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Abstract: The Internet of Things (IoT) is a distributed system that connects everything via internet.
IoT infrastructure contains multiple resources and gateways. In such a system, the problem of
optimizing IoT resource allocation and scheduling (IRAS) is vital, because resource allocation (RA)
and scheduling deals with the mapping between recourses and gateways and is also responsible
for optimally allocating resources to available gateways. In the IoT environment, a gateway may
face hundreds of resources to connect. Therefore, manual resource allocation and scheduling is not
possible. In this paper, the whale optimization algorithm (WOA) is used to solve the RA problem
in IoT with the aim of optimal RA and reducing the total communication cost between resources
and gateways. The proposed algorithm has been compared to the other existing algorithms. Results
indicate the proper performance of the proposed algorithm. Based on various benchmarks, the
proposed method, in terms of “total communication cost”, is better than other ones.

Keywords: internet of things; resource allocation problem; whale optimization algorithm;
communication cost

1. Introduction

Today’s world is at the beginning of the period of communication and universal processing.
In this period, society is guided towards the always connected pattern. With the introduction of new
technologies, the coverage of networks has been widened and the number of smart objects that are
connected to the network has also been increased. A new pattern called the Internet of Things (IoT)
increases the amount of information generated on the Internet through connecting people and smart
objects. Thus, the IoT creates new challenges by connecting things and humans that we may face at
any time and place [1].

The new generation of IoT has been created to achieve quality of service (QoS). Bandwidth is
the most important source in the IoT environment, and its management is necessary for higher QoS.
Moreover, the demand for multimedia services in the IoT environment has been increased dramatically.
Different services provided in the IoT environment have different features and require different QoS
methods [2,3]. The idea behind the IoT is to connect everything to each other through the internet [4,5].
It seems that there will be many applications in the future, and one of them is the smart city [5–8]. The
use of the IoT will be seen everywhere, in food, clothing, housekeeping, transportation, education,
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entertainment, and so on. For example, monitoring the urban traffic situation and choosing the right
strategy to control traffic lights represents one of the most well-known uses of the IoT [9]. Since IoT is
used in many areas, many researchers have entered this field. Regardless of the type of research on the
IoT, the main purpose is to improve human life. The first studies on the IoT are referred to Ashton’s
paper [10]. Other papers have worked on sensor design, home health systems, smart grid systems,
and so on, which are somehow associated with IoT [11–13].

To understand the importance of IoT, it should be mentioned that, according to the estimates,
the number of connected devices in the IoT will reach 16 billion by 2021, and this industry will create a
market of $900 billion by 2022 in America [14,15]. Although these values are just a prediction of the
future of the IoT, what will undoubtedly occur is the expansion of the market and IoT in future decades.

The development and advancement of the IoT is not only focused on the development of hardware.
Instead, a lot of work has been done to improve the efficiency of these systems. Many of these researches
are trying to improve the efficiency of IoT-based systems by providing software methods. One of these
problems is the IoT resource allocation problem (IRAP). This focuses on reducing the communication
cost of IoT nodes. By reducing the communication cost in IoT, the efficiency of all related systems,
such as RFID (or Radio Frequency Identification) and 5th generation wireless communications (5G),
will increase. There are two types of nodes in each IoT system. The first type of node is the resource
node. Each resource node is responsible for sensing the environment and sending data to other
parts of the system. An IoT system has a lot of resource nodes that will enable it to monitor the
whole environment. The second type of node in the system is the gateway node. A gateway node is
responsible for directing traffic toward different resource nodes. In other words, a gateway node acts
like a bridge for connecting resource nodes. An IoT system uses a limited number of gateways in order
to connect resources. In such a system, the problem is which group of resources should be connected
to each particular gateway in order to reduce the whole communication cost.

In an optimal solution, resources that pass many messages would be assigned to a single gateway.
By means of this assignment, traffic between resources would not cause traffic between gateways.
In other words, most of the traffic could be controlled by a single gateway. If we have a huge amount
of traffic between gateways, there will be a bottleneck in gateway level communication [16–20].

In recent years, evolutionary algorithms have been widely used for solving optimization problems.
These algorithms, by inspiration from nature or a physical phenomenon, attempt to optimize the
solution of hard problems. Evolutionary algorithms are used for problems for which there are no
solutions in polynomial time. Using good heuristic functions makes the evolutionary algorithm
converge to the final solution at an acceptable time [21].

This paper focuses on solving the IRAP problem. In other words, the ultimate goal of this study is
to achieve an optimal allocation pattern by providing a new method for solving the IRAP problem and
a robust and new evolutionary algorithm called the whale optimization algorithm (WOA) has been
used to solve the problem. The whale algorithm was proposed by Mirjalili in 2016, and is inspired by
the collective whale hunting method [22–24].

The structure of the paper is organized as follows: Section 2 describes the related works. The
WOA is explained in Section 3. The proposed algorithm is introduced in Section 4. Simulation results
and conclusions are presented in Sections 5 and 6 respectively.

2. Related Work

In recent years, many works have been done on binding physical resources to services in the IoT
environment and other pervasive processing environments. In these environments, a physical resource
called a smart object is selected to run a service. A number of articles focus on discovering a service
based on resources and providing them to users. However, these articles do not work on resource
allocation (RA) because resources and services are directly connected [25,26]. In this section, some
papers devoted to RA are reviewed. The most important reviewed papers have been listed in Table 1.
These papers can be divided into two categories. The first one is based on deterministic algorithms.
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These methods are old and not widely used todays. The second one is based on heuristic and
evolutionary algorithms and are widely used today. In the following, we investigate them separately.

2.1. Methods Based on Deterministic Algorithms

Most RA papers in the IoT field focus on NP-hard problems. One of the old methods to solve
this problem is deterministic algorithms. In these algorithms, a set of rules is designed for recourse
allocation. These rules should balance between efficiency and effectiveness. Searching in the whole
solution space requires a lot of time, on the other hand, less searches will cause poor resource allocation.
The main advantage of the deterministic algorithms is the simplicity of their implementation [27,28].

In some papers, a comprehensive approach is provided which performs RA by resource
management module in the middleware layer. In these methods, a centralized architecture is
used which is not appropriate for the distributed structure of the IoT. It is also assumed that there is a
static and reliable relationship between resources. Therefore, no attempt has been made to reduce the
amount of data sent on the network [29,30]. In other research, authors have proposed a rule-based
approach, in which some rules are designed for the size of the service, the completion time of tasks, and
the capacity of the Virtual Machine (VM). The capacity of the VM is assigned to IoT services according
to the designed rules [31]. Also, in one research two deterministic algorithms are proposed, each of
them perform the RA according to a specific rule. In the first method, the average cost of each source is
calculated and assigned to the most demanded service. In the second method, the most demanded
resource is assigned randomly [32].

In some papers, game theory has been used for RA. For example, in [33], a game theory-based
approach is proposed for tool-to-tool communication. This connection is created in a cloud-centered
IoT environment. In this method, a response function is designed for RA. This function is designed
such a way that increases the total profitability of the RA method. Kim et al. proposed another
game-based approach to manage RA in the IoT. In this method, RA is done in such a way as to increase
the total profit of the system [34].

The main problem of these methods is computational complexity. Given the fact that most of
the RA problems are NP-complete and do not have a polynomial solution, solving these problems by
means of a deterministic algorithm would be challengeable. In most of the above articles the main
limitation of the proposed method is problem size. So many researchers in recent years have focused
on heuristic algorithms, such as genetic algorithm, particle swarm optimization, and so on.

2.2. Methods Based on Heuristic Algorithm

Using heuristic algorithms is another way of solving the RA problem. This method has attracted
many researchers in recent years. In heuristic algorithms, the main goal is to achieve an optimal
solution without searching the whole solution space. Although the implementation of these methods
is very complicated, they will give good results. In many cases, heuristic methods produce better
results than deterministic ones. Heuristic algorithms are much faster than deterministic ones because
they do not require a full search in the solution space. That’s why the use of heuristic algorithms has
increased in recent years.

The genetic algorithm (GA) is one of the evolutionary algorithms used to design a heuristic method
for RA. In this method, each chromosome represents a RA model. The fitness of each chromosome
shows the quality of the scheduling. The evolution of the chromosomes with the help of genetic
operators causes an optimal pattern for RA [35]. Kim et al. [36] used another form of GA, in which
each chromosome is divided into two parts: gateway and resource. In this way, generated solutions
can also reduce the cost of communication between gateways [36]. The particle swarm algorithm
(PSO) is also used for RA. In this method, each particle represents a RA model. Particle motion based
on the PSO algorithm will produce an optimal solution [37]. Other evolutionary algorithms such as
simulated annealing (SA) [38,39], Tabo Search (TS) [40] and ant colony optimization (ACO) [41] are
also used to solve the RA problem. In all of these methods, first, a number of random solutions are
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generated and then converted to an optimal solution in an evolutionary process. In some papers,
the combination of several algorithms has been used to solve the RA problem. Combining several
algorithms can lead to better solutions, because each algorithm covers the weakness of other ones. For
example, in [42], the GA and ACO are combined to provide better solutions for RA problem. In [16],
the search economics algorithm is combined with the k-means clustering algorithm to generate the
Best Solutions (BS) in the shortest time. This method has focused on the IRAP problem. In recent
years the RA problem has been tackled by deep learning-based approaches. Deep learning is suitable
for problems with large scale data [43,44]. Singh et al. [45] proposed a new RA method to meet the
service level agreements (SLA). They analyzed their method by means of two different metrics. One
of them was capacity and the other one was enforcement period. They used buffering, scheduling
and rate limiting to have a better RA. Authors in [46] see everything as resources and they illustrated
their idea through RA in internet of things. Their case study was a healthcare-driven system that was
based on IoT. They proposed a new RA method for such a system. The evaluation of the proposed
method which is called IoTR4HealthCare system was benchmarked against two existing systems using
cost and latency criteria [46]. Hatti et al. [47] proposed a RA algorithm based on fuzzy classification
of jobs. In their method they improved a fuzzy interference system (FIS) for classification of the
jobs into emergent and non-emergent. The job values should be sent to a global CPU to request
resources from the cloud. Global CPU evaluates the resource need and free resources in terms of
communication and computational cost. Based on the type of the job, a global CPU allocates resources
by considering communication and computational cost. Dou et al. [48] proposed a new method which
improved a RA algorithm with anti-jamming for the IoT nodes. In this method a novel automatic
control allocation (ACA) model has been invented in order to provide an adaptive allocation and
anti-jamming transmission. Moreover, the spreading-time technology is applied to fulfil the power
and bandwidth requests of a node. In the algorithm, a new joint stepwise recursive function has been
used to allocate resources in anti-jamming situation.

Table 1. A summary of related works.

Reference Algorithm Year Pros and Cons

[31] Consensus-based
approach 2014

- Easy implementation
- Not useful for

big problems

[34]
Asymptotic shapely

value-based resource
allocation scheme

2016
- Deterministic approach
- high complexity

[36] Genetic Algorithm 2015

- Efficient for big problems
- Unable to find

optimal solution

[16]
Search Economics

Algorithm and k-means
clustering algorithm

2018

- Producing better solutions
in first generation

- Time consuming algorithm

[47] Fuzzy based job
classification 2017

- Considering priority
for resources

- Not suitable for
every environment

There are some problems in previous methods that make us motivated to propose a new method
for this problem. The first problem is, there are many different versions of RA problem in the literatures,
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but just a few of them are suitable for IoT environment. So, this paper tries to present a new method
that is adjusted for RA in IoT. The second problem is the inappropriate exploring of the problem space
that can be seen in many papers. So, this paper tries to use a powerful heuristic algorithm in order to
boost the exploration process. This algorithm that has been introduced in recent years is called WOA.

3. Formal Definition of IRAP

Before describing the proposed algorithm, the RA problem should be defined. In the problem
mentioned in this study, there are two types of nodes. The first type is resources that are provided to
service instances. The second node is gateways that are connected to resources. Gateways connect
different parts of the IoT system. Each gateway is responsible for controlling the traffic of a number of
resources. Resources can connect to different gateways. The cost of communication between a gateway
and all resources is predetermined [16].

One aspect of the problem is that the resources are distributed between gateways, such a way that
least cost of communication is caused.

The cost between gateways is also an important part of the total cost. So, the other aspect of the
problem is the kind of gateways’ connection to each other. Because of the high cost of communication
between gateways, each solution of the problem connects gateways with the least number of connections.
This connection will be in the form of a bus or ring. Figure 1 shows an example of the connection of
resources and gateways. By changing the communication model, the cost of communication also varies.
One of the goals of the problem is to find a pattern for RA that has the lowest cost of communication.
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Figure 1. A solution for the IRAP problem

Another aspect is the load balancing in the IoT system. Load balancing means that resources are
logically divided between gateways. Gathering all resources on a gateway will cause a bottleneck in
the system. The way for calculating cost and load balancing is described in the objective function
section. The problem discussed in this article is very similar to the scheduling problem mentioned
in [16,36]. In the following section, objective function and problem variables are defined.

3.1. Objective Function

In a cloud computing environment, it is assumed that all resource nodes must communicate with
each other. Therefore, for each solution of the RA problem, the total cost of network communications
should be calculated. It is assumed that each resource sent a message to all other resources. The total
cost of these messages are calculated and considered as objective function. The function named total
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cost and denoted as Tc. The proposed algorithm tries to minimize this function. Equation (1) calculates
Tc.

Tc =

∑|Vg |

j=1

(
dr

j × dg
)

p
(1)

where |Vg| is the total number of gateways, dr
j is the total cost of transferring data between jth gateway

and all resources connected to it and dg is the total cost of communication between gateways which is
calculated using Equation (2). Each inside gateway communication may cause inter gateway messaging.
Hence, communication cost inside a gateway has an exponential effect on total communication cost.

So,
(
dr

j × dg
)

is the best equation for calculating maximum value of the communication cost (objective

function). It should be mentioned that the objective function value is supposed to be minimized [16].
In other words, we should multiply dr

j in dg, because it is assumed that every single gateway may
send a message to every single resource. So, by multiplying these two values, we can calculate the
total communication cost for all resources of a gateway. If we calculate this value for all gateways,
we would have numerator part of Tc fraction.

dg =

|Vg |∑
i=1

|Vg |∑
j = 1
j , i

li j (2)

where li j is the cost of communication between gateways i and j. dr
j is calculated using Equation (3).

dr
j =

|v j
g |∑

k=1

ε jk (3)

where ε jk is the cost of communication between jth gateway and all resources connected to it. |v j
g| is the

number of connected resources to gateway j.
Another part of the fitness function is penalty P which is considered for balancing in RA. Given

that, the proposed algorithm should reduce Tc, and P is the denominator of this function so pi = 0
indicates penalty and pi = 1 indicates normal mode in gateway i. The value of p is calculated for all
gateways. For gateways having resources more than |Vr |

|Vg |
, pi = 0 is mentioned to increase the value of

Tc. Equation (4) calculates p.

P = 1 +
|Vg |∑
i=1

Pi (4)

where |Vg| is the total gateways and pi is the penalty of each gateway which is calculated using
Equation (5).

Pi =

 1 i f gt
i ≤ ε

|Vr |
|Vg |

0 i f gt
i > ε

|Vr |
|Vg |

(5)

In which, gt
i is the number of resources assigned to gateway i, |Vr| is the number of resources and

ε is a constant number. In order to simplify understanding this section, all notations and their meaning
listed below:

Tc: Total cost (the objective function)
|Vg|: Total number of gateways
|Vr|: Number of resources
|v j

g|: Number of connected resources to gateway j
dr

j: Total cost of transferring data between jth gateway and its resources
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dg: Total cost of communication between gateways
gt

i : Number of resources assigned to gateway i
ε jk: Cost of communication between jth gateway and all resources connected to it
P: Total value of penalty
pi: Penalty value for ith gateway
ε: Constant number

4. Whale Optimization Algorithm (WOA)

The WOA is a novel meta-heuristic algorithm that is inspired by the Humpback whales [22].
In this algorithm, the optimization process starts with producing a randomly generated population for
whales. These whales try to find the prey’s (optimum) location, then append (optimize) them by the
encompassing or bubble-net method.

In the encompassing method [22], the Humpback whales improve their current location according
to the best location as follows:

D = |C�X∗(t) −X(t)| (6)

X(t + 1) = X∗(t) −A�D (7)

where D is the distance between the position vector of both prey X(t)∗ and whale X(t), � is an
element-by-element multiplication and t is the current iteration number. A and C are coefficient vectors,
and are defined as follows:

A = 2a� r− a (8)

C = 2r (9)

where r is a random vector as length of X, each index of r includes a random number in [0,1], and the
value of a is decreased linearly from 2 to 0 in the iterations.

The bubble-net method can be performed in two ways. The first is the shrinking encompassing in
which, the value of a in Equation (8) and A are decreased. The second is the spiral updating position,
which is inspired by the helix-shaped movement of humpback whales around prey:

X(t + 1) = D′ � ebl
� cos(2πl) + X∗(t) (10)

where D′ = |X∗(t) − X(t)| is defined as the distance between the whale and prey, b is a constant value
used for specifying the logarithmic spiral shape, and l is a randomly generated value ∈ [−1.1].

The whales can swim around the victim through a shrinking circle and along a spiral-shaped path
concurrently:

X(t + 1) =

X∗(t) −A�D i f p < 0.5

D′ � ebl
� cos(2πl) + X∗(t) i f p ≥ 0.5

(11)

where p ∈ [0,1] is a random value for describing the probability of taking either the shrinking
encompassing method or the spiral model to set the whales position. In the discovery phase,
the Humpback whales explore for prey with a random manner. The position of a whale is set by
specifying a random search agent rather than the best search agent as below:

D = |C�Xrand −X(t)| (12)

X(t + 1) = |Xrand −A�D| (13)

where Xrand is a position specified randomly among the current population. The first algorithm depicts
the total structure of the WOA.
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5. The Proposed Algorithm

In terms of administration in IoT, less latency and energy consumption are two vital aspects of
the network. Hence, in order to achieve these objectives, this paper has focused on the RA problem
in IoT. As mentioned before, the main objectives of RA are reducing communication cost and load
balancing. Reducing communication cost induces less latency in the network. By load balancing,
we could eliminate any possible bottleneck from the network and increase the performance of the
network. If we manage to meet these goals, there will be more opportunities for using this technology.
In this paper, a new particle-based algorithm has been used to tackle the problem.

Heuristic algorithms have been widely used to solve complex optimization problems. Given
that the RA problem is an NP-complete problem, heuristic algorithms can be used to find an optimal
solution for that. In this paper, a new heuristic technique called WOA is used to solve the RA problem
in cloud computing. The whale algorithm is inspired by the collective hunting method of a kind of
Whale named the Humpback Whale. In the following we will investigate the details of WOA to solve
RA problem.

5.1. Steps of the Proposed Algorithm

The proposed algorithm begins by creating a number of whales using ‘whalecreat’ function. Each
whale represents a random solution for the scheduling problem. After this step, the fitness of each
whale is calculated, and the BS is considered as the current optimal whale. Fitness function is equal
to the total communication cost in the RA pattern of a whale. This function is named ‘fitness’ and
explained in the following sections. After this step, whales begin to move. For each whale, the values of
a , A , C , l , p are updated. A and C are constant coefficients. a ∈ [2.0] is a descending number. p ∈ [2.0]
and l ∈ [2.0] are random numbers. The use of these numbers is explained in the following sections.

One of the most important functions in the whale algorithm is the distance between two whales.
Since the whale algorithm is designed for a continuous problem and the RA problem is a discrete
problem, this function needs to be rewritten. This function is used as ‘distance’ function in the
algorithm. In total, three functions are designed for whale motion. The first one is “shrinking” function
that reduces the distance between the current whale and the best whale. The second one is “spiral”
function that simulates the current whale spin around the best whale. The third one is “searchprey”
that moves a whale toward a random whale. The flowchart of the proposed algorithm is shown in
Figure 2.
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5.2. Whale Creating

In this algorithm, each whale represents a solution to the problem of RA. There are two types
of nodes in the mentioned problem: gateway and resource. Each gateway is assigned a number of
resources, and their information is sent just to this gateway. On the other hand, gateways are connected
based on a specific topology in order to create the complete flow of information in the cloud. Due to the
cost of data transmission between the gateways, their connection is created with the least edges and in
the form of a spanning tree or a ring. Accordingly, each whale represents two sets of communications:
edges that show the connection between gateways and edges that show the resources assigned to each
gateway. A one-dimensional array w of size k + n is used to display a whale, where k is the number of
gateways and n is the number of resources. The first k entries of array w (w[1.k]) show the relationship
between gateways. w[i] = j means that gateway i sends its information to gateway j (i , j). The second
n entries of array w (w[k + 1.n]) represent gateway of each resource. w[p] = q indicates that resource
p− k sends its information to gateway q. Table 2 shows an example of how the whale is displayed in
the proposed algorithm. There are four gateways and seven resources in this example. The length of
the array is equal to 11.
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Table 2. A whale with 4 gateways and 7 resources.

Gateway Resource

Indices 1 2 3 4 5 (r1) 6 (r2) 7 (r3) 8 (r4) 9 (r5) 10 (r6) 11 (r7)
Allocate 3 1 4 3 1 4 4 4 3 2 1

To create a random whale, two parts of the array are filled individually. The first part is filled
firstly. If j is the random number generated for ith cell, then 1 ≤ j ≤ k and i , j. Then next n cells are
filled. For each generated random number like j, we have 1 ≤ j ≤ k. In fact, each resource is assigned
to one gateway. The fitness function for each whale is equal to objective function (Equation (1)) which
is explained in Section 3.1. The value of the fitness function is supposed to be decreased during the
algorithm. In other word, whales with lower fitness value are better than other whales.

5.3. Distance Function

One of the most important functions used in the proposed algorithm, is the distance function
which calculates the distance between two whales. Since the basic whale algorithm is a discrete
algorithm and RA problem is a continuous problem, the concept of distance must be re-defined. All
operators of the whale algorithm work based on the distance. So, the precise design of the distance
function will have a great effect on the performance of the proposed algorithm.

Each whale is equivalent to a RA graph that has maximum k + n edges. k is the number of
gateways and n is the number of resources. The distance between two whales is defined as the number
of non-common edges in two RA graphs. Accordingly, the minimum distance is equal to zero and the
maximum distance is equal to k + n. The pseudocode of the distance function is given in Algorithm 1.

Algorithm 1: distance W1 , W2

c = 0;
f or (i = 1; i < k + n; i ++)

i f (W1(i) , W2(i))
c = c + 1;

reture c;

Below, we show an example of how distance function works. There are 2 whales and 4 gateways
in Table 3. The distance between these two whales is calculated based on the corresponding cells of the
array that do not have the same value. These cells are shown in red. Accordingly, the distance between
two whales is 5.

Table 3. The distance between two whales.

Gateway Resource

Indices 1 2 3 4 5 (r1) 6 (r2) 7 (r3) 8 (r4) 9 (r5) 10 (r6) 11 (r7)
W1 3 1 4 3 1 4 4 4 3 2 1
W2 3 3 4 2 1 2 2 4 3 4 1

5.4. Spiral Function

To determine the type of each whale motion, a randomly generated number p is in [0, 1]. If this
number is greater than half, whale motion is performed using spiral function which means spiral
around the best whale. The concept of spiral must be re-defined for the RA problem. The pseudocode
of the proposed spiral is given in Algorithm 2.

In the above pseudocode, Wi is a whale that should spiral and Wbest is the best whale. |change|
denotes the number of entries of whale array that should be changed. If the value of change is positive,
then entries having non-equal values are changed using Wbest. Otherwise, entries having equal
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values are changed. Table 4 shows an example of spiral function for l = 0.125 and D = 5 in which
change = b5× 0.7c = 3. Three changed entries are in red. Green entries show the distance.

Algorithm 2: spiral Wi round Wbest

D = distance(Wi, Wbest);
l = random value in [−1, 1];
change =

⌊
D × cos ( 2πl)

⌋
;

f or( j = 1; j < |change|; j ++)

i f (change > 0)
set a random number in Wi(k) where Wi(k) = Wbest (k);

elsei f (change < 0)
set a random number in Wi (k) where Wi (k) , Wbest (k);

return Wi

Table 4. An example of spiral function.

Gateway Resource

Indices 1 2 3 4 5 (r1) 6 (r2) 7 (r3) 8 (r4) 9 (r5) 10 (r6) 11 (r7)
W1 3 1 4 3 1 4 4 4 3 2 1
Best 3 3 4 2 1 2 2 4 3 4 1

Spiral 3 1 4 1 1 2 4 4 3 4 1

5.5. Shrinking Function

At the beginning of each run of the algorithm, a random number p is generated. If this number
if less than 0.5, another random number A should be considered. If A is less than 1, the shrinking
function is performed. This function moves the current whale toward the best whale or prey. The
difference between this function and spiral function is that, spiral function spirals around the prey
while shrinking function moves directly and faster toward the prey. Hence, increasing the probability
of executing the searchprey function at the end of algorithm is desirable.

The shrinking function adjusts its movement toward the prey based on the distance from the best
whale. After calculating the distance, a percentage of non-equal entries is changed and moves toward
the best whale with the probability of 50%. The pseudo-code of the shrinking function is shown in
Algorithm 3.

Algorithm 3: shrinking Wi to Wbest

D = distance (Wi, Wbest);
change = bA × Dc;
f or ( j = 0; j < |change|; j ++)

k = a random index in Wi where Wi (k) , Wbest (k);
rand = a random number in [0, 1];
i f (rand < 0.5)

Wi (k) = Wi (best);
else

set a random number in Wi (k);
return Wi

Below, we show the shrinking function in an example. In Table 5, the distance between W1 and
Wbest is 4 which is shown in green. If A = 0.5, then two entries from entries having non-equal values
are changed. One of them become the best whale and the other one had a random change. These two
changed entries are shown in red.
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Table 5. An example shrinking function.

Gateway Resource

Indices 1 2 3 4 5 (r1) 6 (r2) 7 (r3) 8 (r4) 9 (r5) 10 (r6) 11 (r7)
W1 3 1 4 3 1 4 4 4 3 2 1
Best 3 1 4 2 1 2 2 4 3 4 1

Shrinking 3 1 4 2 1 3 4 4 3 2 1

5.6. Searchprey Function

An important aspect of evolutionary algorithms is the ability to produce new solutions for the
problem which prevents getting stuck in a local optimum. In the proposed method, the searchprey
function is used for this purpose. The higher probability of performing this function at the beginning is
desirable. Thus, the exploitation and optimization phase will start with a greater variety of solutions.

Searchprey function moves a whale toward a randomly selected whale. The basis of the movement
is the distance between the two whales, but different methods have been used for motion as described
in the following sections. The pseudocode of the searchprey function is given in Algorithm 4.

Four functions, shrinking, join, swap, and randomwalk, are used within this function. The
shrinking function is explained in the previous section, with this difference that Wbest is used instead of
W j. The other three functions are described below.

Algorithm 4: searchprey Wi

select W j randomly f rom whale group;
D = distance (Wi, W j);
change = |A × D|;
rand = a random number in [0, 1];
i f (rand < 0.25)

shrinking (Wi, W j);
elsei f (rand < 0.5)

join (Wi, W j, change);
elsei f (rand < 0.75)

swap (Wi, W j);
else

randomwalk (Wi, change);
return Wi;

5.6.1. Join Function

The join function changes some parts of Wi into the entries of W j. The number of entries being
changed is equal to |change|. The changing process can be sequential or random. After joining, whale
Wi get in in new position, part of which is inherited from W j.

Table 6 shows an example of performing join function. In this example, W1 moves toward W2.
The distance is 4 shown in green. Changed entries are selected linearly at the end of the array. These
entries are shown in red.

Table 6. An example of join function.

Gateway Resource

Indices 1 2 3 4 5 (r1) 6 (r2) 7 (r3) 8 (r4) 9 (r5) 10 (r6) 11 (r7)
W1 3 1 4 3 1 4 4 4 3 2 1
W2 3 1 4 2 1 2 4 4 2 4 1
Join 3 1 4 3 1 3 4 4 2 4 1
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5.6.2. Swap Function

The swap function is the same as join function with this difference that the number of changed
entries in join function is equal to |change|, while in swap function is exactly equal to the number of
gateways (|Vg|) or the number of resources (|Vr|). In fact, in swap function, the new position of Wi
includes connection sub-graph of gateways in Wi and connection sub-graph of resources in W j (and
vice versa). The value of |change| has no effect on this function.

Table 7 shows an example of the swap function, in which W1 moves toward W2. The distance is 4
and shown in green and also has no effect on the result. Changed entries belong to the first part of the
array which show the type of connection between gateways. These entries are shown in red.

Table 7. An example of swap function.

Gateway Resource

Indices 1 2 3 4 5 (r1) 6 (r2) 7 (r3) 8 (r4) 9 (r5) 10 (r6) 11 (r7)
W1 3 1 4 3 1 4 4 4 3 2 1
W2 3 3 4 2 1 4 4 4 2 4 1

Swap 3 3 4 2 1 4 4 4 3 2 1

5.6.3. Randomwalk Function

Randomwalk function changes a number of entries of Wi randomly. The number of entries being
changed is equal to |change|. The values of whale W j have no effect on the generated numbers for Wi.
The only effect of W j in running this function is the value of |change| that is generated based on the
distance between Wi and W j.

In fact, randomwalk function produces a completely random movement in Wi and takes the
whale to a new position. So, it is likely to discover new solutions after performing this function.

5.7. Parameter a

One of the most important parameters in the proposed method is a. The value of A which
determines the type of executing function in any steps of the algorithm is calculated based on parameter
a according to Equation (14).

A = 2ar− a (14)

The value of a is considered between 2 to 0 in descending form. So, at the beginning of the
algorithm it is likely that the value of A is greater than one and the searchprey function is executed. As
the value of a decreases, the value of A also becomes less than one in most cases. Therefor shrinking
function will be executed. In this way, after the discovery of new solutions, the algorithm enters the
exploitation phase. In fact, decreasing the value of a helps to narrow the spiral movement around the
prey and whales focus on optimizing the final solution.

5.8. Graph Clustering

The quality of the initial whales has a great impact on the performance of the whale algorithm.
For this reason, in the proposed method a heuristic clustering algorithm has been used in order
to increase the quality of the initial solutions. With the help of this method, solutions with high
optimization capability would be produced and more likely give us better solutions. The pseudo code
of the proposed clustering method is shown in Algorithm 5. In this method, gateways are scanned in
sequence, and in each round, the nearest resource is assigned to that gateway. This will continue until
the end of resources.

In the following, we describe how this method works by an example. In the example of the
Figure 3a, red circles represent gateways and black squares represent resources. There are three
gateways and fifteen resources. The distance between nodes is plotted based on their communication
cost. As shown in Figure 3b, fifteen resources are divided between Gateways accordingly. In each
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round, the nearest resource is considered for each node. The output of this algorithm varies according
to the order in which the gateways are selected, so by scanning gateways in different orders, various
solutions can be produced for the problem. The point of this graph clustering method is that the
penalty of the produced solutions is equal to zero, because it fully observes load balancing.

Algorithm 5: GraphClustering

Input : Gateway and Resource Communication Cost Matrix
Output : A solution f or

selectedResources = {};
whale = zero array in length |G| + |R|;
while (selectedResources , Resources) {

f oreach Gateway like Gi {

f ind R j as a Resource with lowest cost f or Gi;
assign Ri to Gi in whale;

}

}

set Gateway randomly in whale;
return whale;
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Figure 3. Graph clustering.

6. Implementation and Analysis

This section provides the simulation of the proposed algorithm and then evaluates its performance.
Simulation is done in MATLAB software environment on a desktop computer. Given that there is no
processing time in the evaluations, it is not necessary to introduce the computer specifications and
software version.

None of the prior researches on the RA problem in cloud computing used a common and public
dataset. Creating a dataset covers all conditions of the scheduling problem. Given that data are not the
same, we re-implemented some of them in order to compare with previous works. Apart from these
datasets, RA is an administrative problem which have to be solved before deployment of the network.
Since solving the problem is not a real-time activity, there is enough room to process and reach the
BS. Hence, the network admin could easily execute the proposed method with the network data and
decide on the assignment pattern.
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6.1. Dataset

The test data are generated in small, medium and large size. The number of gateways varies from
4 to 100 and the number of resources varies from 10 to 800. A total of eight test samples are designed
for the proposed method. The list of sample tests is shown in Table 8.

Table 8. Data set list.

Data Set Name Number of Gateways Number of Resources

DS1 4 10
DS2 4 12
DS3 4 16
DS4 40 100
DS5 40 200
DS6 40 400
DS7 100 400
DS8 100 800

In Table 8, three datasets DS1, DS2, and DS3 are small size, two datasets DS4 and DS5 are medium
size, and datasets DS7 and DS8 are large size. Regardless of scale, the cost of communication between
resources and gateways is a random number ∈ [1.20] and the cost of communication between gateways
is a random number ∈ [20.40]. The cost of connection between gateways is always higher than the cost
of connection between resources and gateways.

Each dataset has two matrices. If k is defined as the number of gateways and n denotes the number
of resources, then one of these matrices is a symmetric matrix called Gatewayk×k of size k × k which
shows the cost of communication between gateways and the other one is a matrix called Resourcek×n of
size k× n which shows the cost of connection between resources and gateways. You can see the dataset
DS1 in Figure 4.
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6.2. Simulation Results

We applied the proposed algorithm on the generated dataset and in order to compare with other
methods, we also applied two methods GA [36] and Search Economics for IoT Resource Allocation
(SEIRA) [16] on this data. The main criterion is the comparison of different methods of RA problem is
Tc (the total cost of the messages in RA).

Table 9 shows the results of the proposed algorithm in comparison with previous methods. Given
the fact that data is randomly generated and the RA problem is a Np-complete problem, the optimal
solution is not available and only the results of different methods can be used to compare them. For
the results shown in Table 9, the proposed algorithm has been executed for 10,000 and 20,000 times.
Other methods are also executed for the relatively same initial population and rounds in order to have
fair results.
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Table 9. Result and comparison.

GA [36] SEIRA [16] WOA (Proposed)

DS1 180.5 180.5 180.5
DS2 214 214 214
DS3 242.5 242.5 242.5
DS4 841 835 836.6
DS5 1260.4 1233 1230
DS6 1920.6 1905.3 1901.4
DS7 2728.8 2669.1 2661.8
DS8 3857.3 3753.7 3725

The results of the simulation of the proposed algorithm and its comparison with the other two
algorithms indicate that whale algorithm is good at solving RA problem. Obtained results for whale
algorithm, most of the time are better than GA. In comparison with the SEIRA algorithm, the whale
algorithm has the same results and in some cases better results.

One criterion to evaluate the performance of the proposed algorithm is convergence speed. To do
this, we save the fitness of the best whale in each round of whale motions. Figures 5–7 show the fitness
of three datasets DS1, DS5, and DS8.
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The whale algorithm is inspired by the group haunting of whales. Hence, in each round of the
proposed algorithm, all whales should approach the prey. From the RA problem solving point of view,
it means that, all whales change over time. Figures 8–10 show the fitness of all whales for three datasets
DS1, DS5, and DS8.
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6.3. The Effect of Spiral, Shrinking and Searchprey Functions

One of the most important points to be considered in the proposed method is the efficiency of the
designed functions. Three main functions named spiral, shrinking and searchprey functions have been
designed in the proposed method. The spiral function is designed to spiral around the BS (or prey).
The shrinking function moves a whale directly toward the best whale and searchprey function moves
a whale toward a random whale. The first and second functions are used to optimize the existing
solutions and the third one is used to discover new solutions.

If the designed functions do not have the necessary performance, then the proposed algorithm
has the same performance as a random algorithm which produces many random solutions for the
problem. In contrast, the high efficiency of these functions makes it possible to quickly converge to an
optimum solution. To investigate this issue, we ran the proposed algorithm with different numbers of
whales and motions. In all runs, the multiplication of the number of whales in the number of steps is a
constant number. That is, in all simulations, the same number of solutions is produced for the problem.
The results of three datasets DS1, DS5 and DS8 are shown in Tables 10–12 respectively.

The results of the three above tables indicate that, using three main functions to produce solution
yields to better solution than random ones. In contrast, if we increase the number of rounds and reduce
the number of whales, we will not get good results. We must balance between the number of whales
and the number of rounds.
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Table 10. The best solution of DS1 for different modes.

Number of Whales Number of Rounds Best Solution

1,000,000 1 270.5
100,000 10 233
10,000 100 197.5
1000 1000 180.5

Table 11. The best solution of DS5 for different modes.

Number of Whales Number of Rounds Best Solution

25,000,000 1 1470.1
500,000 50 1431.4
50,000 500 1298.8
5000 5000 1230

Table 12. The best solution of DS8 for different modes.

Number of Whales Number of Rounds Best Solution

100,000,000 1 4357
10,000,000 10 4124.5
1,000,000 100 4023.2

10,000 10,000 3725

6.4. The Effect of Factor a

One of the most important factors in whale algorithm is a. The intelligent change of the amount
of this factor during the execution of the algorithm has a great influence on the performance of the
algorithm. The whale algorithm has two phases. The first one is the discovery phase in which the
algorithm should act in such a way that new solutions rare generated randomly. In fact, in this phase
produced points are supposed to be distributed uniformly in the problem space. The first phase begins
with the start of the algorithm and then algorithm enters the second phase. The second phase is the
exploitation phase in which the algorithm acts to optimize the previously generated solutions. In other
words, in this phase, instead of producing new random points, we are looking for optimal points
around the points that were previously generated. The second phase starts from the middle of the
algorithm and continues until the end.

Factor a determines that if the algorithm is in the discovery phase or exploitation phase. So the
intelligent change of this factor during the execution of the algorithm changes the discovery phase
logically and slowly into the exploitation phase. The value of the a varies in descending order in [2, 0]
according to Equation (15). In this equation, G is the number of whale’s motion and i is the current
execution of the algorithm.

a = 2×
(G− i + 1

G

)2
(15)

Figure 11 shows the changes of factor a for G = 1000. To better examine the effect of a on the
execution of the algorithm, we examine the proposed method in two modes. First, a state in which a
hold the algorithm in discovery phase with a value close to 0 and then a state in which the algorithm
begins with exploitation phase with a value close to 0 for a.

Figures 12–14 show the changes of the best whale for a = 2. Both the number of whales and
rounds are set to 1000. Experiments are performed for datasets DS1, DS5, and DS8. Focusing on the
results reveal that the obtained results are far from the optimum solutions. In addition, the process of
optimization is very slow and random.
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Figure 17. Changes of the best whale for a = 0 in DS8.

Focusing on the results reveal that initial whales are optimized quickly, and the algorithm does
not produce a better solution anymore. In fact, the algorithm is stuck in the local optimum.

6.5. The Effect of the Graph Clustering

One of the methods used to reinforce the proposed algorithm is graph clustering. This method
produces initial solutions with better quality and thus enhances the optimization process. To investigate
the effect of the clustering in the proposed method, we must run the algorithm without applying the
graph clustering method and using fully random initial solutions, and then compare the results with
that of the complete algorithm. The result of this comparison is shown in Table 13. The results of this
table show that, whatever the size of the problem is larger, the effect of the graph clustering is greater.

Table 13. Comparison of running algorithm in clustering and random mode.

Problem
Graph Clustering Random

Best Answer in
First Generation The Final Answer Best Answer in

First Generation The Final Answer

DS1 540 180.5 571 180.5
DS2 612 214 664.5 214
DS3 707.2 242.5 755 242.5
DS4 2927 836.6 3374 852
DS5 4750 1230 5219.4 1258.5
DS6 6206 1901.4 7126 1942
DS7 7480.2 2661.8 9135 2730.2
DS8 9955 3725 11,324 3892

One of the other effects of the graph clustering is the convergence rate. To investigate the effect of
graph clustering on the convergence rate, the process of the best fitness for problem DS8 is shown in
Figure 18. As seen in this figure, in the case of using clustering, convergence rate is lower. The reason
is getting stuck in local optimum in the random solution mode. However, ultimately, the method that
uses graph clustering produces better solutions. The reason for producing a better initial generation
using clustering is that it has high optimization capability.



Sensors 2020, 20, 539 23 of 26

Sensors 2020, 20, x 24 of 27 

 

Table 13. Comparison of running algorithm in clustering and random mode. 

Problem 

Graph Clustering Random 

Best Answer in First 

Generation 

The Final 

Answer 

Best Answer in First 

Generation 

The Final 

Answer 

DS1 540 180.5 571 180.5 

DS2 612 214 664.5 214 

DS3 707.2 242.5 755 242.5 

DS4 2927 836.6 3374 852 

DS5 4750 1230 5219.4 1258.5 

DS6 6206 1901.4 7126 1942 

DS7 7480.2 2661.8 9135 2730.2 

DS8 9955 3725 11,324 3892 

One of the other effects of the graph clustering is the convergence rate. To investigate the effect 

of graph clustering on the convergence rate, the process of the best fitness for problem DS8 is shown 

in Figure 18. As seen in this figure, in the case of using clustering, convergence rate is lower. The 

reason is getting stuck in local optimum in the random solution mode. However, ultimately, the 

method that uses graph clustering produces better solutions. The reason for producing a better 

initial generation using clustering is that it has high optimization capability. 

 

Figure 18. The effect of graph clustering on convergence. 

7. Conclusions 

Cloud computing is a popular model for users of cloud resources because of the “pay-per-use” 

model. However, the RA problem is one of the most important challenges in this kind of system due 

to the high volume of resources and user requests, which has attracted many researchers to the field. 

RA and scheduling refers to a method for allocating resources to users and the main objective of a 

schedule is reducing runtime and allocating optimal resources to tasks. On one hand, the improper 

use of resources leads to increased energy consumption, and as a result, environmental warming. 

Therefore, task scheduling and RA in large systems such as cloud computing are also important 

besides runtime and can’t be ignored. In this paper, a novel algorithm based on whale optimization 

is proposed with the aim of reducing runtime of tasks and allocating optimal resources to tasks. The 

proposed method suggested a discrete definition for the whale algorithm in order to optimize RA 

problem in cloud environment. Each whale is designed in the form of an array. Based on this array, a 

new concept of distance is defined for the distance function. This function is very useful for the 

whale algorithm. The spiral function is designed for spiral movement and shrinking and searchprey 

functions are designed for direct movement. The results obtained show that the proposed whale 

Figure 18. The effect of graph clustering on convergence.

7. Conclusions

Cloud computing is a popular model for users of cloud resources because of the “pay-per-use”
model. However, the RA problem is one of the most important challenges in this kind of system due to
the high volume of resources and user requests, which has attracted many researchers to the field. RA
and scheduling refers to a method for allocating resources to users and the main objective of a schedule
is reducing runtime and allocating optimal resources to tasks. On one hand, the improper use of
resources leads to increased energy consumption, and as a result, environmental warming. Therefore,
task scheduling and RA in large systems such as cloud computing are also important besides runtime
and can’t be ignored. In this paper, a novel algorithm based on whale optimization is proposed with
the aim of reducing runtime of tasks and allocating optimal resources to tasks. The proposed method
suggested a discrete definition for the whale algorithm in order to optimize RA problem in cloud
environment. Each whale is designed in the form of an array. Based on this array, a new concept of
distance is defined for the distance function. This function is very useful for the whale algorithm. The
spiral function is designed for spiral movement and shrinking and searchprey functions are designed
for direct movement. The results obtained show that the proposed whale algorithm has a high ability
to solve the RA problem in the cloud. The functions designed for base operators of the whale algorithm
have been able to search the solution space of the problem well and found reasonable solutions for
the mentioned problem by optimizing the discovered solutions. An important point in the correct
execution of the algorithm is the logical adjustment of the value of the a which enters the algorithm
from the discovery phase to the exploitation phase.
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