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Abstract: Reducing carbon emissions plays a significant role in developing sustainable inventory

systems. In a seller-buyer relationship, an allowable delay in payment is considered for the buyer to

manage the stock and simulate the demand. Deteriorating items that usually have specific maximum

lifetimes have become a challenge for most firms. Contrary to the importance of these issues,

very little research has studied the impact of carbon emissions on deteriorating inventory systems.

This paper provides a price-dependent demand for perishable items when carbon cap-and-trade

regulation fills the mentioned gap. This model provides a carbon reduction investment scheme

and illustrates this investment’s effect on the inventory system. This paper determines the optimal

replenishment cycle and selling price, in which: (a) perishable items have specific maximum lifetimes,

(b) a specific period of delay in payment is allowed for the buyer to accumulate revenue, (c) carbon is

emitted due to ordering and storage operations and carbon cap and trade is regulated along with

allowable carbon reduction investment. After developing the model, optimal values are obtained

from necessary and sufficient conditions of optimality. Numerical experiments are proposed to

validate the model. By developing an algorithm, the optimal values of replenishment cycle, selling

price, and carbon reduction technology investment are obtained, and the impact of carbon emissions

and efforts to control emissions are outlined. Finally, some managerial applications are mentioned,

and future research directions are exposed.

Keywords: controllable carbon emission; inventory control; trade credit; deterioration; pricing

1. Introduction

In the last two decades, governmental and non-governmental organizations have
concentrated on regulating carbon emissions policies and protecting the environment [1,2].
In this regard, they organized conferences to achieve efficient policies, and the Kyoto
protocol was one of the essential regulations [3]. Addressing the impact of carbon emissions
in inventory systems has become significant. Regulating different carbon emission policies
is crucial in restricting emissions. One of the first papers investigating the carbon emission
policies in an inventory system is by Hua et al. [4]. They discussed carbon cap-and-trade
regulation as an encouraging means to reduce emissions in an inventory system. In
this policy, the government allocates a carbon cap to the firms, which is an allowance
for emissions, and if the firms emit less than the cap, they can sell the remainder and
accumulate revenue. Another solution to the challenge of carbon emissions is investing
in carbon reduction technologies and carbon policies to mitigate emissions’ impact on an
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inventory system. This idea was first proposed by Toptal et al. [5], who indicated that
investing in carbon emission reduction technologies can reduce emissions by a fraction.
Additionally, a trade-off between the investment in carbon emission reduction technology
and decreased costs associated with emissions must be considered [6].

Deterioration of items caused by spoilage, dryness, and vaporization is another chal-
lenge that firms confront [7]. Many works have been carried out to address the challenge
of the deterioration in inventory systems. One of the essential papers is by Wu et al. [8],
who considered specific expiration dates for deteriorating items. Additionally, considering
the trade credit period to stimulate the demand for deteriorating items is another nov-
elty in their work. Later, Tiwari et al. [9] extended this model for two trade credit levels
when pricing is another decision, and partial backordering is permissible. In this paper,
a price-dependent demand is extended to indicate the decreasing impact of selling price
on demand. Adding environmental considerations such as carbon emission regulation to
deteriorating inventory models addresses an issue in practice [10,11].

As most companies consider sustainability criteria in the inventory systems, and
the deterioration of items is another challenge, more studies are required to elaborate
sustainable inventory models for deteriorating items. Despite the significance of the
mentioned issues, there is a lack of proposals of models for deteriorating items considering
carbon emissions. Considering these gaps, three questions arise: (1) What are the main
reasons for emissions in an inventory system? (2) How is the deterioration rate defined,
and the trade credit discussed? (3) How to formulate a sustainable inventory system,
and what emission policies are appropriate? For these questions, this paper aims to
include both deterioration and environmental concerns in an inventory model to help
decision makers to adopt optimal replenishment cycles, selling price, and carbon emission
reduction technology. This paper’s main contribution in relation to the previous papers
is to collaborate on deterioration and carbon emissions when the delay in payment is
permissible. In addition, considering expiration dates for items and allowable investment
in carbon reduction technology are other novelties of this paper.

The rest of the sections are illustrated as follows. Concise literature on deteriorating
inventory considering trade credit policy and inventory models considering carbon emis-
sions are discussed in Section 2. In Section 3, notation and assumptions are discussed.
Developed models for our elaboration are proposed in Section 4. Section 5 concentrates
on providing appropriate solution procedures for our elaboration. In Section 6, some nu-
merical examples and sensitivity analysis based on a case study are introduced to validate
the model. Managerial applications are derived from sensitivity analysis as well. Section 7
concludes the findings and recommends future research directions.

2. Literature Review

A concise survey of the literature on deteriorating sustainable inventory models is
studied in this section. Finally, relevant research gaps and the approach of this study to fill
the gaps are outlined.

Goyal [12] first presented an inventory model considering the delay in payment. This
paper was extended by Aggarwal and Jaggi [13] for deteriorating items. Kim et al. [14]
proposed the first pricing model considering the delay in payment. Later, hybrid stock
and price-dependent (Teng and Chang [15], Tsao and Sheen [16]) demands were devel-
oped. Chung and Wee [17] developed a perishable inventory model considering defective
items in manufacturing. Sarkar [18] first provided a perishable model considering the
maximum lifetime. This paper’s many extensions are presented by developing credit and
price-dependent demand functions and trade credit policy [8,9,19]. Chen and Sarker [20]
proposed another model considering multi-items and price-dependent demand for dete-
riorating items. Wu et al. [21] discussed the difference between cash payment, advance
payment, and credit payment for perishable items with a maximum lifetime. A random
maximum lifetime using a uniform distribution function is extended by Tai et al. [22].
Mishra et al. [23] proposed a model with hybrid price stock-dependent demand and pro-
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vided conditions of concavity. The solution procedure of this study is utilized in this paper.
One of the combinations of deterioration considering maximum lifetime and carbon emis-
sion policy is discussed by Shi et al. [24] that compared cash, credit, and advance payment
considering carbon tax policy. Considering an expiration date-dependent demand and a
trade credit dependent on the amount of order quantity is another approach presented
by Yang [25]. Partial trade credit for deteriorating items with an allowable shortage is
developed by Tiwari et al. [26]. Saren et al. [27] elaborated a model for perishable items
analyzing the price discount when the delay in payment is permissible in the inventory
system. Sarkar et al. [28] proposed a model considering the demand dependent on both
selling price and trade credit period. They optimized the retailer’s replenishment cycle.
Elaborating an advanced payment scheme, Khan et al. [29] provided a model for perishable
items with an expiration date when the advertisement for items and partial backordering
are allowable. They developed a demand function dependent on advertisement and selling
price when the holding cost time varies linearly. Das et al. [30] proposed a production
model for deteriorating items and considered a manufacturing process’s reliability coeffi-
cient. They considered two levels of trade credit with prepayment, and items deteriorate
at a constant rate. Developing a lot-sizing for growing nonlinear items, Sebatjane and
Adetunji [31] proposed a model for perishable items when the demand is dependent on
the in-hand stock and freshness (expiration date). Huang et al. [32] proposed a coordi-
nated model for item deterioration with a Weibull distribution function when quantity
discount is permissible. Das et al. [33] proposed a model for deteriorating items considering
permissible preservation technology investment and trade credit policy.

Considering ordering and holding operations as the main sources of emission, Hua et al. [4]
first presented an inventory model under carbon cap and trade. Later, Jaber et al. [34]
proposed the first model with carbon reduction investment, and this work was developed
by Krass et al. [10], utilizing a price-dependent demand. Toptal et al. [5] took purchasing
as another source of emissions for the first time and compared various emission policies.
Dye and Yang [35] developed a deteriorating model with carbon emissions for considering
trade credit. More operations such as setup [36,37], transportation [36,38–41], manufactur-
ing [6,10,11,34,42,43], and disposing of the obsolete items [37–39] have been considered
as main sources of carbon emissions in other works. Lou et al. [6] and Yang et al. [41]
defined price- and carbon emission-dependent demand and proposed a model consid-
ering emissions due to manufacturing and allowable reduction investment. This paper
was followed by adding trade credit (Qin et al. [43]) and considering a price-dependent
demand function [44]. Mishra et al. [44] extended Hua et al.’s [4] model with deterio-
rating items by considering a hybrid price and stock-dependent demand. Lu et al. [36]
proposed a Stackelberg gaming approach for deteriorating items when carbon emissions
can be controlled by investing in carbon emission reduction technology. Shaw et al. [45]
elaborated a coordinated model considering transportation operation of the vendor as
the main source of emissions when constant and variable costs are considered for carbon
emissions. In addition, they developed the model for decaying items with a constant rate
of deterioration. Manufacturing defective items is permissible, and two levels of inspection
are developed to control the imperfection. Developing a carbon cap-and-trade policy,
Gao et al. [46] proposed a model for managing a multi-period inventory of raw materials
when the items’ demand is stochastic. Considering permissible partial backordering in an
inventory model, Mishra et al. [47] extended a model for deteriorating items when deterio-
ration can be controlled by preservation technology and carbon emissions can be controlled
by green technology. They elaborated a constant deterioration rate and a price-dependent
demand. Developing an inventory model for deteriorating items with expiration dates,
Sarkar et al. [48] proposed imperfect quality items when the quality can be improved and
carbon emissions are considered. Liu et al. [49] extended a coordinated model when carbon
reduction is allowable and customers are eager to purchase items with lower emissions.
Ullah et al. [50] investigated a sustainable strategy for remanufacturing when packaging is
reusable, and the demand and returning items are stochastic. This investigation concludes
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that remanufacturing costs less than ordering and holding operations. A summary of the
literature reviewed in this section that is most relevant to our paper is shown in Table 1.

Table 1. Literature review.
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Hua et al. [4] X X X X X

Jaber et al. [34] X X X X

Krass et al. [10] X X X X

Toptal et al. [5] X X X X X X X X

Wang et al. [19] X X X

Dye and Yang [35] X X X X X X X X X

Lou et al. [6] X X X X X X

Qin et al. [43] X X X X X X X X

Yang et al. [41] X X X X X X

Chen and Sarker [20] X X

Wu et al. [21] X X X

Bai et al.[11] X X X X X

Battini et al. [38] X X X X X X X

Tiwari et al. [9] X X X

Tiwari et al. [26] X X X X X X

Aliabadi et al. [1] X X X X X X X X

Bai et al. [42] X X X X X X X

Lu et al. [36] X X X X X X X X X X X X

Mishra et al. [37] X X X X X X X

Mishra et al. [44] X X X X X X X

Shi et al. [24] X X X X X X X X

Taleizadeh et al. [40] X X X X X X

Gao et al. [46] X X X X

Shaw et al. [45] X X X X

Mishra et al. [47] X X X X X X X X X X X

Sarkar et al. [48] X X X X

Liu et al. [49] X X X X X

This paper X X X X X X X X

According to the papers reviewed above, none of them have considered a deterio-
rating model and pricing and trade credit policy considering allowable carbon reduction
investment. This paper’s primary aim is to consider these challenges coincidently alongside
highlighting the role of carbon cap and trade. This paper looks to obtain the optimal values
for cycle length and selling price by using necessary and sufficient conditions for concavity
and providing mathematical theorems for solution procedures. To validate the model,
numerical experiments, sensitivity analyses, and managerial applications are presented.
Finally, results from solving the mathematical model are discussed, and future insights
are outlined.
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3. Model Development

3.1. Problem Description

To fill the abovementioned gap, an inventory model is developed for perishable
items. In this system, items have their specific maximum lifetime, and the seller offers
single-level trade credit to the buyer without prepayments. The demand function is a
subtractive price-dependent function in that augmentation of the selling price leads to
a decrease in demand. Ordering and holding operations cause carbon emissions, and
the government rules cap and trade. Thus, the surplus emission allowance can be sold
by the seller. Additionally, investing in carbon reduction technologies is allowable. The
mathematical model is extended as follows.

3.2. Notation

A definition of symbols applicable in developing the mathematical model is provided
in Table 2.

Table 2. Notation.

Decision Variables

p selling price per unit (USD/unit)
T seller’s replenishment cycle time (years)
G carbon reduction technology investment (USD/year), where G = 0, 1, 2, 3, . . .

Lot sizing parameters

o ordering cost per order (USD/cycle)
h unit holding cost per unit per unit time (USD/unit/unit time)
S allowable delay in the payment received from the buyer by the seller (years)
c unit purchasing cost (USD/unit)
Ie rate of interest earned (percentage)
m maximum lifetime (expiry date) of the items (years)
Ic rate of interest charged (percentage)

Carbon emission parameters

k1 carbon emissions of ordering operations per cycle (kg)
k2 carbon emissions of holding operations per cycle (kg)
x efficiency of carbon reduction technology
Z carbon cap (kg/year)
ξ reduction fraction of carbon emissions after carbon reduction investment
δ carbon tax per cycle (USD/kg)

Expressions and functions

CE carbon emissions per cycle (kg)
Q order quantity of the seller (units)

D(p) price-dependent demand rate
θ(t) deterioration rate as a time-varying function (0 ≤ θ ≤ 1)
I(t) available inventory level at time t

TP(T, p, G) seller’s annual total profit

In this paper, the replenishment cycle, selling price, and carbon reduction technol-
ogy are considered variables. The replenishment cycle provides the ordering policy and
determines how items will be replenished after the stock out. The selling price of items
is a critical factor in marketing processes. This factor is considered as a variable using
a price-dependent demand function. The optimal selling price leads the company to a
pricing strategy to keep old customers and attract new ones. Carbon reduction technology
investment is a crucial factor in reducing emissions in the whole inventory system. Along
with sustainability considerations, investing in carbon reduction technology mitigates the
costs associated with carbon emissions.
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3.3. Assumptions

1. Deteriorating items have their particular expiration dates (m). Thus, when time
is approaching m, the deterioration rate tends to 1. The deterioration function is
assumed as follows [7,8,17,18].

θ(t) =
1

1 + m − t
0 ≤ t ≤ T ≤ m (1)

2. The demand linearly decreases with increasing p [8,15].

D(p) = a − bp (2)

where a and b are positive constants. To ensure that the demand is non-negative, we
have 0 < p <

a
b .

3. The lead time is considered negligible. Shortages are not allowed to occur.
4. According to Hua et al. [4], carbon is emitted due to ordering and holding operations.

Therefore, the carbon emissions (CE) are formulated based on the holding units and
replenishment of items. In addition, a carbon cap is defined so that if the carbon
emissions do not exceed the carbon cap Z, the seller will accumulate revenue by
selling the extra carbon allowance.

5. Due to reducing the carbon emissions and providing a greener inventory system, the
seller decides to invest in advanced technology. The investment should not go higher
than the budget on greening the inventory system. The fraction of average emission

reduction is defined as F = ξ
(

1 − e−mG
)

. Therefore, we obtain G = −
ln
(

1− F
ξ

)

m [6,37].
The fraction of carbon emission reduction F is zero when G = 0, and it tends to
ξ when G → ∞ . The carbon reduction investment function F(G) is continuously
differentiable with F′(G) > 0 and F′′ (G) < 0.

The above assumptions are required to develop a sustainable inventory model and
indicate that the inventory level is changing.

4. Mathematical Model

This section provides a novel sustainable economic order quantity (SEOQ) considering
the carbon cap-and-trade policy for four potential cases. We discuss distinct SEOQ models
when T ≤ S with and without carbon reduction investment (see Figure 1) and when T ≥ S
with and without carbon reduction investment (see Figure 2).

Figure 1. Inventory level for (T ≤ S).
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Figure 2. Inventory level when (S ≤ T).

4.1. Case 1: (T ≤ S) without Carbon Reduction Investment

The inventory is mitigated by demand for the items and perishing of the items during
the cycle length [0, T]. Thus, it is formulated using differential equations as follows.

dI(t)

dt
= −D(p)− θ(t)I(t) 0 ≤ t ≤ T, (3)

Considering the boundary condition I(T) = 0, and solving Equation (3), one can find

I(t) = e−δ(t)
∫ T

t
eδ(t)D(n)du, (4)

where

δ(t) =
∫ t

0
θ(u)du = ln

(

1 + m

1 + m − t

)

. (5)

Substituting (5) into (4), the inventory level is obtained as

I(t) = 1+m−t
1+m

∫ T
t D(p) 1+m

1+m−u du = 1+m−t
1+m (a − bp)

∫ T
t

1+m
1+m−u du

= (1 + m − t)(a − bp) ln
(

1+m−t
1+m−T

) (6)

Consequently, the supplier’s order quantity is

I(0) = Q = (a − bp)(1 + m) ln
(

1 + m

1 + m − T

)

(7)

Based on the above equations, the holding cost per cycle is

h
∫ T

0 I(t)dt = h(a − bp)
[

∫ T
0 (1 + m − t) ln

(

1+m−t
1+m−T

)

dt
]

= h(a − bp)

[

(1+m)2

2 ln
(

1+m
1+m−T

)

+ T2

4 − (1+m)T
2

] (8)

Referring particularly to Mishra et al. [37], the total carbon emissions (kg) linked to
replenishment and holding the items are calculated by the following formula

CE =
k1

T
+ k2

Q

2
(9)
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The above Equation (9) is applied to the model using an allowable carbon cap. When
the supplier’s carbon emission does not exceed the carbon cap, revenue is obtained from
selling the surplus allowance for carbon emissions. The revenue obtained due to selling
extra carbon emission allowance is found as follows [6,36,37].

δ(Z − CE) = δ

(

Z −
k1

T
+ k2

Q

2

)

(10)

In this subcase, all items are sold during the settlement, and the retailer accumulates
interest at time T. The supplier charges no interest, and the interest accumulated per order
during in time S is obtained as

pIe

T

[

∫ T

0
D(p)tdt + D(p)T(S − T)

]

= p(a − bp)Ie

[

S −
T

2

]

. (11)

Finally, the seller’s ordering cost per cycle is o, and the purchasing cost per cycle is
cI(0). Consequently, the supplier’s annual total profit per unit of time is

TP(T, p) = Net annual revenue − annual purchasing cost
−annual ordering cost − annual holding cost
+annual revenue due to carbon cap and trade

−annual interest charged + annual interest earned.

(12)

Then we have

TP1(T, p) = pD(p) − o
T − h

T D(p)

[

(1+m)2

2 ln
(

1+m
1+m−T

)

+ T2

4 − (1+m)T
2

]

− cI(0)
T + δ(Z − CE) + p(a − bp)Ie

[

S − T
2

]

= p(a − bp)− o
T − h

T (a − bp)

[

(1+m)2

2 ln
(

1+m
1+m−T

)

+ T2

4 − (1+m)T
2

]

− c
T (a − bp)

(1 + m) ln
(

1+m
1+m−T

)

+ δ
{

Z −
(

k1
T + k2

2 (a − bp)(1 + m) ln
(

1+m
1+m−T

))}

+p(a − bp)Ie

[

S − T
2

]

.

(13)

4.2. Case 2: (S ≤ T) without Carbon Redzuction Investment

In this case, before the delay in payment period S, revenue can be accumulated by the
retailer as

pIe

T

∫ S

0
D(p)tdt =

p(a − bp)IeS2

2T
. (14)

However, the retailer cannot pay off by S and should pay for all the sold items after
T − S at a charged rate of Ic.

cIc

T

∫ T

S
I(t)dt =

cIc

T

[

(1 + m − S)2

2
ln
(

1 + m − S

1 + m − T

)

+
(T − S)(T + S − 1 − m)

4

]

. (15)

Therefore, according to (12), the total profit obtained per year is

TP2(T, p) = p(a − bp)− o
T − h

T (a − bp)

[

(1+m)2

2 ln
(

1+m
1+m−T

)

+ T2

4 − (1+m)T
2

]

− c
T (a − bp)(1 + m) ln

(

1+m
1+m−T

)

+ δ
{

Z −
(

k1
T + k2

2 (a − bp)(1 + m) ln
(

1+m
1+m−T

))}

+ p(a−bp)IeS2

2T − cIc
T

[

(1+m−S)2

2 ln
(

1+m−S
1+m−T

)

+ (T−S)(T+S−1−m)
4

]

.

(16)

The seller’s objective is to find the optimal cycle length (T∗) and selling price (p∗) of
items in order to maximize the total profit obtained per year.



Mathematics 2021, 9, 470 9 of 25

4.3. Case 3: (T ≤ S) with Carbon Reduction Investment

The main difference between this case and the previous case discussed is a carbon
emission reduction added to the total emissions, and a fixed carbon reduction investment
is formulated as GT

T = G [32]. Hence, the carbon emission function when carbon reduction
investment is applied is formulated as

δ
[

Z − CE
(

1 − ξ
(

1 − e−mG
))]

=

{

Z −

(

k1

T
+

k2

2
(a − bp)(1 + m) ln

(

1 + m

1 + m − T

))

(

1 − ξ
(

1 − e−mG
))

}

. (17)

Therefore, the carbon reduction investment is added to the total profit function as a
cost, and we have

TP3(T, p, G) = pD (p)− o
T − h

T D(p)

[

(1+m)2

2 ln
(

1+m
1+m−T

)

+ T2

4 − (1+m)T
2

]

− cI(0)
T − G + δ

[

Z − CE
(

1 − ξ
(

1 − e−mG
))]

+ p(a − bp)Ie

[

S − T
2

]

= p(a − bp)− o
T − h

T (a − bp)

[

(1+m)2

2 ln
(

1+m
1+m−T

)

+ T2

4 − (1+m)T
2

]

− c
T (a − bp)

(1 + m) ln
(

1+m
1+m−T

)

− G

+δ
{

Z −
(

k1
T + k2

2 (a − bp)(1 + m) ln
(

1+m
1+m−T

))

(

1 − ξ
(

1 − e−mG
))

}

+p(a − bp)Ie

[

S − T
2

]

.

(18)

4.4. Case 4: (S ≤ T) with Carbon Reduction Investment

Similar to case 2 and what we mentioned in case 3, the total profit is

TP4(T, p, G) = pD (p)− o
T − h

T D(p)

[

(1+m)2

2 ln
(

1+m
1+m−T

)

+ T2

4 − (1+m)T
2

]

− cI(0)
T − G + δ

[

CE
(

1 − ξ
(

1 − e−mG
))]

+ p(a−bp)IeS2

2T

− cIc
T

[

(1+m−S)2

2 ln
(

1+m−S
1+m−T

)

+ (T−S)(T+S−1−m)
4

]

= p(a − bp)− o
T − h

T (a − bp)

[

(1+m)2

2 ln
(

1+m
1+m−T

)

+ T2

4 − (1+m)T
2

]

− c
T (a − bp)(1 + m) ln

(

1+m
1+m−T

)

− G + δ
(

k1
T + k2

2 (a − bp)(1 + m) ln
(

1+m
1+m−T

))

(

1 − ξ
(

1 − e−mG
))

+ p(a−bp)IeS2

2T − cIc
T

[

(1+m−S)2

2 ln
(

1+m−S
1+m−T

)

+ (T−S)(T+S−1−m)
4

]

(19)
In the next section, a procedure is employed to obtain the optimal cycle length and

selling price values.

5. Theoretical Results and Optimal Solution

It is not possible to demonstrate that the profit function is concave using the second
derivative. The theorem in Cambini and Martein [51] is applied, which states that the
real-value function q(x) is a (strictly) pseudo-concave function if f (x) is a non-negative,
differentiable and (strictly) concave, and g(x) is positive, differentiable, and convex.

q(x) =
f (x)

g(x)
(20)

Considering the results obtained from the above theorem, the following results
are outlined.

q1(T, p) =
TC1(T, p)

T
, q2(T, p) =

TC2(T, p)

T
(21)

and

q3(T, p, G) =
TC3(T, p, G)

T
, q4(T, p, G) =

TC4(T, p, G)

T
(22)
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5.1. Necessary Conditions for Optimal Solutions

Theorem 1. TP1(T, p) is pseudo-concave concerning T and p.

Proof. See Appendix A.�

Theorem 2. TP2(T, p) is pseudo-concave concerning T and p.

Proof. See Appendix B.�

Theorem 3. TP3(T, p, G) is pseudo-concave concerning T, p, and G.

Proof. See Appendix C.�

Theorem 4. TP4(T, p, G) is pseudo-concave concerning T, p, and G.

Proof. See Appendix D.�

5.2. Sufficient Conditions for Optimal Solutions

Theorem 5. The optimal solutions of T and p that maximize the total profit function TP1(T, p)
are unique.

Proof. See Appendix E.�

Theorem 6. The optimal solutions of T and p that maximize the total profit function TP2(T, p)
are unique.

Proof. See Appendix F.�

Theorem 7. The optimal solutions of T and p that maximize the total profit function TP3(T, p, G)
are unique.

Proof. See Appendix G.�

Theorem 8. The optimal solutions of T and p that maximize the total profit function TP4(T, p, G)
are unique.

Proof. See Appendix H.�

6. Numerical Solution Approach

To validate the problem using numerical examples, we first simplify the model. Simpli-
fication of the model is done using mathematical theorems to rewrite the model to provide
a more comfortable solution using the numerical experiment as logarithm functions have
made the derivatives complex. To solve the model, we used Mathematica software version
11.2 and implemented it on a PC with Intel Core i7 and CPU of 2.40 GHz and 6 GB RAM to
find the models’ solutions and sensitivity analysis. To simplify the problem, we use the
Maclaurin series for a natural logarithm, illustrated as follows.

ln(1 + x) =
∞

∑
n=1

(−1)n+1 xn

n
= x −

x2

2
+

x3

3
− . . . (23)
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Therefore, the logarithm function of our elaboration is expanded as follows.

ln
(

1 + m

1 + m − T

)

=

[

m −
m2

2

]

−

[

(m − T)−
1
2
(m − T)2

]

(24)

Using the abovementioned results, numerical examples for all cases are discussed.

6.1. Example for Case 1 (T ≤ S) without Carbon Reduction Investment

Consider o = 100 $, h = 0.5 $, c = 20 $, a = 100, b = 2, m = 0.7 year, S = 0.5 year,

k1 = 1 kg, k2 = 1 kg, δ = 5 $/kg, Z = 10 kg/year, and Ie = 0.1. Taking

{

dq1(T,p)
dT = 0

dq1(T,p)
dp = 0

and computing in Mathematica 11.2, we have optimal values T∗ = 0.379 years and
p∗ = 33.444 $. Putting the optimal values in Equation (13) to get the optimal value
of total profit, TP∗

1 (T, p) = 338.341 $. The pseudo-concavity conditions are held by
d2TP1(T,p)

dT2 = −3989.95 < 0, d2TP1(T,p)
dp2 = −4.124 < 0, and d2TP1(T,p)

dpdT = 42.435 > 0. Therefore,

the determinant of the corresponding Hessian matrix is |H1|= 14, 653.824 > 0.

6.2. Example for Case 2 (T ≥ S) without Carbon Reduction Investment

Consider o = 100 $, h = 0.5 $, c = 20 $, a = 100, b = 2, m = 0.2 year, S = 0.3 year,
k1 = 1 kg, k2 = 1 kg, δ = 5 $/kg, Ic = 0.3, Z = 10 kg/year, and Ie = 0.1. Taking
{

dq2(T,p)
dT = 0

dq2(T,p)
dp = 0

and computing in Mathematica 11.2, we have optimal values T∗ = 0.518 years

and p∗ = 38.492 $. Putting the optimal values in Equation (16) to get the optimal value
of total profit, TP∗

2 (T, p) = 112.141 $. The pseudo-concavity conditions are held by
d2TP2(T,p)

dT2 = −1522.59 < 0, d2TP2(T,p)
dp2 = −4.034 < 0, and d2TP2(T,p)

dpdT = 33.424 > 0. There-

fore, the determinant of the corresponding Hessian matrix is |H2| = 5025.976 > 0.

6.3. An Algorithm to Find the Optimal Solution for Case 3 (T ≤ S) with Carbon
Reduction Investment

Consider o = 100 $, h = 0.5 $, c = 20 $, a = 100, b = 2, m = 0.7 year, S = 0.5 year,
k1 = 1 kg, k2 = 1 kg, δ = 5 $/kg, Ic = 0.3, Z = 10 kg/year, ξ = 0.2, x = 0.8, and Ie = 0.1.
Then we use an algorithm to find the optimal solution of G.

• Step 1 Input the values of parameters.
• Step 2 Set G = 0 and find the optimal variables (T∗, p∗).
• Step 3 Substitute the optimal variables obtained into the total profit function and find

the optimal total profit.
• Step 4 Set G = 0, 1, 2, 3, . . . and find the optimal solutions.
• Step 5 Continue the steps until the total profit function starts to decrease.
• Step 6 Introduce the optimal G when the last increasing total profit function is illustrated.
• Step 7 Stop.

The results from the algorithm presented are provided in Table 3.

Table 3. Solution algorithm for case 3 to find G∗.

Case 3 (T≤S) with Carbon Reduction Investment

G∗ T∗ p∗ TP∗(T,p,G)

0 0.379 33.444 338.341
1 0.380 33.416 341.678
2 0.381 33.404 342.631
3 0.381 33.398 342.509
4 0.381 33.395 341.905



Mathematics 2021, 9, 470 12 of 25

The pseudo-concavity conditions are held by d2TP3(T,p,G)
dT2 = −3877.07 < 0, d2TP3(T,p,G)

dp2 =

−4.123 < 0, and d2TP3(T,p,G)
dpdT = 41.520 > 0. Therefore, the determinant of the corresponding

Hessian matrix is |H2| = 14, 261.249 > 0.

6.4. An Algorithm to Find the Optimal Solution for Case 4 (T ≥ S) with Green
Investment Technology

Consider o = 100 $, h = 0.5 $, c = 20 $, a = 100, b = 2, m = 0.2 year, S = 0.3 year,
k1 = 1 kg, k2 = 1 kg, δ = 5 $/kg, Ic = 0.3, Z = 10 kg/year, ξ = 0.2, x = 0.8, and Ie = 0.1.
Then we use an algorithm to find the optimal solution of G.

• Step 1 Input the values of parameters.
• Step 2 Set G = 0 and find the optimal variables (T∗, p∗).
• Step 3 Substitute the optimal variables obtained into the total profit function and find

the optimal total profit.
• Step 4 Set G = 0, 1, 2, 3, . . . and find the optimal solutions.
• Step 5 Continue the above steps until the total profit function starts to decrease.
• Step 6 Introduce the optimal G when the last increasing total profit function is illustrated.
• Step 7 Stop.

The results from the algorithm presented are provided in Table 4.

Table 4. Solution algorithm for case 4 to find G∗.

Case 4 (S≤T) with Carbon Reduction Investment

G∗ T∗ p∗ TP∗(T,p,G)

0 0.518 38.492 112.141
1 0.522 38.435 116.407
2 0.524 38.410 117.792
3 0.525 38.398 117.867
4 0.526 38.393 117.350
5 0.526 38.391 116.568

The pseudo-concavity conditions are held by d2TP4(T,p,G)
dT2 = −1440.89 < 0, d2TP4(T,p,G)

dp2 =

−4.034 < 0, and d2TP4(T,p,G)
dpdT = 31.990 > 0. Therefore, the determinant of the corresponding

Hessian matrix is |H2| = 4789.190 > 0.
The concavity of different cases elaborated in this paper is shown in Figure 3.

6.5. Sensitivity Analysis

This subsection presents the sensitivity analysis for all cases in Tables 5 and 6 to
illustrate how relevant inventory costs, demand function coefficients, and carbon emission
parameters affect the optimal solution.

The behavior of parameters when changing their value is outlined to obtain the maxi-
mum total profit. The impacts of each parameter on the replenishment cycle and selling
price, and the profit obtained, are discussed in Tables 5 and 6. Table 5 mainly concentrates
on the cases that have not considered carbon reduction technology investment, and Table 6
discusses the cases that have considered carbon reduction technology investment. The
impact of parameters is discussed when the profit function stands at its optimal point.
Additionally, each parameter’s significance in increasing or decreasing the amount of profit
obtained can be derived from Tables 5 and 6. Therefore, the increasing or decreasing trend
of the total profit is captured when each parameter’s value increases. In the next section,
managerial insights are proposed according to each parameter’s impact on total profit.
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Figure 3. Concavity illustration of different cases.

Table 5. Sensitivity analysis concerning the parameters for Cases 1 and 2.

Parameter

Case
1 (T≤S) without Carbon Reduction Investment

Case
2 (S≤T) without Carbon Reduction Investment

m = 0.7 and S = 0.5 m = 0.2 and S = 0.3

T∗ p∗ TP∗
1(T,p) T∗ p∗ TP∗

2(T,p)

o = 80 0.338 33.027 394.083 0.457 37.983 153.171
o = 100 0.379 33.444 338.341 0.518 38.492 112.141
o = 120 0.417 33.835 288.101 0.576 38.977 75.621

h = 0.5 0.379 33.444 338.341 0.518 38.492 112.141
h = 1 0.374 33.384 337.168 0.515 38.534 108.795

h = 1.5 0.370 33.323 336.073 0.511 38.575 105.486

c = 15 0.400 31.598 485.293 0.506 35.261 279.198
c = 17.5 0.388 32.519 409.486 0.508 36.843 190.678
c = 20 0.379 33.444 338.341 0.518 38.492 112.141

a = 100 0.379 33.444 338.341 0.518 38.492 112.141
a = 110 0.350 35.654 523.619 0.462 40.526 243.409
a = 120 0.328 37.924 737.612 0.421 42.691 404.045

b = 1.5 0.352 41.507 732.663 0.447 46.238 445.166
b = 1.75 0.365 36.874 504.445 0.478 41.732 247.587

b = 2 0.379 33.444 338.341 0.518 38.492 112.141

k1 = 0.5 0.374 33.393 344.975 0.511 38.430 116.996
k1 = 1 0.379 33.444 338.341 0.518 38.492 112.141

k1 = 1.5 0.384 33.494 331.791 0.526 38.554 107.355



Mathematics 2021, 9, 470 14 of 25

Table 5. Cont.

Parameter

Case
1 (T≤S) without Carbon Reduction Investment

Case
2 (S≤T) without Carbon Reduction Investment

m = 0.7 and S = 0.5 m = 0.2 and S = 0.3

T∗ p∗ TP∗
1(T,p) T∗ p∗ TP∗

2(T,p)

k2 = 0.5 0.391 33.367 351.719 0.547 38.294 131.917
k2 = 1 0.379 33.444 338.341 0.518 38.492 112.141

k2 = 1.5 0.368 33.520 325.558 0.495 38.687 93.867

δ = 4 0.381 33.393 336.227 0.526 38.389 111.746
δ = 5 0.379 33.444 338.341 0.518 38.492 112.141
δ = 6 0.376 33.495 340.500 0.511 38.596 112.709

Z = 9 0.379 33.444 333.341 0.518 38.492 107.141
Z = 10 0.379 33.444 338.341 0.518 38.492 112.141
Z = 11 0.379 33.444 343.341 0.518 38.492 117.141

Table 6. Sensitivity analysis for the parameters for Cases 3 and 4.

Parameter

Case 3 (T≤S) with Carbon Reduction Investment Case 4 (S≤T) with Carbon Reduction Investment
m = 0.7, S = 0.5, and G∗ = 2 m = 0.2, S = 0.3, and G∗ = 3

T∗ p∗ TP∗
3(T,p,G) T∗ p∗ TP∗

4(T,p,G)

o = 80 0.346 32.837 398.108 0.462 37.900 158.377
o = 100 0.381 33.404 342.631 0.525 38.398 117.867
o = 120 0.419 33.793 292.687 0.585 38.871 81.846

h = 0.5 0.381 33.404 344.631 0.525 38.398 117.867
h = 1 0.376 33.344 343.429 0.521 38.440 114.445

h = 1.5 0.371 33.283 342.305 0.517 38.482 111.064

c = 15 0.403 31.559 490.313 0.516 35.179 286.686
c = 17.5 0.390 32.479 414.113 0.517 36.757 197.255
c = 20 0.381 33.404 342.631 0.525 38.398 117.867

a = 100 0.381 33.404 342.631 0.525 38.398 117.867
a = 110 0.352 35.617 528.288 0.468 40.448 249.972
a = 120 0.330 37.891 742.621 0.427 42.624 411.315

b = 1.5 0.354 41.471 737.242 0.454 46.166 451.921
b = 1.75 0.367 36.836 505.888 0.485 41.652 253.873

b = 2 0.381 33.404 342.631 0.525 38.398 117.867

k1 = 0.5 0.377 33.361 348.171 0.519 38.349 121.781
k1 = 1 0.381 33.404 342.631 0.525 38.398 117.867

k1 = 1.5 0.385 33.445 337.152 0.531 38.448 113.998

k2 = 0.5 0.391 33.339 353.949 0.550 38.237 134.351
k2 = 1 0.381 33.404 342.631 0.525 38.398 117.867

k2 = 1.5 0.372 33.467 331.750 0.504 38.558 102.466

δ = 4 0.383 33.361 339.289 0.532 38.315 115.851
δ = 5 0.381 33.404 342.631 0.525 38.398 117.867
δ = 6 0.379 33.446 346.008 0.519 38.483 120.009

Z = 9 0.381 33.404 337.631 0.525 38.398 112.867
Z = 10 0.381 33.404 342.631 0.525 38.398 117.867
Z = 11 0.381 33.404 347.631 0.525 38.398 122.867

ξ = 0.1 0.380 33.424 339.482 0.522 38.445 113.485
ξ = 0.2 0.381 33.404 342.631 0.525 38.398 117.867
ξ = 0.3 0.382 33.383 345.788 0.529 38.352 122.287

x = 0.7 0.380 33.368 342.275 0.525 38.402 117.559
x = 0.8 0.381 33.404 342.631 0.525 38.398 117.867
x = 0.9 0.381 33.402 342.920 0.525 38.396 118.094
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6.6. Managerial Applications

As the impact of carbon emission reduction investment in the supply chain is dis-
cussed, a comparison between the cases in which the investment is allowable and the
cases in which it is not allowable is proposed. Investing in green technology can lead to
ameliorating the total profit of the seller in both cases when T ≤ S (See Figure 4) and T > S
(See Figure 5). In both cases, the total profit increases and reaches the highest point, which
is the optimal point, and then decreases. Therefore, investing in green technology can
enhance the total profit obtained.

Figure 4. Impact of green technology investment on total profit when T ≤ S.

Figure 5. Impact of green technology investment on total profit when T > S.

Based on the parameters’ behavior and their effects on the optimal solution in
Tables 5 and 6, we can obtain the following managerial insights.

1. The increasing ordering (o), holding (h), and purchasing (c) costs result in a decrease
in the total profit. The reason for this circumstance is the increase in the relevant
inventory costs. As ordering cost is an ongoing cost in the inventory system after the
simplifications, an increase in ordering cost leads to the same decrease in total profit.
The purchasing cost is directly connected to the order quantity, and when the unit
purchasing cost increases, the retailer is forced to order the items in larger quantities,
and the total purchasing cost will be increased. Moreover, as holding cost is related
to the average inventory level, increasing the holding cost results in warehousing
more extensive stocks, leading to an increase in total holding cost and a decrease in
total profit. A trade-off between ordering, holding, and purchasing costs can result in
achieving the maximum total profit.
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2. The increase in carbon emissions due to ordering (k1) and holding the inventory (k2)
results in decreasing the total profit. A fixed tax is applied to the number of carbon
emissions, and as the emissions increase, a higher carbon cost is imposed on the
seller (see Figures 6 and 7). A solution to overcome this challenge is to invest more in
carbon reduction technologies. As mentioned in Figures 7 and 8, a specific amount of
green technology investment increases the total profit. Therefore, when the emissions
due to ordering and warehousing processes increase, the seller can invest in green
technology to avoid loss of profit.

Figure 6. Impact of increasing k1 on total profit.

Figure 7. Impact of increasing k2 on total profit.

Figure 8. Impact of increasing δ on total profit.

3. The increasing carbon tax δ results in increasing the amount of total profit. As in all
cases, the carbon emissions do not exceed the carbon cap. The seller can accumulate
revenue by selling the surplus of carbon allowance at the rate of δ (see Figure 8).
Analysis of the impact of the carbon tax on total profit is dependent on the emissions.



Mathematics 2021, 9, 470 17 of 25

When carbon emitted does not exceed the cap assigned, the allowance’s surplus will
benefit the seller, but when it exceeds the allowance, the seller should use different
methods such as carbon reduction investment to mitigate profit losses.

4. An increase in carbon cap Z can lead to increasing the total profit and increasing the
carbon allowance that can be sold, and revenue can be obtained (see Figure 9). As
the cap increases, the seller can sell a larger portion of allowance to other firms to
accumulate revenue. In addition, more carbon is allowed to be emitted, which leads
to an increase in the frequency of processes associated with emissions. Facilitating
the processes can benefit the firms as well.

Figure 9. Impact of increasing Z on total profit.

5. As the reduction fraction of carbon emissions after carbon reduction investment ξ

increases, the amount of carbon emissions decreases, and more revenue is gained
due to selling the extra carbon emission allowance. Therefore, the total profit will be
increased. Therefore, using technology and filters that reduce carbon emissions con-
siderably is a practical application that can be analyzed in the market (see Figure 10).

Figure 10. Impact of increasing ξ on total profit.

6. Increasing the efficiency of carbon reduction results in increasing the total profit
because the total carbon emissions will be reduced more efficiently, and the total
profit will be obtained due to selling the extra carbon emission allowance. Therefore,
filters that are more efficient in reducing carbon emissions can be utilized by firms.

7. Conclusions

With ever-increasing sustainability considerations in inventory systems, companies
are looking for means to decrease emissions. One of the effective means is to invest in
carbon emission reduction technologies to control emissions. Moreover, governments
regulate deterrent and encouraging regulations to develop sustainability in supply chains.
Deterioration of items is another challenge that companies confront. Most of the items



Mathematics 2021, 9, 470 18 of 25

deteriorate at a time-varying rate, and they have specific expiration dates. Therefore,
companies are supposed to sell deteriorating items as soon as possible to avoid losses due
to deterioration. Therefore, a permissible delay in payment is offered to the buyer instead
of instant payment. The delay in payment stimulates the demand and increases the profit
obtained in the long-term. Despite the significance of the abovementioned challenges, few
papers have investigated the challenges of deterioration, delay in payment, and carbon
emissions concurrently. Previous works in our contribution mainly concentrated on deteri-
orating items with a constant rate of deterioration considering carbon emissions. Very few
papers developed a time-varying deterioration function and trade credit period. Almost
no papers have elaborated carbon reduction investment technology for deteriorating items
with a maximum lifetime to our knowledge. This paper concentrated on filling this gap
by considering the integration of the mentioned issues. An EOQ model for deteriorat-
ing items with expiration dates is illustrated in this paper when a delay in payment is
allowed. Carbon emissions due to ordering and warehousing operations are considered,
and investing in carbon emission reduction technology is discussed in the case of carbon
cap-and-tax regulation. The seller searches for the optimal value for replenishment cycle
length and selling price when the carbon reduction investment is considered discrete. A
solution algorithm is proposed, and necessary and sufficient conditions of optimality are
discussed for validation.

The contribution’s main novelty is applying carbon emission reduction technology
to an inventory system for deteriorating items with expiration dates when a delay in
payment is allowable. In addition, to highlight the pricing issue, a price-dependent demand
function is developed. Discussing the impact of carbon reduction technology indicates the
significance of efforts made to mitigate inventory system emissions. The results obtained
from the quantitative experiment illustrate that a trade-off must be considered when
investing in carbon reduction technologies to maximize the profit obtained along with
eliminating emissions.

It is found that a trade-off must be considered between the investment in carbon emis-
sion reduction technologies and the profit obtained due to mitigating emissions. Increasing
carbon tax leads to an increase in total profit. This can be considered a contradiction to
previous works, but as carbon cap and tax is developed, the seller is encouraged to mitigate
emissions and accumulate revenue by the carbon tax rate.

Possible opportunities to extend the mathematical model proposed in this paper are
discussed as follows. The impact of other carbon emission regulations such as carbon offset
and carbon trade can be discussed. Other sources of emissions include manufacturing,
remanufacturing, recycling, scrapping, and transportation that have been discussed less
frequently in recent papers. The deterioration rate can be considered stochastic to meet
practical conditions. The Weibull distribution function is a common stochastic function
that is utilized for indicating the rate of deterioration. The model can be extended for
imperfect quality items. In this regard, scrap price, inspection, and allowable quality
improvement can be developed. The demand function can depend on other factors such
as trade credit, stock in hand, promotional efforts, and carbon emissions for developing a
model in practice.

This paper’s proposed model can be applied to food industries to mitigate emis-
sions and avoid losses due to deterioration. Companies in developing countries with
sustainability concerns can utilize the customized model for their governments’ carbon
emission policies.

Author Contributions: Conceptualization, A.S., U.M., M.-L.T. and B.S.; Formal analysis, A.S., M.-
L.T. and B.S.; Funding acquisition, B.S.; Investigation, U.M.; Supervision, U.M., M.-L.T. and B.S.;
Validation, M.-L.T. and B.S.; Writing—Original draft, A.S.; Writing—Review & editing, U.M., M.-L.T.
and B.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not Applicable.



Mathematics 2021, 9, 470 19 of 25

Informed Consent Statement: Not Applicable.

Data Availability Statement: Not Applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The first- and second-order partial derivatives of q1(T, p) with respect to T are

dq1(T,p)
dT = p(a − bp)−

c(1+m)(a−bp)
1+m−T + Ie p(a − bp)

(

S − T
2

)

−h(a − bp)

(

1
2 (−1 − m) + (1+m)2

2(1+m−T)
+ T

2

)

− 1
2 Ie p(a − bp)T

−
(

k2(1+m)(a−bp)
2(1+m−T)

− k1
T2

)

Tδ − δ
[

k1
T + 1

2 k2(1 + m)(a − bp) ln
(

1+m
1+m−T

)]

(A1)

and

d2q1(T,p)
dT2 = −Ie p(a − bp)− h(a − bp)

(

1
2 + (1+m)2

2(1+m−T)2

)

− c(1+m)(a−bp)

(1+m−T)2

−2
(

k2(1+m)(a−bp)
2(1+m−T)

− k1
T2

)

δ −

(

k2(1+m)(a−bp)

2(1+m−T)2 + 2k1
T3

)

δT < 0.
(A2)

If k1
k2

<
T2(1+m)(a−bp)

2(1+m−T)
, according to (22), the total profit function TP1(T, p) is pseudo-

concave with respect to T.
The first- and second-order partial derivatives of q1(T, p) with respect to p are

dq1(T,p)
dp = −bpT + (a − bp)T − bIe pT

(

S − T
2

)

+ Ie(a − bp)T
(

S − T
2

)

+ bc(1 + m) ln
(

1+m
1+m−T

)

+ 1
2 bk2(1 + m)Tδ ln

(

1+m
1+m−T

)

+ bh
(

− 1
2 (1 + m)T + T2

4 + 1
2 (1 + m)2 ln

(

1+m
1+m−T

)) (A3)

and
d2q1(T, p)

dp2 = −2bT − 2bIeT

(

S −
T

2

)

< 0. (A4)

Therefore, according to (22), the total profit function TP1(T, p) is pseudo-concave with
respect to p.

Appendix B

The first- and second-order partial derivatives of q2(T, p) with respect to T are

dq2(T,p)
dT = p(a − bp)−

c(1+m)(a−bp)
1+m−T − h(a − bp)

(

− 1
2 (1 + m) + (1+m)2

2(1+m−T)
+ T

2

)

−cIc

(

(1+m−S)2

2(1+m−T)
+ 1

4 (T − S) + 1
4 (−1 − m + S + T)

)

−
(

k2(1+m)(a−bp)
2(1+m−T)

− k1
T2

)

Tδ

−δ
(

k1
T + 1

2 k2(1 + m)(a − bp) ln
(

1+m
1+m−T

))

(A5)

and

d2q2(T,p)
dT2 = −h(a − bp)

(

1
2 + (1+m)2

2(1+m−T)2

)

− cIc

(

1
2 + (1+m)2

2(1+m−T)2

)

− c(1+m)(a−bp)

(1+m−T)2

−2δ
(

k2(1+m)(a−bp)
2(1+m−T)

− k1
T2

)

−

(

k2(1+m)(a−bp)

2(1+m−T)2 + 2k1
T3

)

δT < 0
(A6)

If k1
k2

<
T2(1+m)(a−bp)

2(1+m−T)
, according to (22), the total profit function TP2(T, p) is pseudo-

concave with respect to T.
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The first- and second-order partial derivatives of q2(T, p) with respect to p are

dq2(T,p)
dp = − 1

2 bIe pS2 + 1
2 Ie(a − bp)S2 − bpT + (a − bp)T + bc(1 + m) ln

(

1+m
1+m−T

)

+ 1
2 bk2(1 + m)Tδ ln

(

1+m
1+m−T

)

+ bh
(

− 1
2 (1 + m)T + T2

4 + 1
2 (1 + m)2 ln

(

1+m
1+m−T

)) (A7)

and
d2q2(T, p)

dp2 = −bIeS2 − 2bT < 0 (A8)

Therefore, according to (22), the total profit function TP2(T, p) is pseudo-concave with
respect to p.

Appendix C

The first- and second-order partial derivatives of q3(T, p, G) with respect to T are

dq3(T,p,G)
dT = p(a − bp)−

c(1+m)(a−bp)
1+m−T + Ie p(a − bp)

(

S − T
2

)

−h(a − bp)

(

1
2 (−1 − m) + (1+m)2

2(1+m−T)
+ T

2

)

− 1
2 Ie p(a − bp)T

−
(

k2(1+m)(a−bp)
2(1+m−T)

− k1
T2

)

Tδ
(

1 − ξ(1 − e−xG
)

)

+δ
(

Z −
(

1 − ξ(1 − e−xG
)

)
)

[

k1
T + 1

2 k2(1 + m)(a − bp) ln
(

1+m
1+m−T

)]

(A9)

and

d2q3(T,p,G)
dT2 = −Ie p(a − bp)− h(a − bp)

(

1
2 + (1+m)2

2(1+m−T)2

)

− c(1+m)(a−bp)

(1+m−T)2

−2
(

k2(1+m)(a−bp)
2(1+m−T)

− k1
T2

)

δ
(

1 − ξ(1 − e−xG
)

)

−

(

k2(1+m)(a−bp)

2(1+m−T)2 + 2k1
T3

)

δT
(

1 − ξ(1 − e−xG
)

) < 0.

(A10)

If k1
k2

<
T2(1+m)(a−bp)

2(1+m−T)
, according to (23), the total profit function TP3(T, p, G) is pseudo-

concave with respect to T.
The first- and second-order partial derivatives of q3(T, p, G) with respect to p are

dq3(T,p,G)
dp = −bpT + (a − bp)T − bIe pT

(

S − T
2

)

+ Ie(a − bp)T
(

S − T
2

)

+ bc(1 + m) ln
(

1+m
1+m−T

)

+ 1
2 bk2

(

1 − ξ(1 − e−xG
)

)(1 + m)Tδ ln
(

1+m
1+m−T

)

+bh
(

− 1
2 (1 + m)T + T2

4 + 1
2 (1 + m)2 ln

(

1+m
1+m−T

))

(A11)

and
d2q3(T, p, G)

dp2 = −2bT − 2bIeT

(

S −
T

2

)

< 0. (A12)

Therefore, according to (23), the total profit function TP3(T, p, G) is pseudo-concave
with respect to p.

The first- and second-order partial derivatives of q3(T, p, G) with respect to p are

d2q3(T, p, G)

dG
= −1 + e−GxTδxξ

(

k1

T
+

k2(1 + m)(a − bp)

2
ln
(

1 + m

1 + m − T

))

. (A13)

and

d2q3(T, p, G)

dG2 = −e−GxTδx2ξ

(

k1

T
+

k2(1 + m)(a − bp)

2
ln
(

1 + m

1 + m − T

))

< 0. (A14)
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Therefore, according to (23), the total profit function TP3(T, p, G) is pseudo-concave
with respect to G.

Appendix D

The first- and second-order partial derivatives of q4(T, p, G) with respect to T are

dq4(T,p,G)
dT = p(a − bp)−

c(1+m)(a−bp)
1+m−T − h(a − bp)

(

− 1
2 (1 + m) + (1+m)2

2(1+m−T)
+ T

2

)

−cIc

(

(1+m−S)2

2(1+m−T)
+ 1

4 (T − S) + 1
4 (−1 − m + S + T)

)

−
(

k2(1+m)(a−bp)
2(1+m−T)

− k1
T2

)

(

1 − ξ(1 − e−xG
)

)Tδ

+δ
(

Z −
(

1 − ξ(1 − e−xG
)

)
)

(

k1
T + 1

2 k2(1 + m)(a − bp) ln
(

1+m
1+m−T

))

(A15)

and

d2q4(T,p,G)
dT2 = −h(a − bp)

(

1
2 + (1+m)2

2(1+m−T)2

)

− cIc

(

1
2 + (1+m)2

2(1+m−T)2

)

− c(1+m)(a−bp)

(1+m−T)2

−2δ
(

1 − ξ(1 − e−xG
)

(

k2(1+m)(a−bp)
2(1+m−T)

− k1
T2

)

−

(

k2(1+m)(a−bp)

2(1+m−T)2 + 2k1
T3

)

δT
(

1 − ξ(1 − e−xG
)

< 0

(A16)

If k1
k2

<
T2(1+m)(a−bp)

2(1+m−T)
, according to (23), the total profit function TC4(T, p, G) is pseudo-

concave with respect to T.
The first- and second-order partial derivatives of q4(T, p, G) with respect to p are

dq4(T,p,G)
dp = − 1

2 bIe pS2 + 1
2 Ie(a − bp)S2 − bpT + (a − bp)T + bc(1 + m) ln

(

1+m
1+m−T

)

+ 1
2 bk2(1 + m)Tδ

(

1 − ξ(1 − e−xG
)

) ln
(

1+m
1+m−T

)

+bh
(

− 1
2 (1 + m)T + T2

4 + 1
2 (1 + m)2 ln

(

1+m
1+m−T

))

(A17)

and
d2q4(T, p, G)

dp2 = −bIeS2 − 2bT < 0 (A18)

Therefore, according to (23), the total profit function TP4(T, p, G) is pseudo-concave
with respect to p.

The first- and second-order partial derivatives of q4(T, p, G) with respect to G are

d2q3(T, p, G)

dG
= −1 + e−GxTδxξ

(

k1

T
+

k2(1 + m)(a − bp)

2
ln
(

1 + m

1 + m − T

))

. (A19)

and

d2q3(T, p, G)

dG2 = −e−GxTδx2ξ

(

k1

T
+

k2(1 + m)(a − bp)

2
ln
(

1 + m

1 + m − T

))

< 0. (A20)

Therefore, according to (23), the total profit function TP4(T, p, G) is pseudo-concave
with respect to G.

Appendix E

The condition of optimality is that the Hessian matrix of q1(T, p) is positive defi-

nite, i.e., all eigenvalues of the Hessian matrix H1 =





d2q1(T,p)
dT2

d2q1(T,p)
dTdp

d2q1(T,p)
dTdp

d2q1(T,p)
dp2



 are negative

definite, where d2q1(T,p)
dT2 < 0 and d2q1(T,p)

dp2 < 0 as per the proofs in Appendix A. Addi-
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tionally, the determinant of the Hessian matrix |H1| =

∣

∣

∣

∣

∣

∣

d2q1(T,p)
dT2

d2q1(T,p)
dTdp

d2q1(T,p)
dTdp

d2q1(T,p)
dp2

∣

∣

∣

∣

∣

∣

T=T∗ , p=p∗

=

1
4(1+m−T)2

{

2b(a − bp)T(−2 + Ie(T − 2S))
[

(2c − k2δT)(1 + m) + (2pIe + 2h)(1 + m − T)2

+2k2δ(1 + m)2
]

+ [(1 + m − T)(2a + Th − 4bp)(1 + Ie(S − T)) + (1 + m)(2bc + Tk2δ+

Th + bk2δ(1 + m − T) ln
(

1+m
1+m−T

)]2
}

> 0 for any positive value of T and p, where

{

2b(a − bp)T(−2 + Ie(T − 2S))
[

(2c − k2δT)(1 + m) + (2pIe + 2h)(1 + m − T)2 + 2k2δ(1 + m)2
]

+[(1 + m − T)(2a + Th − 4bp)(1 + Ie(S − T)) + (1 + m)(2bc + Tk2δ + Th

+bk2δ(1 + m − T) ln
(

1+m
1+m−T

)]2
}

> 0

(A21)

Considering the above condition, according to (22), the optimal values are unique,
and the total profit function is maximized at T = T∗, p = p∗.

Appendix F

The condition of optimality is that the Hessian matrix of q2(T, p) is positive defi-

nite, i.e., all eigenvalues of the Hessian matrix H1 =





d2q2(T,p)
dT2

d2q2(T,p)
dTdp

d2q2(T,p)
dTdp

d2q2(T,p)
dp2



 are negative

definite, where d2q2(T,p)
dT2 < 0 and d2q2(T,p)

dp2 < 0 according to the proofs in Appendix B. Addi-

tionally, the determinant of the Hessian matrix |H2| =





d2q2(T,p)
dT2

d2q2(T,p)
dTdp

d2q2(T,p)
dTdp

d2q2(T,p)
dp2





T=T∗ , p=p∗

=

1
4(1+m−T)2T2

{

(1 + m − T)2T2[h(a − bp) + cIc] + (1 + m)(a − bp)T2[2c + 2(1 + m − T)k2δ

+k2δT + h(1 + m) + cIcT2(1 + m − S)2
]

− T2[(1 + m)[2bc + bk2Tδ + bhT(1 + m − T)

ln
(

1+m
1+m−T

)]

+ (1 + m − T)[2a − 4bp + bhT]
]2
}

> 0 for any positive value of T and p,

where
{

(1 + m − T)2T2[h(a − bp) + cIc]

+(1 + m)(a − bp)T2
[

2c + 2(1 + m − T)k2δ + k2δT + h(1 + m) + cIcT2(1 + m − S)2
]

−T2
[

(1 + m)
[

2bc + bk2Tδ + bhT(1 + m − T) ln
(

1+m
1+m−T

)]

+ (1 + m − T)[2a − 4bp + bhT]
]2
}

> 0

(A22)

Considering the above condition, according to (22), the optimal values are unique,
and the total profit function is maximized at T = T∗, p = p∗.

Appendix G

The condition of optimality is that the Hessian matrix of q3(T, p, G) is positive definite,

i.e., all eigenvalues of the Hessian matrix H3 =











d2q3(T,p,G)
dT2

d2q3(T,p,G)
dTdp

d2q3(T,p,G)
dTdG

d2q3(T,p,G)
dpdT

d2q3(T,p,G)
dp2

d2q3(T,p,G)
dpdG

d2q3(T,p,G)
dGdT

d2q3(T,p,G)
dGdp

d2q3(T,p,G)
dG2











are

negative definite, where d2q2(T,p,G)
dT2 < 0, d2q2(T,p,G)

dp2 <0, and d2q3(T,p,G)
dG2 < 0 as per the proofs

in Appendix C. Additionally, the determinant of the Hessian matrix
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|H3| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

d2q3(T,p,G)
dT2

d2q3(T,p,G)
dTdp

d2q3(T,p,G)
dTdG

d2q3(T,p,G)
dpdT

d2q3(T,p,G)
dp2

d2q3(T,p,G)
dpdG

d2q3(T,p,G)
dGdT

d2q3(T,p,G)
dGdp

d2q3(T,p,G)
dG2

∣

∣

∣

∣

∣

∣

∣

∣

∣

T=T∗ ,p=p∗ ,G=G∗

= e−2Gx x2δξ

8(1+m−T)2T
{
[

k2
2(1 + m)2

Tδξ
(

ln
(

1+m
1+m−T

))2
− 2be−Gx(2 + Ie(2S − T))

(

2k1 + k2(1 + m)(a − bp)T
(

ln
(

1+m
1+m−T

)))

]
[

(1 + m)(a − bp)T2(2c + h(1 + m) + δ
(

1 + ξ(−1 + e−Gx
)

(k2T(1 + m)− k2)
]

+2bk2
2

(1 + m)2(a − bp)2T2δξ(2 + Ie(2S − T))
(

T + (1 + m − T) ln
(

1+m
1+m−T

))2
− 2bk2

2(1 + m)2

(a − bp)T2δξ
(

ln
(

1+m
1+m−T

))(

T + (1 + m − T)
(

ln
(

1+m
1+m−T

)))

[(1 + m)(2bc + bhT + bk2δ
(

1 + ξ(−1 + e−Gx
)

(

T + (1 + m − T)
(

ln
(

1+m
1+m−T

))))

+ (1 + m − T)(2a − 4bp + bhT+

4Iebp(T − S))] + e−GxT
(

2k1 + k2(1 + m)(a − bp)T
(

ln
(

1+m
1+m−T

)))

[(1 + m)(2bc + bhT+

bk2δ
(

1 + ξ(−1 + e−Gx
)

(

T + (1 + m − T)
(

ln
(

1+m
1+m−T

))))

+(1 + m − T)(2a − 4bp + bhT

+4Iebp(T − S))]2
}

< 0 for any positive value of T and p.

Considering the above condition, according to (23), the optimal values are unique,
and the total profit function is maximized at T = T∗, p = p∗ and G = G∗.

Appendix H

The condition of optimality is that the Hessian matrix of q4(T, p, G) is positive definite,

i.e., all eigenvalues of the Hessian matrix H4 =











d2q4(T,p,G)
dT2

d2q4(T,p,G)
dTdp

d2q4(T,p,G)
dTdG

d2q4(T,p,G)
dpdT

d2q4(T,p,G)
dp2

d2q4(T,p,G)
dpdG

d2q4(T,p,G)
dGdT

d2q4(T,p,G)
dGdp

d2q4(T,p,G)
dG2











are

negative definite, where d2q4(T,p,G)
dT2 < 0, d2q4(T,p,G)

dp2 < 0, and d2q4(T,p,G)
dG2 < 0 as proved in Ap-

pendix H respectively. Additionally, the determinant of the Hessian matrix

|H4| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

d2q4(T,p,G)
dT2

d2q4(T,p,G)
dTdp

d2q4(T,p,G)
dTdG

d2q4(T,p,G)
dpdT

d2q4(T,p,G)
dp2

d2q4(T,p,G)
dpdG

d2q4(T,p,G)
dGdT

d2q4(T,p,G)
dGdp

d2q4(T,p,G)
dG2

∣

∣

∣

∣

∣

∣

∣

∣

∣

T=T∗ , p=p∗ , G=G∗

=
{

−
(

1
4 b2e−2Gxk2

2(1 + m)2

T2x2ξ2
(

ln
(

1+m
1+m−T

))2
+ e−gxT

(

−bIeS2 − 2bT
)

δx2y
(

k1
T + k2

2 (1 + m)(a − bp) ln
(

1+m
1+m−T

))

)

(

(−h(a − bp)− cIc)

(

1
2 + (1+m)2

(1+m−T)2

)

− c(1+m)(a−bp)

(1+m−T)2 −
(

1 − ξ(1 − e−Gx
)

δ
[

2
(

k2(1+m)(a−bp)
2(1+m−T)

− k1
T2

)

+ T

(

k2(1+m)(a−bp)

2(1+m−T)2 − 2k1
T3

)])

+
(

e−GxTδx2ξ
)

(

k1
T + k2

2 (1 + m)(a − bp) ln
(

1+m
1+m−T

))

[

a − bp + bc(1+m)
1+m−T + bh

(

− 1
2 (1 + m) + (1+m)2

2(1+m−T)
+ T

2

)

+
bk2(1+m)Tδ(1−ξ(1−e−Gx)

2(1+m−T)
+ 1

2 bk2

(1 + m)δ
(

1 − ξ(1 − e−Gx
)

ln
(

1+m
1+m−T

)]2
−
(

be−Gxk2(1 + m)Tx2ξ ln
(

1+m
1+m−T

))

(

e−GxTx2ξ
(

k2(1+m)(a−bp)
2(1+m−T)

− k1
T2

)

+ e−GxTx2ξ
(

k1
T + k2

2 (1 + m)(a − bp) ln
(

1+m
1+m−T

)))[

a − bp + bc(1+m)
1+m−T

+bh

(

− 1
2 (1 + m) + (1+m)2

2(1+m−T)
+ T

2

)

+
bk2(1+m)Tδ(1−ξ(1−e−Gx)

2(1+m−T)
+ 1

2 bk2(1 + m)δ(1 − ξ(1−

e−Gx
)

ln
(

1+m
1+m−T

)]

−
(

−bIeS2 − 2bT
)

(

e−GxTx2ξ
(

k2(1+m)(a−bp)
2(1+m−T)

− k1
T2

)

+ e−GxTx2ξ
(

k1
T +

k2
2 (1 + m)(a − bp) ln

(

1+m
1+m−T

)))

2} < 0 for any positive value of T, p, and G.

Considering the above condition, according to (23), the optimal values are unique,
and the total profit function is maximized at T = T∗, p = p∗, and G = G∗.
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