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ABSTRACT

The aim of this research work is to determine the mechanical, morphological and thermal
properties of spherical silica (silica-A), amorphous silica (silica-B) and Roselle fiber (RF) rein-
forced polyurethane (PU) hybrid nanocomposites. The PU nanocomposites were fabricated
with different weight percentages, 0.50 to 1wt% for silica-A and silica-B, while 1-2 wt% for
RF. These experiments were systematically designed and analyzed by response surface meth-
odology in a central composite design approach. As per the design of the experiments, the
hybrid PU nanocomposites were prepared by using a one shot process. The mathematical
models developed to predict the results obtained were in good coherence with the experi-
mental results, and were within 95% confidence levels for tensile and flexural strength.
The optimum weight percentage of Roselle, silica-A and silica-B were 2, 0.78 and 1%,
respectively. The optimized environmentally friendly hybrid nanocomposite demonstrated
exceptional mechanical and thermal properties.
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1. Introduction . . .
used as a reinforcement phase in polymer matrix

composites in automobile, building construction,
furniture, infrastructure and packaging industries

At the present time, there is an emergence of
natural fiber composites, which possess a huge

potential to cater to the versatile expectations of
manufacturers. Natural fiber composites will play an
important and integral role in the key revolution in
industrialization, which accommodates features,
such as high design freedom, ease of manufacturing,
economic viability, and the conversion of waste
products to useful products [1-5]. Natural fibers,
such as cotton, flax, Roselle, kenaf, hemp, sisal,
ramie, coconut coir, banana, sugar palm and jute
are abundantly available in Asian countries such as
China, Japan, India, Malaysia, Nepal, Philippines,
Sri Lanka, and Thailand [6-9]. Natural fibers are

[10, 11]. Growing environmental awareness moti-
vates the development of these eco-friendly natural
fiber composites [12]. Meipo et al. (2012) insisted
on reducing carbon footprints and the use of non-
naturally degraded solid wastes, which has increased
the use of natural materials, biodegradable and
recyclable polymers, and their composites for a wide
range of applications. Natural fibers offer advantages
over synthetic fibers, such as high strength, biocom-
patibility, renewability, low density, high stiffness and
lower fabrication costs [13, 14]. A number of natural
fiber reinforced polymer composites have previously
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been developed [15-18] with the intention of sub-
stantially enhancing their mechanical and thermal
properties. Roselle fiber (RFs) is a type of natural
fiber that has drawn the attention of researchers, due
to its good tensile properties, durability, resistance to
sea water, inflexibility and coarseness [1, 19].

Polyurethane (PU) was initially developed by
Otto Bayer in 1937, and is often described as
‘bridging the gap between rubber and plastic materi-
als’. The essential substances required to fabricate
PU foam are polyol and isocyanate [20]. PU
includes organic units bonded by urethane linkages.
PU foam has wide applications in daily life ranging
from automobiles, construction building materials,
furniture and bedding, due to its unique physical
and mechanical properties, and good solvent resist-
ance that covers almost 29% of the material market
[21, 22]. This makes PU a good selection of matrix
material for a hybrid polymer composite [23].

Polyurethane composites (PUC) offer admirable
properties such as abrasion resistance, damping abil-
ity, high flexibility, low density, high elongation at
breaking point, good weathering resistance and
weathering durability, anti-aging, high impact
strength, biostability and low temperature flexibility
[24-30]. PUCs do have some drawbacks, such as
high flammability, poor adhesion to metal surfaces,
and poor tensile strength and thermal stability in
high temperature applications. PUC also has poor
electrical and thermal conductivity [25, 26]. The
limitations of PUC composites have been compen-
sated by introducing nanoparticles and natural fibers
into PU to produce hybrid nanocomposites.

Carbon nanotubes (CNTs) are interesting filler
materials for polymer matrix composites as their
good chemical and physical properties allow the
development of high efficiency composites [31]. The
introduction of Multi Walled Carbon Nanotubes
(MWCNTs) in PU foam at up to 0.5 wt% enhanced
the mechanical properties of PUC [32, 33]. Most of
the researchers extensively investigated the effects of
addition of CNTs to PU foam composites [34, 35].
Lee et al investigated the addition of silica nanopar-
ticles up to 1 wt%, and found that they slightly
enhanced the mechanical properties. The addition of
nano-silica improved the composite mechanical and
thermal properties, such as hardness, tensile
strength, elastic modulus, yield strength, toughness,
and thermal stability [36]. Recent studies report that
the combination of two different nanoparticles as
fillers leads to the production of good properties
due to synergistic effects between the fillers
[26,37,38]. Rahmanianm et al. investigated the effect
of hybrid fillers such as CNT and silica particles in
epoxy resin. The epoxy resin nanocomposites pos-
sessed higher strength, modulus and good thermal

conductivity [39]. Navidfar et al. investigated the
addition of 0.25 wt% of silica-A, silica-B and
MWCNTs to enhance the tensile and
strength, and calculated that the addition of nano-

impact

particles above 0.25 wt% decreases these values due
to agglomeration effects [40]. The optimized mech-
anical and thermal properties of PU based compo-
sites can be used for various applications including
hydrogen storage, super capacitors, biosensors, elec-
tromechanical actuators, solar cells, aerospace shut-
tle parts, aeronautical parts, photovoltaic devices,
cardiac assist pumps, blood bags, coatings, wind tur-
bine blades, body armour, car parts, semiconductors,
and sports equipment [41-48]. PUs hold the sixth
position worldwide for plastic sales, with a produc-
tion of 17 billion tons per year [49].

From the literature review, it can be concluded
that the selection of right type of nanofiber is key to
influencing the properties of the PU matrix. The
goal of this research work is to investigate the
mechanical and thermal properties resulting from
the addition of spherical silica (silica-A), amorphous
silica (silica-B) nanoparticles, and RF to PU foam
to create hybrid nanocomposites. This combination
is to produce new ideas and innovations to the
composite world.

2. Methodology
2.1. Materials

Polyurethane foams were produced using polyol and
isocyanate with a ratio of 1:1 at room temperature.
Polyol and isocyanate were supplied by GSRR
Resins and Polymers, Madurai. Roselle fiber was
used as one of the reinforcement material in this
work. It was procured from M/s The Counts,
Coimbatore, India as powder particles. Silica-A and
silica-B nanoparticles were supplied by Astrra chem-
icals, Chennai, India. Before sample preparation, the
fibers and nanoparticles were placed in oven for 2
hours at 50 °C and allowed to dry. Details of the
fibers are listed in Table 1.

2.2. Response surface methodology

The hybrid foam nanocomposite was prepared
according to the experimental design. It was
designed, analyzed and calculated using Design
Expert software via response surface methodology
(RSM) with three input parameters; Rosselle (wt%),
silica-A (wt%) and silica-B (wt%), and the output
responses were tensile and flexural properties. Table
2 shows the range of variables from low (—1) to
high (+1). The experiment consisted of 20 runs
with 6 central points. Statistical analysis of the



process was performed to evaluate the analysis of
variance (ANOVA).

2.3. Nanocomposite preparation

The experiments were designed based on RSM of
Central Composite Design (CCD) using Design
Expert. Hybrid PU nanocomposites were prepared
by using a one shot process. Filler materials, such as
Roselle, silica-A and silica-B, were mixed at various
weight percentages (Table 3) with polyol for about
10 minutes using overhead stirrer at speeds of
100-1000 rpm. Later, isocyanate was added to the
previously prepared mixture at a ratio of 1:1 for 1
minute, and then the mixture was poured into a
mould with dimensions of 200 x 2000 x 50 mm’
to form a free rise in PU foam. The same procedure

Table 1. Levels of produced nanocomposites.

Nano particles Level —1 Level 0 Level +1
Roselle (wt%) 1.0 1.5 2.0
Silica A (wt%) 0.5 0.75 1.0
Silica B (wt%) 0.5 0.75 1.0

Table 2. Design of experiments for different weight
percentage.
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was repeated with different weight percentages of
nanofibers as shown in Figure 1. Twenty types of
PU foams reinforced with various weight percen-
tages of Roselle and silica nanoparticles were studied
as detailed in Table 3.

2.4. Characterization

Tensile testing, as shown in Figure 2, was conducted
according to ASTM D-638 using a Universal Testing
Machine (INSTRON 8801) at a temperature of 24 +
1 °C, and a relative humidity of 52 + 5%. Twenty
dumbbell shaped samples were cut according to
ASTM dimensions (150 x 25 x 10 mm®) and were
tested. Measurements were taken at a crosshead
speed of 2 mm/min.

Flexural, or three point bending as shown in Figure
3, testing was conducted according to ASTM D-790
using a Universal Testing Machine (INSTRON 8801)
at room temperature, and a relative humidity of 52 +
5%, and the crosshead speed was maintained at 2 mm/
min. Twenty cuboid shaped samples were cut

Table 3. RSM experimental designs (L20) and results.

Roselle Silica-A Silica-B Tensile Flexural
Specimen Roselle (wt%) Silica-A (wt%) Silica-B (wt%) Specimen (Wt%) (Wt%) (Wt%) (MPa) (MPa)
1 1.50 0.50 0.75 1 1.5 0.5 0.75 8.9 6.8
2 1.00 1.00 0.50 2 1.0 1.0 0.5 9.5 7.6
3 1.50 0.75 0.50 3 1.5 0.75 0.5 11.0 7.0
4 1.50 0.75 0.75 4 1.5 0.75 0.75 10.5 7.2
5 2.00 0.50 0.50 5 2.0 0.5 0.5 11.5 7.6
6 2.00 0.75 0.75 6 2.0 0.75 0.75 1.8 8.2
7 1.50 0.75 0.75 7 1.5 0.75 0.75 10.0 7.9
8 1.50 0.75 0.75 8 1.5 0.75 0.75 10.2 7.0
9 1.00 1.00 1.00 9 1.0 1.0 1.0 9.5 8.9
10 1.50 0.75 0.75 10 1.5 0.75 0.75 8.8 7.6
1 1.50 1.00 0.75 1 1.5 1.0 0.75 9.5 6.6
12 1.00 0.50 0.50 12 1.0 0.5 0.5 13.0 8.0
13 2.00 1.00 0.50 13 2.0 1.0 0.5 9.4 7.7
14 1.00 0.50 1.00 14 1.0 0.5 1.0 9.8 8.7
15 2.00 1.00 1.00 15 2.0 1.0 1.0 11.2 7.9
16 1.50 0.75 0.75 16 1.5 0.75 0.75 9.3 7.0
17 1.00 0.75 0.75 17 1.0 0.75 0.75 10.5 8.2
18 1.50 0.75 0.75 18 1.5 0.75 0.75 2.9 7.2
19 1.50 0.75 1.00 19 1.5 0.75 1.0 12.2 8.5
20 2.00 0.50 1.00 20 2.0 0.5 1.0 11.6 7.5
Polyol \’ Isocyanate '
Silica A Silica B Roselle )
Hed W\
S+ +
/'.'-‘ . Hybrid Nano
Composite
(L — o e l
Mix for 10 min Mix for a min & Poured
Fiber Mold

Figure 1. Nanocomposite fabrication steps.
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Figure 2. Tensile test specimen.

Figure 3. Flexural test specimen.

Table 4. Predicted value vs. actual value for tensile strength.

Run Actual Value of Tensile strength Predicted Value of Tensile strength Residual Leverage
1 8.9 9.4 —-0.5 0.491
2 9.5 9.8 -03 0.793
3 11.0 1.2 —0.2 0.491
4 10.5 10.0 0.5 0.118
5 1.5 15 0.0 0.793
6 11.8 1.1 0.7 0.491
7 10.0 10.0 -0.0 0.118
8 10.2 10.0 0.2 0.118
9 9.5 9.7 —0.2 0.793
10 8.8 10.0 -1.2 0.118
" 9.5 8.3 1.2 0.491
12 13.0 125 0.5 0.793
13 9.4 9.4 0.0 0.793
14 9.8 9.9 —-0.1 0.793
15 1.2 11.9 -0.7 0.793
16 9.3 10.0 -07 0.118
17 10.5 10.5 0.0 0.491
18 9.9 10.0 —-0.1 0.118
19 12.2 1.2 1.0 0.491

20 11.6 115 0.1 0.793




according to ASTM dimensions (100 x 25 x 20 mm®)
and were tested.

The morphology of the tensile fractured samples
was examined under a Scanning Electron Microscope
(SEM) model Hitachi S-3400N. Analyses were per-
formed under an accelerating voltage of 15 kV.

3. Results and discussion

Design expert software was used to analyze and
develop the mathematical models for tensile strength

NANOCOMPOSITES (&) 5

and flexural strength using the input parameters
and output responses from the RSM experimental
design (Table 4). A fit summary of the fit analysis
found that a quadratic model was statistically sig-
nificant for all the output responses, and so the
same model has been used in the present study.

3.1. Tensile properties

The main effects of roselle, silica-A, and silica-B on
the tensile strength of PU foam are shown in

12.125

125

10.375

Tensile

957

0.88

B: silica A

e P T o AT
TR R
25
s

-

S O A
AR

Co e
..;-::.:...

200
175

A: roselle

Figure 4. Effect of roselle and silica-A on tensile strength.

Tensile

C: SILICAB

B: silica A

Figure 5. Effect of silica-A and Silica-B on tensile strength.

Tensile

0.88

C: SILICAB

A: roselle

Figure 6. Effect of roselle and silica-B on tensile strength.
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Figures 4, 5 and 6. Figure 4 shows the effect of rose-
lle and silica-A on tensile strength. From Figure 4,
as the weight percentage of RF increases up to 1%,
tensile strength values increased slightly, and with
further increases in the weight percentage of Roselle
fiber, the tensile strength values also increased, with
a maximum tensile strength value observed at 12.1
MPa. The tensile strength values increased with the
addition of silica-A (spherical silica) up to 0.75
(wt%). Further increasing the weight percentage of
silica-A caused the tensile strength to decrease. The
same effect was observed in Figures 5 and 6, for sil-
ica-B (amorphous). After increasing the weight per-
centage of silica-B, tensile strength values increased
to a maximum value of 11.5 MPa.

Tensile = 430.35357 — 13.17209%R + 17.23182%SA

—44.04018+SB + 1.25000%R+SA + 5.17000+R*SB

+10.10000%xSA* SB + 2.99636+R2 — 19.29455%SA2

+ 19.10545%SB2 (1)

Where R-roselle, SA-silica-A, SB-silica-B

Using Design-Expert it was possible to analyze
the main effects of Roselle, silica-A and silica-B on
tensile strength. The quadratic model represented by
Equation 1 was obtained using the CCD.

Table 5 shows the actual test results and pre-
dicted results from the RSM developed models for
tensile strength. From Table 5, it was observed
that both the actual test results and the RSM pre-
dicted results were in good agreement for all the
responses. The maximum percentage error found
between the actual and predicted values for tensile
strength was below 5%. This indicated that the
quadratic equation was adequate and accurate to
predict the respective results. Figure 7 shows the

Table 5. Predicted value vs. actual value for flexural strength.

Run Actual value for flexural strength Predicted value for flexural strength Residual Leverage
1 6.8 6.7 0.1 0.491
2 7.6 74 0.2 0.793
3 7.0 7.4 —-04 0.491
4 7.2 73 —-0.1 0.118
5 7.6 7.6 0.0 0.793
6 8.2 8.0 0.2 0.491
7 7.9 7.3 0.6 0.118
8 7.0 73 —0.3 0.118
9 8.9 8.8 0.1 0.793
10 7.6 73 0.3 0.118
" 6.6 6.7 —0.1 0.491
12 8.0 79 0.1 0.793
13 7.7 7.6 0.1 0.793
14 8.7 8.8 —-0.1 0.793
15 7.9 8.1 —-0.2 0.793
16 7.0 73 —0.3 0.118
17 8.2 8.4 —-0.2 0.491
18 7.2 7.3 —0.1 0.118
19 85 8.1 0.4 0.491
20 7.5 7.6 —-0.1 0.793

Design-Expent® Software
Tensile

Predicted vs. Actual

13.00 —
Color points by value of
Tensile:

Iﬂ
8.78

11.80 —

10,60 —

Pradirtar

940 —

8.20 —|

8.26 9.44

| | I
1063 11.81 13.00

Actual

Figure 7. Predicted vs. Actual Tensile Strength.
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Figure 9. The effect of silica-A and silica-B on flexural strength.

8.05

flexural

6.9

1.00

C: SILICAB

200

050 1.00

Figure 10. The effect of roselle and silica-B on flexural strength.

comparison of the actual and predicted values of
tensile strength.

3.2. Flexural properties

The major effects of Roselle, silica-A and silica-B on
flexural strength of PU foam are shown in Figures
8, 9 and 10. Figure 8 shows the effect of Roselle,

and silica-A on flexural strength. From this figure, it
was observed that the increase in weight percentage
of RF did not influence flexural strength, but
increasing the weight percentage of silica-A
increased the flexural strength value up to 8.9 MPa.
The addition of silica-B nanoparticles to PU foam

caused the flexural strength value to increase rapidly
as shown in Figure 10.
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Flexural

—7.45364*SB + 0.79000%R+SA

12.71761 — 10.23482+R + 13.08636*SA The empirical relationship between Roselle, silica-

A and silica-B in terms of flexural strength is

— 1.89000% R+SB described by Equation 2.

Table 6 shows the actual test results and pre-

+ 1.74000+SA+SB + 3.52727+R2 — 10.37091%SA2 dicted results from the RSM developed models for

+ 6.90909+SB2

) flexural strength. From Table 6, it was observed that
both the actual test results and the RSM predicted

Where R-Roselle, SA-silica-A, SB-silica-B results showed good agreement for all the responses.

Table 6. ANOVA for tensile strength.

Source Sum of squares df mean Square F value p-value Prob > F

Model 19.43 9 2.16 3.27 0.0396 Significant
A-roselle 1.00 1 1.00 1.51 0.2472

B-silica A 3.19 1 3.19 4.83 0.0527

C-silica B 1.69E—03 1 1.69E—03 2.56E—03 0.9607

AB 0.20 1 0.20 0.30 0.5987

AC 3.34 1 3.34 5.05 0.0483

BC 3.19 1 3.19 4.82 0.0528

Ao2 1.54 1 1.54 233 0.1576

Bo2 4.00 1 4.00 6.05 0.0337

Co2 3.92 1 3.92 593 0.0351

Residual 6.61 10 0.66

Lack of fit 4.65 5 0.93 237 0.1826 Not significant
Pure error 1.96 5 0.39

Cor total 26.04 19

Design-Expert® Software

Color points by value of

Predicted vs. Actual

Pradirtad

6.58 715 7.7 828 885

Actual

Figure 11. Predicted vs. Actual flexural strength value.

Table 7. ANOVA for flexural strength.

Source Sum of Squares df Mean square F value p-value Prob > F

Model 6.48 9 0.72 5.65 0.0061 Significant
A-roselle 0.57 1 0.57 4.49 0.0602

B-silica A 2.50E—04 1 2.50E—04 1.96E—03 0.9655

C-silica B 1.19 1 1.19 9.35 0.0121

AB 0.08 1 0.08 0.61 0.4518

AC 0.45 1 0.45 3.51 0.0906

BC 0.10 1 0.10 0.74 0.4088

Ao2 2.14 1 2.14 16.8 0.0021

Bo2 1.16 1 1.16 9.08 0.0131

Co2 0.51 1 0.51 4.03 0.0725

Residual 1.27 10 0.13

Lack of fit 0.58 5 0.12 0.83 0.5798 Not significant
Pure error 0.70 5 0.14

Cor total 7.75 19
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Table 8. Optimum weight percentage of roselle, silica-A and silica-B.

No. Roselle (wt%) Silica-A (wt%)

Silica-B (wt%)

Tensile (MPa) Flexural (MPa) Desirability

1 2.0 0.8 1.0

129 8.5 0917

Figure 12. SEM image of the nanocomposites (PU with
2 wt% roselle 4+ 0.8 wt% silica-A + 1 wt% silica-B).

The maximum percentage error found between the
actual and predicted values for flexural strength was
below 5%. This indicated that the quadratic equa-
tion was adequate and accurate to predict the
respective results. Figure 11 shows the comparison
of the actual and predicted values of flex-
ural strength.

The reliability of the suggested model was eval-
uated using analysis of variance (ANOVA) [31, 48].
The mathematical model was established to be sig-
nificant, with p-values of 0.0396 and 0.0061 for ten-
sile strength and flexural strength respectively
(Tables 7 and 8). This indicates that the model is a
statistically significant fit to the experimental values.
From the variance analysis, the mathematical mod-
els showed 74.6 and 83.6% adequacy (R-Squared
value) for tensile strength and flexural strength val-
ues. Results showed that the quadratic models can
be used to predict the results within a 95% confi-
dence level.

The morphology of the hybrid PU foam nano-
composites with different weight percentages of
nanoparticles was captured by SEM, and is shown
in Figure 12. From this figure, the cell shape was a
polyhedral, spherical shape, and also the cell edges
are sharply visible. The additions of filler materials
made a less uniform and uneven cell structure. The
optimum weight percentage shows the good inter-
facial adhesion between the fiber and matrix phases.

4, Conclusion

The developed hybrid PU foam may act as a
sustainable alternative to conventional PU foams.
These types of hybrid nanocomposites are low cost
and biodegradable. Moreover, the hybrid nanocom-
posite PU foams possess significant differences in
physical and mechanical properties compared to
pure PU foams. The analysis of the effects each

input parameter silica-A (wt%), silica-B (wt%) and
RF (wt%) on tensile strength and flexural strength
was investigated in detail. The influential parameters
were identified and their levels were fixed.
Experiments were conducted and a regression equa-
tion was proposed for tensile strength and flexural
strength. ANOVA showed that the model was statis-
tically a reasonably good predictor of tensile and
flexural strength. Through confirmatory experi-
ments, it was seen that the error between predic-
tions and actual values fell within 5%. Thus the
model can be effectively used to predict the mech-
anical properties of hybrid PU foam composites.
This research indicated that the manufacturing of
hybrid nanocomposites with different nanoparticles
can lead to synergistic effects, compared to single
nanoparticles. Conversely, after reaching an opti-
mum level, further addition of nanoparticles into
the polymer matrix markedly reduced the mechan-
ical properties, due to filler agglomerations in the
PU foam hybrid nanocomposites. The optimum
weight percentages of Roselle, silica-A and silica-B
are 2, 0.8 and 1, respectively. These results were
verified through mechanical characterization and
statistical comparison using RSM.
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