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Abstract

Background: Elucidating the molecular dynamic behavior of Protein-DNA complex upon mutation is crucial in current
genomics. Molecular dynamics approach reveals the changes on incorporation of variants that dictate the structure and
function of Protein-DNA complexes. Deleterious mutations in APE1 protein modify the physicochemical property of amino
acids that affect the protein stability and dynamic behavior. Further, these mutations disrupt the binding sites and prohibit
the protein to form complexes with its interacting DNA.

Principal Findings: In this study, we developed a rapid and cost-effective method to analyze variants in APE1 gene that are
associated with disease susceptibility and evaluated their impacts on APE1-DNA complex dynamic behavior. Initially, two
different in silico approaches were used to identify deleterious variants in APE1 gene. Deleterious scores that overlap in
these approaches were taken in concern and based on it, two nsSNPs with IDs rs61730854 (I64T) and rs1803120 (P311S)
were taken further for structural analysis.

Significance: Different parameters such as RMSD, RMSF, salt bridge, H-bonds and SASA applied in Molecular dynamic study
reveals that predicted deleterious variants I64T and P311S alters the structure as well as affect the stability of APE1-DNA
interacting functions. This study addresses such new methods for validating functional polymorphisms of human APE1

which is critically involved in causing deficit in repair capacity, which in turn leads to genetic instability and carcinogenesis.
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Introduction

Base Excision Repair (BER) is one of the DNA repair systems

which are essential for the maintenance of genome integrity.

Major genes involved in the BER pathway include MUTYH,

OGG1, APEX1, XRCC1 and PARP1 [1]. Key enzyme involved in

BER pathway is A-purinic endonuclease-1 (APE1), which cleaves

the DNA sugar-phosphate backbone at a position 59 of AP

(apurinic/apyrimidinic) [2] sites to prime DNA repair complex

synthesis. AP sites arise frequently in normal DNA from a variety

of causes: exposure to endogenously produced reactive oxygen

species, ionizing radiation, and alkylating agents. AP sites are pre-

mutagenic lesions that can prevent normal DNA replication and

transcription. APE1 electrostatically orients a rigid, pre-formed

DNA-binding face and penetrates the DNA helix from both the

major and minor grooves, stabilizing an extra-helical conforma-

tion for target abasic nucleotides. APE1-DNA contacts facilitate

and stabilize the extra-helical AP site [3]. Involvement of DNA

repair genes such as APE1 along with environmental exposures has

paved a way to identify polymorphic variants that have the

potential to cause cancer risk [4]. Polymorphisms in APE1 result in

conformational change of the protein, which in turn affects regular

interaction with DNA. Altered protein function causes deficit in

repair capacity, which may lead to genetic instability and

carcinogenesis [5–8]. Single nucleotide polymorphisms (SNPs)

are the most common and simplest form of human genetic

variants. Within coding regions; non-synonymous SNPs (nsSNPs)

might change the physicochemical property of a wild type amino

acid that affects the protein stability and dynamics, disrupts the

interacting interface, and prohibits the protein to form a complex

with its partners [9–12]. Identification of nsSNPs responsible for

specific phenotypic variation to be a major concern that is very

difficult to solve, requires multiple testing of hundreds or

thousands of SNPs in the candidate genes [13,14]. In this aid,

experimental based approaches were used to identify polymor-

phisms in APE1 gene and their disease associations were discussed

extensively. The current limitations in the experimental based

approaches such as cost and time emerged the use of in silico

methods and specifically molecular dynamics simulations in SNP

analysis. Recently, few in silico studies were carried out in

identifying the possible functional and deleterious nsSNPs in

APE1 gene [15–16]. Several in silico methods have been developed

recently, whose goal is to extrapolate the functional and

deleterious nsSNPs from the neutral ones based on sequence

and structure based approach [17–23]. These methods utilize

information such as physicochemical properties [24], protein
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structure, and cross species conservation [25] to predict deleterious

nsSNPs. The structure of a protein can change in various ways due

to the biochemical differences of the amino acid variant (acidic,

basic, or hydrophobic), and by the location of the variant in the

protein sequence (by affecting tertiary or quaternary structure or

the active site where substrate binds).

Current interest in molecular genetics is focused on disease-gene

association that is, identifying which DNA variation or a set of

DNA variation is highly associated with a specific disease at

structural level. Knowledge of the three dimensional (3D) structure

of a gene product will aid in understanding the function within the

cell and its role in causing disease. Proteins with mutations do not

always have the 3D structures that are analyzed and deposited in

Protein Data Bank (PDB). Therefore, it is necessary to construct

3D models by locating the mutation positions and the residues in

3D structures. This is a simple way of detecting what kind of

adverse effects that a mutation can have on a protein at structural

level. It has been understood Protein-DNA complexes play

multiple important roles in cellular processes that involve DNA

transactions, such as transcription, replication, recombination, and

DNA repair as well as the packaging of chromosomal DNA [26].

Proteins that interact with DNA in these complexes either serve as

enzymes to catalyze biochemical reactions [27] or simply act as an

‘‘architectural scaffold’’ [28] to manipulate the structure of DNA

by, for example, bending and/or wrapping DNA. Involvement of

SNPs in these Protein-DNA complexes at molecular level is

impossible. The main goal of in silico analysis presented in this

work is to develop molecular dynamics simulation methodology

that provides the direct link between deleterious nsSNPs at both

functional and structural level. In this present study, we focused on

variants in APE1 gene associate with disease susceptibility and

their impacts on APE1-DNA complex dynamic behavior. The

scope of this work is twofold. On one hand, it addresses the

application of publicly available in silico tools such as Sorting

Intolerant From Tolerant (SIFT) [21], Hidden Markov Model

(HMM) based Protein analysis through evolutionary relationship

(PANTHER) [22], Polymorphism Phenotyping (PolyPhen) [13]

and I-mutant [23] to identify deleterious nsSNPs in APE1 gene.

On the other hand, structural analysis was carried out to know,

how the APE1-DNA interacting function gets affected with respect

to the identified deleterious nsSNPs in APE1 through Molecular

Dynamic (MD) approach using GROningen MAchine for

Chemical Simulations (GROMACS). In this study, investigations

of structural consequences of these novel APE1 mutations I64T

and P311S were explored using molecular dynamics simulations.

Separate simulations were conducted to investigate the conforma-

tional behavior of the APE1-DNA complex in two different states

namely, native and mutant.

Results

SNP information from database
The data set for analysis of potential impact of polymorphism in

APE1 gene investigated in this work was retrieved from dbSNP

database [29]. For human APE1 gene a total of 59 SNPs were

found in database, out of that 10 (0.17%) were nsSNPs, 11 (0.19%)

occur in the mRNA 39UTR, 14 (0.23%) occur in the mRNA

59UTR, and (0.17%) occur in intronic region. We selected nsSNPs

for our investigation. We applied our method to evaluate the APE1

gene association with disease, and its related information for

biomedical literature was taken from OMIM (Online Mendelian

Inheritance In Man) [30]. Experimental related information about

SNPs of APE1 gene was obtained from Swiss-Prot database [31].

Out of ten, seven nsSNPs exhibited transition (ARG, CRT),

while remaining three exhibited transversion (ARC, GRT, and

CRT). Co-ordinates file of APE1 Protein-DNA complex with

PDB ID 1DE8 was obtained from PDB for structural analysis

using Molecular dynamics approach.

Impact of deleterious nsSNPs in APE1 gene
The functional impact of APE1 nsSNPs can be assessed by

evaluating the importance of the amino acids they affect.

Identifying the nsSNPs conferring susceptibility or resistance to

common human diseases should become increasingly feasible with

improved in silico tools. In this analysis, we employed four in silico

tools for determining the functional significance of ten nsSNPs in

APE1 gene. Table 1 presents distribution of the deleterious and

neutral nsSNPs in APE1 gene by these in silico methods. SIFT

predicts whether an amino acid substitution affects the protein

function based on sequence homology and the physical properties

of amino acid. This tool calculates a score for every substitution

and predicts the functional effect. Three nsSNPs with dbSNP ID

rs61730854, rs33956927 and rs1803120 having a tolerance index

score of 0.00, 0.02 and 0.00 respectively were identified to be

deleterious by SIFT. Rest of the seven nsSNPs were predicted to

be tolerant by SIFT exhibiting tolerance index score range of

0.006–1.00. We further analyzed these ten nsSNPs using PolyPhen

based on empirically derived rules. PolyPhen uses information

about the structure of the protein (hydrophobicity, charge effects,

and changes in molecular contacts), available structure data from

Protein Data Bank, and multiple sequence alignment. Based on

Position Specific Independent Count (PSIC) score difference,

variant is predicted to be probably damaging or possibly damaging

or benign. However the multiple sequence alignment is generated

by PSIC software which assigns a score that indicates the

probability of a given amino acid occurring at a particular

position against any random position. Based on the calculated

alignment score and differences in structural parameters, the

PolyPhen designates the mutation as being ‘‘benign’’, ‘‘possibly

damaging’’, and ‘‘probably damaging’’ with the respective scores

of ,1.5, .1.5 and .2.0 respectively. Two nsSNPs with an IDs

rs61730854, and rs1803120 having score 2.286, and 3.123 were

predicted to be probably damaging the protein structure and

function. While three nsSNPs with IDs rs34632023, rs2307486,

and rs1048945 showed a score 1.734, 1.811 and 1.539 were

designated as possibly damaging to protein function. Remaining

five nsSNPs with a score range of 0.465 to 1.272 were designated

as benign by PolyPhen. To validate the prediction of SIFT scores,

we used HMM based evolutionary approach PANTHER to

validate its impact on protein function upon single point mutation.

Out of these ten nsSNPs taken for our analysis, three nsSNPs

rs61730854, rs1803120 and rs1803118 are having score

25.56072, 27.92488 and 23.68399 were designated as delete-

rious. Other seven nsSNPs exhibited a subPSEC score range of

21.63595 to 22.93478. In order to improve prediction accuracy

of structure based approach tools, we used support vector machine

based tool I-Mutant 2.0. The protein stability change due to single

point mutation was predicted using I-Mutant 2.0. A score less than

‘‘0’’ means the mutation decreases the stability. The smaller, the

score more, the more confident is the prediction. Conversely, a

score more than ‘‘0’’ means mutation increase the protein stability.

Seven nsSNPs with dbSNP IDs rs33956927, rs2307486,

rs1803120, rs1803118, rs1048945, rs61730854, rs113056798

showed the negative DDG value 20.10, 21.13, 21.00, 20.33,

21.73, 20.01, 20.62 Kcal/mol, were considered to be least

stable and deleterious. By comparing the prediction scores of all

the four in silico tools, nsSNPs with IDs rs61730854 (I64T) and

rs1803120 (P311S) were designated as highly deleterious and

I64T and P311S Mutations in APE1-DNA Complex
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functionally significant. The I64T polymorphism is the result of

nucleotide change from C to T and results in the substitution of

hydrophilic threonine for hydrophobic isoleucine at amino acid 64

of APE1 gene, thus affecting hydrophobic interactions. P311S

involves change of non polar hydrophilic residue proline to polar

neutral residue serine. It is well-known that during folding of the

polypeptide chain, the amino acids with a polar (hydrophilic) side

chains are found on the surface of the molecule, while amino acids

with non polar (hydrophobic) side chains are buried in the interior.

Thus, this variation may lead to change in the folding pattern of

the protein.

Modeling and analysis of local environment changes
Modeling of predicted deleterious nsSNPs I64T and P311S on

protein structure with PDB ID 1DE8 was performed using Swiss-

PDB Viewer [32]. Super imposed structures of native and mutant

models were shown in Figures 1 and 2. Within the range of 4 Å

from the mutational point, surrounding residue changes and polar

contact between residues were analyzed. It was observed through

PyMOL [33] and shown in Figures 3 and 4. Substitution of

hydrophobic residue isoleucine to hydrophilic residue threonine

(I64T) leads to hydrophobic change at the core of the protein that

could result in the destabilization of the b-sheets. The drift in

hydrophobic to hydrophilic property can in result in loss of

hydrogen bonds and disturbs correct folding. This mutation can

disturb interactions with other molecules or other parts of the

protein. In Figure 3A illustrates the distance between native I64,

neighboring residues T313 and L314. The native I64 maintains

the distance range of 2.69 Å and 2.76 Å between neighboring

residues T313 and L314 respectively, while in mutant model

substitution of threonine, Figure 3B illustrates the distance

between mutant 64T and its neighboring residues T313 and

L314. Substitution of threonine increases the distance of T313 to

2.80 Å and increase the distance of L314 to 3.08 Å. In P311S

polymorphism there is change in drift of charge from non-polar to

polar residue. P311 substituted with hydrophilic serine leads to

change in the surrounding amino acids and their formal distance.

From Figure 4A, it was observed that native P311 could not make

any contact with surrounding residues, while substituted serine

Figure 4B makes contact with R301 and maintained a distance of

2.78 Å. The substitution of serine at 311 introduces a change in

charge at the core and could introduce repulsive interactions

between neighboring residues. Mutation results, changes in local

environment of APE1 amino acid residues and enhance in the

modification of polar residues distances. These nsSNPs I64T,

P311S leads to decrease the stability of protein as predicted by I-

Mutant 2.0: thus must be having conformational changes at the

structural level.

Molecular dynamics conformational flexibility and
stability analysis
Molecular dynamics simulation approaches pay the way for in

depth analysis on structural effects upon mutation in APE1-DNA

complex. The DNA strands in the co-crystal with APE1 (Figure 5)

has a 30 degree bend at the AP site. Based on this, we presumed

Table 1. List of nsSNPs showing deleterious/non- deleterious scores by SIFT, PANTHER, PolyPhen and I-Mutant.

rs IDs Alleles AA Position

Tolerance

index

Predicted

Impact subPSEC score PSIC score Predicted impact

DDG

Kcal/mol Predicted impact

rs113056798 A/G T313A 0.31 Tolerant 22.93478 0.629 Benign 20.10 Decrease Stability

rs61757709 A/C K35Q 0.08 Tolerant 21.80353 1.272 Benign 1.58 Increase Stability

rs61730854 C/T I64T 0.00 Intolerant 25.56072 2.286 Probably Damaging 21.13 Decrease Stability

rs34632023 C/T G39E 0.99 Tolerant 21.63595 1.734 Probably Damaging 1.97 Increase Stability

rs33956927 C/T G241R 0.02 Intolerant 22.15336 0.598 Benign 21.00 Decrease Stability

rs2307486 A/G I64V 0.06 Tolerant 22.62028 1.811 Probably Damaging 20.33 Decrease Stability

rs1803120 C/T P311S 0.00 Intolerant 27.92488 3.123 Probably Damaging 21.73 Decrease Stability

rs1803118 C/T A317 V 0.27 Tolerant 23.68399 0.761 Benign 20.01 Decrease Stability

rs1130409 G/T D148E 1.00 Tolerant 22.25414 0.465 Benign 0.17 Increase Stability

rs1048945 C/G Q51H 0.09 Tolerant 21.80925 1.539 Probably Damaging 20.62 Decrease Stability

Highly deleterious by SIFT, deleterious subPSEC score by PANTHER, Probably and possibly damaging by PolyPhen and Negative score of I-Mutant were highlighted
in bold.
doi:10.1371/journal.pone.0031677.t001

Figure 1. Superimposed structure of native amino acid
isoleucine in sphere shape (orange color) with mutant amino
acid threonine (red color) at position 64 in PDB ID 1DE8 of
APE1gene.
doi:10.1371/journal.pone.0031677.g001

I64T and P311S Mutations in APE1-DNA Complex
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that I64T and P311S, would affect the angle of interaction, and it

was investigated through subsequent molecular dynamics ap-

proach. Potential energy for native and mutant proteins in bound

(Protein-DNA) and unbound states (protein) were calculated. They

exhibited a range from 27.94830 to 28.87568 kJ/mol in bound

state; while in unbound state range is from 25.53928 to

25.64950 kJ/mol (Table 2). The deviation between native and

mutant structures were evaluated by their root mean square

deviation (RMSD) values which could affect protein stability. We

calculated the RMSD for all the atoms from the initial structure,

which were considered as a central criterion to measure the

convergence of the protein system concerned. The backbone

RMSDs were calculated for the trajectories of three complexes i.e.,

native modeled complex of 1DE8 with substitution of threonine at

position 64 and modeled complex of 1DE8 with substitution of

serine at position 311 from the starting structures as a function of

time. The root mean square deviation (RMSD) of the backbone

atoms relative to the corresponding starting structures was

calculated and the results are reported in Figure 6A. For all the

three structures a considerable structural changes was observed

during the initial few picoseconds leading to a RMSD to

,0.15 nm, followed by a notable structural deviations for the rest

of simulations. The RMSD reach a stable value of ,0.15 nm

within the range of ,4–6.5 ns for native and mutant P311S

structure. On other hand, I64T attained stable value of ,0.25 nm

within the range of ,4–6.5 ns. The final RMSD value of ,0.2–

0.25 nm for all three simulations was observed. The I64T retained

maximum deviation till end and around the period of 7,000 ps it

attains RMSD value of ,0.275 nm. A small difference between

the average RMSD values after the relaxation period (,0.15 nm),

lead to the conclusion that the constant ranges of deviation in the

native and mutant structures reflect that mutation could affect the

dynamic behavior of mutant complexes. From their starting

structure, P311S showed minimum deviation but I64T deviated

maximum over the native structure. In order to evaluate the

conformational fluctuation between native and I64T, and P311S

root mean square fluctuations (RMSFs) was generated from

trajectory analysis obtained by molecular dynamic simulation. The

Figure 2. Superimposed structure of native amino acid proline
in sphere shape (orange color) with mutant amino acid serine
(red color) at position 311 in PDB ID 1DE8 of APE1 gene.
doi:10.1371/journal.pone.0031677.g002

Figure 3. Changes in local environment and polar residue distance of APE1 protein brought about by an I64T mutation. (A) The
native type isoleucine residue (cyan) shows distance with surrounding residues.(B) Substitution of I64 residue to threnioine (red) shows surrounding
residues and polar distance changes.
doi:10.1371/journal.pone.0031677.g003

I64T and P311S Mutations in APE1-DNA Complex
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RMSF value of carbon alpha of each amino acid residue was

calculated from the trajectory data of the native, I64T and P311S

as shown in Figure 6B. The RMSF calculation shows that, in the

entire simulation period native complex residues fluctuate within

the range of ,0.05–0.2 nm. I64T attained maximum level of

fluctuation up to ,0.3 nm in the residue range of ,100–130 and

P311S shows the same level of fluctuation in the residue range of

,260–270. Consistent with the RMSD analysis, RMSF of I64T

and P311S was notably deviated from native structure in the

whole simulation. Deviation in the flexibility of I64T and P311S

mutants are further analyzed by validating the number of

hydrogen bonds formed between APE1 protein and its binding

DNA.

Effect of mutations I64T and P311S in hydrogen bonds,
salt bridges and solvent accessible surface area
Hydrogen bonds are by far the most important specific

interactions in biological recognition processes. Non synonymous

SNPs can affect wild type protein function by affecting hydrogen

bond formation between patterns [34–36]. Figure 7A depicts the

number of hydrogen bonds formed between protein and DNA for

native, I64T and P311S complexes. Native complex exhibited

,2–11 number of hydrogen bonds throughout the simulation

period, while the P311S showed higher number of hydrogen

bonds ,2–10 when compared to I64T complex of ,2–5

hydrogen bonds in the entire simulation. These results infers that

mutation might destroy the ability of hydrogen bond formation

between protein and DNA, and this agreed with the stability of

mutant models observed from RMSD and RMSF analysis. In

additional to MD approach, intra molecular hydrogen bonds were

analyzed using Hydrogen bond Calculation (Ver 1.1) server

[37,38]. GLY71, ARG73, ALA74, LYS98, GLU96, THR97,

GLY127, TYR128, ARG156, TYR171, ASN174, ARG177,

ASN226, ASN229, TYR269, LYS276, TRP280 and ASP 308

were the functional residues of APE1 protein which makes contact

with DNA [3]. Among the 18 functional residues, except ASN174,

ARG177 and ASP308, remaining 15 residues were involved in

hydrogen bond formation with its neighboring residues (Table S1).

It was observed that each hydrogen bond distance, and angle was

changed in I64T and P311S while compare to native protein.

Change in the hydrogen bond distance and angle may affect the

stability of protein. In neutral solution, basic amino acids gain

proton and become positively charged. Interaction between

positive ions in protein and negative ions in DNA form salt

bridge, which is an important stabilizing force. The presence of

salt-bridge is an evidence of close proximity in the structure. Salt

bridge formed between APE1 protein and DNA for all three

trajectories were calculated and shown in Figure 7B. In the range

,0–1.25 nm considerable distance deviation was observed

between I64T and P311S, and shows greatest deviation from

native complex. All three complexes reach the stable distance of

Figure 4. Changes in local environment and polar residue distance of APE1 protein brought about by P311S mutation. (A) The native
type proline residue (cyan) shows distance with surrounding residues. (B) Substitution of P311 residue to serine (red) shows surrounding residues and
polar distance changes.
doi:10.1371/journal.pone.0031677.g004

Figure 5. Co-crystal structure of APE1 protein with DNA and
native amino acid isoleucine and proline at position 64 and
311 respectively.
doi:10.1371/journal.pone.0031677.g005

I64T and P311S Mutations in APE1-DNA Complex
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,1 nm at the range of simulation period,5–8 ns. Up to,5 ns of

simulation clear deviation in distance for I64T and P311S were

observed and from ,5 ns to the end point of simulation period

limited deviation was observed. These results infer that mutation

affects the salt bridge stability between protein and DNA. To

strengthen our molecular dynamics approach, unbound native

and mutant models were further analyzed in ESBRI server [39–

42]. Intra molecular salt bridge analysis shows that among the

eighteen functional residues five residues (ARG73, LYS98,

HIS116, ARG177 and LYS276) were involved in salt bridge

formation (Figure 8). ARG73 forms salt bridge with GLU101,

ARG177 forms salt bridge with GLU96, ASP210 and ASP308,

LYS276 makes salt bridge contact with GLU87, and LYS98 and

HIS116 forms salt bridge with LYS276 respectively. Each contact

distance was calculated and shown in Table 3. It was also noted

that each salt bridge contact distance was changed in I64T and

P311S, when compared to the native protein. From this analysis

we infer that salt bridges are more stable in native state, while in

the mutant state became weak in the presence of mutations.

The solvent accessible surface area (SASA) of a bimolecular is

that, accessible to a solvent and it can be related to the

hydrophobic core. It is typically calculated using the ‘rolling ball’

algorithm [43]. Solvent accessibility was divided predominantly

into buried and exposed region, indicating the least accessibility

and high accessibility of the amino acid residues to the solvent

[44]. Solvent accessible area was calculated for native and mutant

trajectories value and depicted in Figure 9. It is evident that native

and P311S exhibited similar fashion of solvent accessible surface

area ,72–77 nm square on the dynamic period of,0–3 ns, while

I64T displayed solvent accessible area of ,75–82 nm square. In

the rest of the dynamic period of ,3–8 ns, inversely native and

I64T displayed similar fashion of solvent accessible area ,72–

78 nm square. In contrast P311S displayed very low solvent

accessible area of ,67–76 nm square. Increase or decrease in the

solvent accessible surface area indicates the change in exposed

amino acid residues and it could affect the tertiary structure of the

proteins.

Discussion

Owing to the application of high-throughput sequencing

technologies, the number of identified genomic variants especially

SNPs in the human genome is growing rapidly. This has yielded

massive amounts of data on human SNPs, and this information

investigates human complex diseases such as cancer. It has been

estimated that the NCBI contains ,25 million human entries in

the release of build 130 [29]. Between the different classes of SNPs,

nsSNPs plays an important role at both functional and structural

level in the encoded protein to cause disease. Discriminating the

deleterious nsSNPs over neutral ones for specific phenotype by

experimental method is labor intensive. In silico methods especially

can aid in identifying disease-causing mutations by helping in the

selection and prioritization of likely candidates from a pool of data.

Most of the disease causing deleterious nsSNPs may lead to

alterations in the structure, folding, or stability of the protein

product, thereby altering or preventing the function of the protein.

Yue and Moult [45] investigated the effect of nsSNPs on protein

stability, and estimated that approximately 25% of nsSNPs in the

human population might be deleterious to protein function. In

Figure 6. RMSD and RMSF analysis of APE1-DNA complexes. (A) Backbone RMSD of the APE1-DNA complexes. The ordinate is RMSD (nm),
and the abscissa is time (ps). Black, Red and Green lines indicate native, I64T and P311S structures respectively. (B) RMSF of the carbon alpha atoms
over the entire simulation. The ordinate is RMSF (nm), and the abscissa is residues. Black, Red and Green lines indicate native, I64T and P311S
structures respectively.
doi:10.1371/journal.pone.0031677.g006

Table 2. Potential energy of APE1 protein native and mutant
models in bound and unbound states.

rs IDs

APE1 native and

mutant models

Bound state

kJ/mol

Unbound state

kJ/mol

Native 28.87568 25.64950

rs113056798 T313A 28.78562 25.60148

rs61730854 I64T 27.94830 25.55177

rs33956927 G241R 28.39492 25.60224

rs2307486 I64V 28.68980 25.56422

rs1803120 P311S 28.17593 25.61756

rs1803118 A317 V 28.56784 25.56217

rs1130409 D148E 28.63908 25.53928

rs1048945 Q51H 28.25221 25.58748

doi:10.1371/journal.pone.0031677.t002

I64T and P311S Mutations in APE1-DNA Complex
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Figure 7. Inter molecular hydrogen bond and salt bridge formation of APE1-DNA complexes. (A) Number of hydrogen bond formed
between APE1 protein and its binding DNA. Black, Red and Green lines indicate hydrogen bonds of the native, I64T and P311S structures respectively.
(B) Stabilizing salt bridges formed between APE1 protein and DNA. The ordinate is distance (nm) and the abscissa is time (ps). Black, Red and Green
lines indicate native, I64T and P311S complexes respectively.
doi:10.1371/journal.pone.0031677.g007

Figure 8. Functional residues of APE1 protein involved in salt bridge formation (ARG 73, LYS 98, HIS 116, ARG 177 and LYS 276)
were labeled and colored as pink.
doi:10.1371/journal.pone.0031677.g008

I64T and P311S Mutations in APE1-DNA Complex
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another study by Wang and Moult reported that, the vast majority

of the disease associated nsSNPs in their dataset (up to 80%)

resulted in protein destabilization [25]. Several in silico methods

have been developed to predict whether disease-related nsSNPs is

deleterious or benign. Evolutionary information is commonly

considered to be the most important feature for such a prediction

task. In this analysis, we employed four widely-used computational

tools SIFT, PolyPhen, I-Mutant 2.0 and PANTHER for

determining the functional significance of nsSNPs in APE1 gene.

These methods differ in the properties of the variant they take into

account in the prediction, as well as in the nature and possible

training of the classification method used for decision making. All

the variation tolerance methods analyzed in this study follow a

similar procedure in which a missense variant is first labeled with

properties related to the damage it may cause to the protein

structure or function. The basis for predicting the impact of

mutations in these four algorithms are different and we would

expect that the outcomes to be in some ways, dissimilar. However,

the mutations that overlap the four predictions should provide

greatest reliability to behave similarly.

Deleterious nsSNPs can alter normal protein function, by means

of geometric constraint changes [46], hydrophobic changes

[47,48], and disruption of salt bridges or hydrogen bonds

[47,49]. Sunyaev et al. and Chen et al. also indicated that the

residue solvent accessibility, which could identify the buried

residues, was confidently proposed as predictors of deleterious

substitutions [50,51]. Xi et al. and, Yu and Hadi in their analysis

characterized the deleterious nsSNPs in APE1 gene using in silico

tools such as SIFT and PolyPhen [15,16]. Also molecular dynamic

study was carried out by Abyzov et al. to evaluate the interactions

between APE1and pol b protein complexes with DNA molecule

[52]. In this study, we tried to evaluate the deleterious nsSNPs at

structural level in three contexts: (1) identifying deleterious nsSNPs

by both sequence and structure based methods (2) changes in

protein stability by DDG score (3) measuring alterations of protein

3D structure by deleterious nsSNPs by molecular dynamics

approach.

By applying all four in silico tools, we identified two nsSNPs I64T

and P311S as highly deleterious based on the scores. To better

understand how these deleterious nsSNPs affect the structural

behavior of APE1 gene, we incorporated molecular dynamic

approach using GROMACS force field 43a1. On 8ns simulation

trajectory, different parameters were applied to investigate the

molecular behavior of native and mutant (I64T and P311S)

complexes. Structural validations for all three complexes were

done by RMSD and RMSF analysis. RMSD analysis results

inferred that native complex reach final deviations of ,0.2 nm

while the mutant complexes I64T and P311S showed high

deviation value of ,0.25 nm. In RMSF analysis, I64T and P311S

shows maximum fluctuation value of ,0.35 nm on the residue

range of ,110 and ,27 respectively, on other hand native

complex have low fluctuation value ,0.1 nm and ,0.25 nm on

the same residue range. Based on RMSD and RMSF analysis, we

confirmed that I64T and P311S showed different path of deviation

and fluctuation to I64T and P311S complexes, which in turn leads

to conformational change in mutant complexes. Structural

mutations were found to affect buried residues in the protein

core, causing changes in amino acid size, amino acid charge,

hydrogen bonds, salt bridges, S-S bridges [53]. In order to

investigate the effect of structural mutations in functional changes,

electrostatic interaction analyses were performed between protein

and DNA molecules of both native and mutant complexes.

Hydrogen bonds and salt bridges play a central role in protein to

Table 3. Salt bridge distances between positive and negative residues of APE1 protein native and mutant models.

Residue 1 and

its position

Residue 2

and its

position

Native

Distance

(nm)

T313A

Distance

(nm)

I64T

Distance

(nm)

G241R

Distance

(nm)

I64V

Distance

(nm)

P311S

Distance

(nm)

A317V

Distance

(nm)

D148E

Distance

(nm)

Q51H

Distance

(nm)

ARG 73 GLU101 3.87 3.14 3.75 3.17 3.37 3.67 3.37 3.54 3.73

LYS 98 ASP 70 3.15 3.54 3.17 3.51 3.87 3.22 3.55 3.56 3.22

HIS 116 ASP 70 3.24 3.16 3.23 2.55 2.78 2.48 3.45 3.67 2.45

ARG177 GLU 96 2.50 3.22 2.7 3.49 3.87 2.79 3.57 3.23 3.58

ARG177 ASP 210 3.87 3.43 3.85 3.56 3.65 3.83 3.17 3.67 3.90

ARG177 ASP 308 3.83 3.78 3.88 3.65 3.78 3.9 3.88 3.23 3.78

LYS276 GLU 87 2.47 3.18 2.44 2.45 2.54 3.19 3.56 3.67 3.67

doi:10.1371/journal.pone.0031677.t003

Figure 9. Solvent accessible surface area (SASA) of APE1
protein. Black, Red and Green lines indicate SASA of the native, I64T
and P311S structures respectively. The ordinate is area (nm square) and
the abscissa is time (ps).
doi:10.1371/journal.pone.0031677.g009

I64T and P311S Mutations in APE1-DNA Complex

PLoS ONE | www.plosone.org 8 February 2012 | Volume 7 | Issue 2 | e31677



make stable contact with its binding target. In addition, as early

studies have shown, protein active sites often provide electrostatic

complementarity to the charge distribution of the binding

substrates [54–57]. Taken together, mutation may change the

electrostatic states and affect the binding interfaces tend to form

more or less hydrogen bonds and salt bridges than native protein.

Accordingly in average 3, 8 and 11 numbers of hydrogen bonds

were observed between APE1 and its binding DNA in I64T,

P311S and native complexes respectively. The mean number of

total H-bonds during the entire simulation differs drastically

between the native and mutant models. Since the difference is

great, the reduced number of H-bonds may affect the binding

stability. In salt bridge analysis it was observed that different

pattern of distance maintained by I64T and P311S complexes.

Even though the mutated proteins maintain salt bridge distance

#4.0 Å with DNA, they show different pattern of distance while

compared to the distance maintained by native protein. It reflects

that the modification occurred in the cationic side chains residues

of mutant proteins. In both hydrogen bond and salt bridge analysis

of unbound protein, bonding distance changes was observed.

These changes in distance have been shown to cause loss of

thermodynamic stability as well as aberrant folding and aggrega-

tion of the protein [53]. These changes may modify APE1

structure which leads to affect the binding facility of APE1 protein.

Furthermore in SASA analysis, it was found that with respect to

native, unequal area of solvent accessible surface observed in two

mutant modeled proteins. P311S show very less and I64T show

intermediate accessible area while compared to native protein.

Less the accessible area decrease the probability of interaction with

molecules. Thus SASA analysis elucidates that presence of

deleterious mutations in APE1 residues results changes in

hydrophilic area of mutant proteins. From our simulation analysis

we reported that the predicted deleterious nsSNPs (I64T and

P311S) in APE1 gene could affect APE1 protein natural behavior

which may be used as suitable bio markers for detecting people at

risk for certain diseases.

Materials and Methods

Dataset
The protein sequence for APE1 gene was obtained from

SWISS-Prot database [31]. The SNPs and their relevant

information of APE1 gene were retrieved from National Centre

for Biotechnology Information (NCBI) database [29] and the 3D

structure of APE1-DNA complex was obtained from PDB

database [58].

Prediction of deleterious variants
Each nucleotide substitution has the potential to affect protein

function. We used two diverse approaches, Empirical and Support

Vector Machine (SVM) to determine functional SNPs in APE1

gene. Sequence (SIFT, PANTHER) and structure based methods

(PolyPhen, I-Mutant 2.0) are the most common approaches used

in SNP prediction tools. SIFT, PANTHER and I-mutant give

results in two prediction categories-tolerated or deleterious effects,

while PolyPhen gives results in three categories-benign (probably

lacking any phenotypic effect), possibly damaging, and probably

damaging (should affect protein function). Sequence-based

prediction includes all types of effect at the protein sequence level

and can be applied to any human protein with known relatives.

Structure-based approach is feasible to implement for the proteins

with 3D structures. Tools that integrate both sequence and

structure information have the added advantage of being able to

assess the reliability of the generated prediction results by cross-

referencing the results from both approaches. Tools that combine

these approaches use different algorithms and methodologies for

prediction, thereby having a wider cover-age of the different

aspects of SNP analysis. SIFT predicts whether an amino acid

substitution affects protein function based on sequence homology

and the physical properties of amino acids [21]. SIFT score #0.05

indicates the amino acid substitution is intolerant or deleterious,

where as score $0.05 is predicted to be tolerant [59,60].

PANTHER estimates the likelihood of a particular nsSNP causing

a functional impact on the protein [22]. PANTHER uses HMM-

based statistical modeling methods and multiple sequence

alignments to perform evolutionary analysis of coding nsSNPs.

PANTHER subPSEC scores vary from 0 (neutral) to about 210

(most likely to be deleterious). Protein sequences having subPSEC

value#23 is said to be deleterious. PolyPhen uses sequence,

phylogenetic and structural information in characterizing the

deleterious substitution. A PSIC score difference of 1.5 and above

is considered to be damaging. I-Mutant 2.0 [23] is a SVM-based

method for the automatic prediction of protein stability changes

upon single point mutations. The output file shows the predicted

free energy change (DDG) which is calculated from the unfolding

Gibbs free energy change of the mutated protein minus the

unfolding free energy value of the native protein (Kcal/mol).

DDG.0 means that the mutated protein has high stability and

vice versa.

Molecular Dynamics Simulation protocol
Molecular mechanics potential energy minimization and MD

simulations were carried out using the program package

GROMACS 4.0.5 [61], [62]. Force field GROMOS96 [63]

43a1 was used in all MD simulations. GROMACS have the

limitation to parameterize heteroatom group in PDB file. To

include heteroatom’s, topology file was prepared by using

PRODRG [64] server. Energy minimized structures of native

APE1-DNA complex and two mutants were used as a starting

point for MD simulations. The Protein-DNA complex was

solvated in a cubic 0.9 nm of simple point charge (SPC) water

molecules [65]. A periodic boundary condition was applied that

the number of particles, pressure, and temperature was kept

constant in the system. The system was neutralized by adding

chlorine ions around the molecule. In this step one Cl2 ion was

added to both native and mutant structures. It results in

substitution of random water molecule with one chlorine ion in

order to obtain neutralized system. The temperature was kept

constant by using Berendsen thermostat [66] with a coupling time

of 0.2 ps. All Protein-DNA complex atoms were at a distance

equal to 1.0 nm from the box edges. The minimized system was

equilibrated for 1000 ps each at 300 K by position restrained

molecular dynamics simulation in order to soak the water

molecules in to the macromolecules. The equilibrated systems

were then subjected to molecular dynamics simulations for 8 ns

each at 300 K. In all simulations, the temperature was kept

constant at 300 K. The particle mesh Ewald method [67] was

used to treat long-range Coulombic interactions and the

simulations performed using the SANDER module [68]. SHAKE

algorithm was used to constrain bond lengths involving hydro-

gen’s, permitting a time step of 2 fs. Van der Waals force was

maintained at 1.4 nm and coulomb interactions were truncated at

0.9 nm.

Trajectory Analysis
The trajectory files were analyzed through g_rmsd and g_rmsf

GROMACS utilities in order to obtain the root-mean-square

deviation (RMSD) and root-mean square fluctuation (RMSF)
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values. Number of distinct hydrogen bonds formed between

protein and DNA during these simulations were calculated using

g_hbond utility. Number of hydrogen bonds determined on the

basis of donor-acceptor distance smaller than 3.9 nm and of

donor-hydrogen-acceptor angle larger than 90 nm [69]. Intra

molecular hydrogen bond distance and angle was calculated by

‘‘Hydrogen Bond Calculation’’ server. Salt bridge formed between

protein, and DNA was analyzed by using g_salt GROMACS

utility and intrarmolecular salt bridge analysis was performed by

ESBRI (Evaluating the Salt BRIdges in protein) server [37–40]. If

the distance is #4.0 nm the pair is counted as a salt bridge [70].

Further, SASA calculated by g_sas utility. In order to generate the

3D backbone RMSD, RMSF of carbon-alpha, hydrogen bonds,

salt bridges, SASA analysis and motion projection of the protein in

phase space of the systems were plotted for all three simulations

using the GRaphing, Advanced Computation and Exploration

(GRACE) program.

Supporting Information

Table S1 Summary of intra-molecular hydrogen bonds

formation in native and mutant models of APE1 protein.
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