target position and velocity are estimated 

via polynomial optimization using n-Doppler shift mea-

surements collected at n nodes in a sensor network. Simi-

larly in [8], estimated velocity through FFT, was refined by 

the Hough detector in which the Hough parameter space 

is sampled incrementally to meet the needed accuracy 

 requirements. These methods had much computational 

complexity.

The look-up table provides a window length for dif-

ferent signal-to-noise ratios (SNRs) at three constant ac-

celerations, namely 3, 7 and 15 m/s2. Other accelerations 

have to be approximated to these values in selecting the 

window length. This approximation results in errors in 

 estimation.

The works of Papic et al. [2, 3], Katkovnik et al. [9], 

Jubisa et al. [10] and Hedrick [11] emphasize the impor-

tance of the length of the window function. Using a short-

length window function helps avoid the effect of velocity 

averaging across a long interval but can result in poor 

 velocity estimation and higher acceleration in the case of 

intensive object dynamics. In the case of a low SNR, a suf-

ficient window length is crucial to obtain relevant infor-

mation on the Doppler frequency shift. The trade-off 

between the echo signal’s SNR and target acceleration is 

done carefully to determine the window length. It was ob-

served that the method of interpolation was more effective 

in adapting the window length to determine acceleration. 

Furthermore, it was observed that interpolated Doppler 

filter with fast Fourier transformation gave a better esti-

mate of velocity than the complicated methods described 

earlier. A Kalman filter [12, 13] was used to smooth the 

 estimated velocity and determine the acceleration of the 

moving target.

This paper is organized as follows. The system de-

scription, Doppler frequency estimation and interpolation 

methods are explained in section 2. The Kalman filter 

structure and the window length adaptation are explained 
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in sections 3 and 4. In section 5, results of velocity estima-

tion obtained with the algorithms described in previous 

sections are simulated and analyzed. Finally, the conclu-

sion is given in section 6.

2 System description

A block diagram depicting velocity estimation is shown in 

Fig. 1. A Doppler filter is used to determine the Doppler 

shift from the echo signal. A sinusoidal signal transmitted 

by the radar antenna has the form xT (t) = A cos ω0t, where 

ω0 is the angular frequency. This signal when reflected 

back from a stationary target results in a round-trip time 

delay τ = 2R/c, where R is the range of the target in kilome-

ters and c = 3 × 108 m/s is the velocity of light. The received 

signal is of the form

xR(t) = A cos Ω0(t - τ). (1)

In the case of a moving target, the received signal also has 

a phase difference (used to determine the velocity of the 

signal). The phase difference can be represented in terms 

of angular frequency Ωd and is given by

- Ω
Ω =

( )
02

.

dR t

dt
d

c
(2)

Hence, the received signal is of the form

xR(t) = A cos((Ω0 - Ωd)t - Ω0τ). (3)

In a practical scenario, owing to the presence of noise, the 

received signal is assumed to be of the form

xR(t) = A cos((Ω0 - Ωd)t - Ω0τ) + v(t), (4)

where v(t) is random noise, which is statistically 

 independent.

2.1 Windowing

In the case of a Kaiser window [1], there is the flexibility of 

choosing a desired side lobe level and main lobe peak by 

varying the parameter α. An added advantage of the 

Kaiser window is that its transition bandwidth is always 

small. Here the stop band attenuation (As) is assumed to 

be 25 dB. Hence, β = 0.6 approximately.

2.2 Fast Fourier Transform (FFT)

The windowed output is analyzed in the frequency domain 

by performing the FFT to obtain the peak frequency:

π

-
-

=

≤ ≤ -∑
1

2 /

0

( ) ( ) ; 0 1.
N

j nk N

n

X k x n e k N (5)

A higher point FFT is applied to the window output so as 

to obtain a better display of the DFT X(k). As the window 

size M is less than N, zeros are used for padding. The fre-

quency corresponding to the highest magnitude of the 

FFT is the received signal frequency f1.

2.3 Velocity estimation

The Doppler frequency shift fd is given as the frequency by 

which the received signal varies from the transmitted 

signal. Hence, ±fd = f1 - f0, where f0 is the transmitted- 

signal frequency. The velocity of the target is given by

θ= ×
0

cos ,p d

c
v f

f
(6)

where =cos cos cosa eθ θ θ ; angles θe and θa are respec-

tively the elevation and azimuth angles. For the estimated 

Doppler frequency shift, the target radial velocity vr can be 

calculated as

=
0

.
2

d
r

f c
v

f
(7)

2.4 Lagrangian interpolation technique

Since there are N samples of the received signal, a proper 

sampling size should be selected through Kaiser window-Fig. 1: Block diagram of velocity estimation
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ing in the trade-off between determining the target ma-

neuvering and the SNR. For each observation, the window 

length has to be adjusted according to the target accelera-

tion and SNR. The look-up table [2] provides the window 

length for different SNRs at three constant accelerations, 

namely 3, 7 and 15 m/s2. Other accelerations are approxi-

mated to these values in selecting the window length. This 

approximation leads to errors in estimation. Hence, the 

interpolation technique was used for the acceleration to 

adapt a better window length.

Using Lagrangian polynomials [14, 15, 16], it is possi-

ble to obtain the second-order interpolating polynomial 

Q( f ), which passes through three points ( f1, X1), ( f2, X2) 

and ( f3, X3) of the window length corresponding to the 

given accelerations:

Q( f ) = L1( f )X1 + L2( f )X2 + L3( f )X3, (8)

where L1( f ), L2( f ) and L3( f ) are the Lagrangian polyno-

mials given by
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The frequency f is the approximate solution of the poly-

nomial Q( f ). It is noted that the velocity estimated using 

the interpolated adaptive Doppler filter with only the 

FFT  is better than that estimated using the complicated 

methods mentioned earlier. However, the initial estima-

tion still contains more error.

2.5 Cubic spline interpolation

To reduce the error in the initial estimation [15], instead of 

Lagrangian interpolation, the cubic spline method was 

used. Cubic splines are curves used for the interpolation 

of data. They are constructed through a set of known data 

points. Here, corresponding to the SNR of the received 

signal, the accelerations and the respective window 

lengths obtained from the look-up table given in [2] are 

 interpolated through cubic spline interpolation. In cubic 

spline interpolation, there are generally equations for two 

splines [14, 16]:

y = a1(x - x1)
3 + b1(x - x1)

2 + c1(x - x1) + d1, (9)

y = a2(x - x2)
3 + b2(x - x2)

2 + c2(x - x2) + d2, (10)

where x is acceleration and y is the window length, and a1, 

a2, b1, b2, c1, and c2 and d1 and d2 are constants. Substitut-

ing x = x1 and x = x2 into equations (9) and (10) gives

d1 = y1  and  d2 = y2.

Taking the second derivative of equations (9) and (10) 

yields

y′′ = 6a1(x - x1) + 2b1, (11)

y′′ = 6a2(x - x2) + 2b2. (12)

Considering that y′′ = y1′′ at x = x1 in equation (11) and 

y′′ = y2′′ at x = x2 in equation (12), we have

b1 = y1′′/2  and  b2 = y2′′/2. (13)

Substituting equation (13) into equations (11) and (12) and 

solving the same after letting y′′ = y1′′ at x = x1 in equation 

(11) and y′′ = y2′′ at x = x2 in equation (12), we have

a1 = ( y2′′ - y1′′)/6h1;  a2 = ( y3′′ - y2′′)/6h2, (13)

where h1 = x2 - x1 and h2 = x3 - x2.

Substituting all the constants and setting y = y1 at 

x = x1 and y = y2 at x = x2 in equations (9) and (10), we have

c1 = ( y2 - y1)/h1 – y2′′h1 /6 - y1′′h1 /3,

c2 = ( y3 - y2)/h2 – y3′′h2 /6 - y2′′h2 /3.
(14)

Finally, to find the unknown second derivatives, we 

impose the compatibility condition that y2′ in spline 1 

must equal y2′ in spline 2:

3a1(x2 - x1)
2 + 2b1(x2 - x1) + c1 =  3a2(x2 - x2)

2 

+ 2b2(x2 - x2) + c2. (15)

The substitution of all constants in equation (15) and sub-

sequent simplification lead to

h1 y1′′ + 2(h1 + h2)y2′′ + h2 y3′′  
= 6[( y3 - y2)/h2 - ( y2 - y1) / h1]. (16)

If we consider the natural boundary conditions y1′′ = 0 

and y3′′ = 0 in equation (16), we have the matrix equation

- - -′′ =
+

3 2 2 2 1 1
2

1 2

6[( ) / ( ) / ]
.

2( )

y y h y y h
y

h h
(17)

The given window lengths corresponding to the three ac-

celeration values are taken as (x1, y1 ), (x2, y2 ) and (x3, y3), 
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and the spline segment coefficients are calculated and the 

cubic spline is plotted. From the cubic spline plotted, the 

exact window length is obtained for a particular accelera-

tion pertaining to a particular SNR.

3 Kalman filter

Here the Kalman filter is used to smooth the noisy mea-

surement obtained with the Doppler filter. The inputs of 

the Kalman filter are the velocity estimates obtained with 

the Doppler filter and the outputs are the refined velocity 

estimates. The state space representation of object kine-

matics is given by

φ ω= +( ) ( ) ( ) ( ),k1Z k k Z k - (18)

where Z(k) is the state vector [v(k)  a(k)]′, and v(k) and 

a(k) are the velocity and acceleration of the target respec-

tively. φ(k) is the state transition matrix 
1

0 1

T
. We assume 

the measurement equation has the algebraic form

µ= + =( ) ( ) ( ), where [1 0].kY k HZ k H (19)

The random variables ω(k) and µ(k) represent the process 

and measurement noise, which are white Gaussian noise 

with covariance matrices Q(k) and R(k) respectively. The 

Kalman filter estimates a state at some point in time and 

then obtains feedback in the form of a noisy measurement. 

These two steps are called prediction and correction [12, 13].

3.1 Prediction

   
=   

   
   

′= +   
   

ˆ̂ ( )

( ) ( ) ( )Q k

φ

φ φ

1

1 1

1

1 1

k k
Z k Z

k k

k k
P k P k

k k

-
- -

-
- -

(20)

3.2 Correction
-

    
=     

     

1

( )K k ( )
1 1

T T
k k

P H HP H R k
k k- -

(21)

   
= + -   
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ˆ̂ ( )[ ]K k ( ) 1

1

k k
Z Z Y k HZkk

k k
-

-
(22)

     
= -     

     
( )K k

1 1

k k k
P P HP

k k k- -
(23)

Here 
 
 
 1

k
P

k -
 and 

 
 
 

k
P

k
 are the prediction and correction

errors. The first task during the correction step is to 

compute the Kalman filter gain K(k) according to equa-

tion (21). The next step is to generate an a posteriori state 

estimate 
 
 
 

ˆ k
Z

k
 whose elements are the unknown target 

velocity and acceleration, by incorporating the measure-

ment as in equation (22). The final step is to obtain an a 

posteriori error covariance estimate via equation (23).

4 Adaptive Kalman filter

The target may undergo different accelerations. As a 

result, frequency also changes with time. Since we are 

considering a fixed window length in Doppler and Kalman 

filters, there is a delay in tracking the target dynamics [1, 2, 

12]. The applied window function length must be short 

enough to avoid the effect of velocity averaging over a long 

interval. This velocity averaging would result in poor 

 velocity estimation in the case of intensive object dy-

namics resulting in greater acceleration. On the other 

hand, the window length has to be long enough to contain 

relevant information on the Doppler frequency shift espe-

cially in the case of a low SNR. This is in accordance with 

the known results in the literature [2, 3, 11]. Therefore, in 

adaptive Kalman filtering, a proper window length is 

chosen according to the acceleration of the target and 

SNR. Using the Kalman filter, the target velocity and accel-

eration are estimated. The next unknown is the SNR, 

which can be estimated as follows.

Proper window lengths for different accelerations 

with the SNR as a parameter are presented in reference [2]. 

On the basis of the received-signal SNR and the accelera-

tion estimated with the Kalman filter, if we select the 

window length particularly at a low SNR, the estimated 

frequency has more error as shown in the simulation 

result. Hence, cubic spline interpolation is used to select 

the proper window length from the interpolated accelera-

tions [2]. Spline interpolation equations are given in equa-

tions (5) to (12). Here the inputs are the known window 

length for the estimated accelerations.

4.1 Choice of optimal window length

The window length that has less cumulative estimation 

error (cee) is taken as the optimal length. Thus, cee is 

given as

ˆ

ˆ
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=

-
= ∑

1

ˆ| ( ) ( )|1
( ) .

| ( )|

k

j

v j v j
cee k

k v j
(24)

Cumulative error is estimated (cee) for the set of estimated 

velocities with different window lengths for the  estimated 

SNR.

4.2 SNR estimation

=
2

2

ˆ
ˆ 10 log ,

ˆ ( )

A
SNR

kµσ
(25)

where 2Â  is the estimated signal amplitude,

µσ

µ µ

 
= -  

 
-

=

2 2ˆˆ ( ) ( ) ,

ˆ̂| ( ) ( ( )) |ˆ( ) ,
0.6745

k d k

k median k
d k median

T
k

HP H
k (26)

 
= -  

 
ˆ( )( )

k
k Y k HZ

k
µ (27)

5 Results and analyses

Here it is assumed that data are received by a radar system 

every 2 ms. The maximum number of samples for process-

ing is 5000; i.e., the period of observation is 5000 × 2 ×  
10-3 = 10 s. With fast maneuvering of the target, the target 

velocity is assumed to change from 250 to 116.6 m/s within 

3.6 s. This gives the acceleration as 37.13 m/s2. Figures 2 

and 3 show the Lagrange and spline-interpolated window 

lengths, corresponding to the interpolated accelerations 

at different SNRs according to reference [2].

Figures 4 and 8 show the window length adaptation 

without and with interpolation for the velocity profile 

with acceleration of path 1 at 5 dB and an SNR of 25 dB. It 

is seen that the velocity estimation is better with the inter-

polated adaptive window length as shown in Figs. 6 and 7 

compared with Fig. 5. Velocity is better estimated employ-

ing Kalman smoothing. The same analyses are made at an 

SNR of 25 dB as shown in Figs. 9 to 11. It is seen that the 

velocity is well estimated with the combination of the in-

terpolated adaptive Doppler filter and Kalman smoothing 

at a low SNR. Even though the window length adaptation 

seems the same with and without interpolation as seen in 

Fig. 4: Window length adaptation without and with interpolation for 

path 1 at a SNR of 5 dB

ˆ

Fig. 2: Lagrange’s interpolated acceleration versus window length 

for different SNRs

Fig. 3: Spline-interpolated acceleration versus window length for 

different SNRs
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Figures 4 and 8, the performance of the velocity estima-

tion is markedly improved with interpolation as shown in 

Figs. 9 and 10.

Figures 12 and 16 show the adaptive window length 

without and with interpolation for the velocity profile 

with deceleration of path 2 at 5 dB and an SNR of 25 dB. It 

is observed that estimated velocity obtained through in-

terpolated adaptive Doppler filter is better in this path 2 

(as shown in Figures 14, 15, 18 and 19) than the algorithms 

mentioned earlier shown in Figures 13 and 17. Error in the 

track initialization is reduced in the spline interpolated 

method compared to the Lagrangian interpolation.

Fig. 5: Velocity estimation with an adaptive window length for path 1 

at a SNR of 5 dB

Fig. 6: Velocity estimation with a Lagrange-interpolated adaptive 

window length for path 1 at a SNR of 5 dB

Fig. 7: Velocity estimation with a spline-interpolated adaptive 

window length for path 1 at a SNR of 5 dB

Fig. 8: Window length adaptation without and with interpolation for 

path 1 at a SNR of 25 dB

Fig. 9: Velocity estimation with an adaptive window length for path 1 

at a SNR of 25 dB
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Cumulative error estimation (cee) plots are shown in 

Figs. 20 to 23 for paths 1 and 2 at 5 dB and an SNR of 25 dB. 

In all plots, it is observed that cee is lower in the velocity 

estimation made with the interpolated adaptive Doppler 

filter than in the case for the adaptive filter.

6 Conclusion

The results of this study clearly show that interpolated 

window length adaptation provides better velocity esti-

mation than the previously employed method of esti-

mating the Doppler shift through time-dependent Fourier 

analysis using a rectangular window function. In general, 

track initialization is a challenging task, mostly accepted 

with an allowable error. It was observed that this error 

is  reduced with spline interpolation compared with 

 Lagrange interpolation. Additionally, velocity estimation 

Fig. 10: Velocity estimation with a Lagrange-interpolated adaptive 

window length for path 1 at a SNR of 5 dB

Fig. 11: Velocity estimation with a spline-interpolated adaptive 

window length for path 1 at a SNR of 25 dB

Fig. 12: Window length adaptation without and with interpolation 

for path 2 at a SNR of 5 dB

Fig. 13: Velocity estimation with an adaptive window length for path 

2 at a SNR of 5 dB

Fig. 14: Velocity estimation with a Lagrange-interpolated adaptive 

window length for path 2 at a SNR of 5 dB
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Fig. 15: Velocity estimation with a spline-interpolated adaptive 

window length for path 2 at a SNR of 5 dB

Fig. 16: Window length adaptation without and with interpolation 

for path 2 at a SNR of 25 dB

Fig. 17: Velocity estimation with an adaptive window length for path 

2 at a SNR of 25 dB

Fig. 18: Velocity estimation with a Lagrange-interpolated adaptive 

window length for path 2 at a SNR of 25 dB

Fig. 19: Velocity estimation with a spline-interpolated adaptive 

window length for path 2 at a SNR of 25 dB

Fig. 20: Cumulative error analysis for path 1 at 5 dB SNR

Brought to you by | Monash University Library

Authenticated

Download Date | 6/21/15 3:22 AM



 J. Valarmathi et al., Interpolated Adaptive Doppler Filter for Estimating Velocity   221

 improved when the target was accelerating rather than 

decelerating. Fighter aircraft with velocity of 1.7 mach and 

accelerations of 9 to -3.5 g (88.2 to -34.3 m/s2) may be reli-

ably tracked using our algorithm. Other interpolation 

techniques can also be used to compare the efficiency of 

the window length.

Received: October 28, 2012.
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