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ABSTRACT 

In this paper, the Laplace transform definition is implemented without resorting to Adomian decomposition nor Homo-

topy perturbation methods. We show that the said transform can be simply calculated by differentiation of the original 

function. Various analytic consequent results are given. The simplicity and efficacy of the method are illustrated 

through many examples with shown Maple graphs, and transform tables are provided. Finally, a new infinite series rep- 

resentation related to Laplace transforms of trigonometric functions is proposed. 
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1. Introduction 

Integral transforms methods have been used to a great 

advantage in solving differential equations. Limitations 

of Fourier series technique, were overcome by the exten- 

sive coverage of the Fourier transform to functions 

 f t , which need not be periodic [1]. The complex vari- 

able in the Fourier transform is substituted by a single 

variable s  to obtain the well known Laplace transform 

[1-8], a favorite tool in solving initial value problems 

(IVPs). The integral equation defined by Léonard Euler 

was first named as Laplace by Spitzer in 1878. However 

the very first Laplace transform applications were estab- 

lished by Bateman in 1910 to solve Rutherford’s radio- 

active decay, and Bernstein in 1920 with theta functions. 

For a real function  f t  with variable  the 

Laplace transform, designated by the operator, , 

giving rise to a function in 

 0, ,t 
L

s ,  F s , in the right half 

complex plane, is defined by, 

       
0

e d ; Rest
f t F s f t t s

      L 0.  

While we completely focus on the Laplace transform, 

in this paper, many of the ideas herein stem from recent 

work on the Sumudu transform, and studies and observa- 

tions connecting the Laplace transform with the Sumudu 

transform through the Laplace-Sumudu Duality (LSD) 

for  and the Bilateral Laplace Sumudu Dua- 

lity (BLSD) for t  [9-16]. Indeed, considering the 
 0, ,t 



s -multiplied two-sided Laplace transform, 

   
   
e d e d

Re , .

st st ;s f t t s f t t

s

  

 


  
   

by making the parameter change s with 1 u  in the equ- 

ation above we get the two-sided Sumudu transform,  
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1 e
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e d ;

, .

t u
t u

t

f t

t t f t t
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f ut t
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Here, the constants 1  and 2  may be finite (or) in- 

finite, and are based on the exponential boundedness 

nature required on  f t  in the domain set  

       
| |

1 2, , 0, e , if 1 0,j

t

j

A

f t M f t M t
 



        
 


  

While Analyses about the properties of the Sumudu 

transform, transform tables, and many of its physical 

applications can be found in [9-12,14,16], investigations, 

applications, and transform tables stemming from the 

Natural transform can be found in [17-21]. This new 

integral transform combines both (one sided) Sumudu 

and (one sided) Laplace transforms by, *Corresponding author. 
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       20
e d ; Re 0, 0,st

f t f ut t s u .
        

Obviously, taking, , in the Natural transform, 

leads to the Laplace transform, and taking, , results 

in one sided Sumudu transform. We note that while the 

Natural can be bilateral like both Sumudu and Bilateral 

Laplace, when the variable  is chosen positive in the 

definition, both 

1u 



1s 

t

Re s  and the variable, , must be 

positive as well, as as this ought to correct a related one 

sided Natural Transform defintion misprint appearing in 

our papers [17,18]. 

u

The gist and essence of this work is solving the 

Laplace integral equation once by differention, and by 

integration by parts. Divided into two major sections, this 

paper in Section 2 explains the various multiple shift pro- 

perties connected with the Laplace transform by just 

differentiating the original function. The new infinite 

series representation of trigonometric functions related 

with the Laplace transform is proved in Section 3. In 

consequence of our formulations and derivations, three 

tables are provided at the end of the Section 3 ended with 

concluding remarks and directions for some future work. 

The tables are respectively covering derivatives periods 

for the function E sin t  (in Table 1), 21 trignometric 

series expansions entries (in Table 2), and 16 main 

Laplace transform properties, as generated by Propo- 

sition 3 (in Table 3). Examples 1, 2, and 3 in the body of 

the text of Section 2, as well as Example 6 and Entry 17 

of transform Table 2 in Section 3, are respectively af- 

forded Maple graphs (see Figures 1-5), showing both the 

time function invoked in the corresponding example, and 

its resulting Laplace trasform. 

2. Laplace Transforms by Function 
Differentiation 

As stated earlier in the introduction, an ultimate goal of 

ours, among others, is calculating the Laplace transform 

of  f t  by simple differentiation rather than usual inte- 

gration. We show that we can do this, without resorting 

to the Adomian nor homotopy methods, ADM, and 

HPM, as was done in [22,23]. Along with the Laplace 

series definition below, some elementary properties are 

proved. 

Definition The Laplace transform (henceforth de- 

signated as F(s)) of the exponential order and section- 

wise continuous function , is defined by,  f t 

     
1

0
0

d1
e ; Re 0

d

n

st

n n
n

f t
f t s

s t









 
.      

  
L  (1) 

Remark We observe that, from the traditional Laplace 

transform, taking  u f t , so that  

           0 1 d d
, , ,

d d

n

n

n

f t f t
u f t u u

t t
  

t

 and  

d e dst
v

 , so that  

     
  1

0 1 2

1 ee e
, , ,

n

1

stst st

n n
v v v

s s s

  




    . Now using  

 n
u  and  in Bernoulli’s integration by parts,  n

v

 
0

0 0

d 1
n n

n
n

u v u v





.
    
  

and noting  2 1
1

n
1    for n ≥ 0 Equation (1) follows. 

Can’t one choose u = e−st and  for solv- 

ing the Laplace integral equation by parts? The detailed 

answer with analysis is given in Section 3. For simplicity,  

 dv f t t d

we use hereafter 
     

d

d

n

n

n

f t
f t

t
 . 

Multiple Shifts and Periodicity Results 

Theorem 1 The Laplace transform of  derivative of -i th

 f t , with respect to  is defined by, t

           
1

1

1
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d
e 0

d

ni i
i k kst
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f t f t
s f

t s
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Proof. The LHS of above equation is  

     1 1

0
0

i i ki

k
s f t s f

  


   L , substituting Equation  

(1) for  f t  L , the proof is completed. 

 
Table 1. Period function calculations. 
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Table 2. New infinite series representation of trigonometric functions. 

S. No  f t       01
00

0

d
2 d

d

n

n n
t

n

f t J vt
t

 

 

  v  

1 et   0
0

0

d
2 d

d

n

n
n

J vt v
t

 



  

2 e t     0
0

0

d
1 2

d

n
n

n
n

dJ vt v
t

 



   

3 sin t     
2

020
0

d
1 2

d

n
n

n
n

dJ vt v
t

 



   

4 cos t     
2 1

02 10
0

d
1 2

d

n
n

n
n

dJ vt v
t

 




   

5 
2sin t  

   
1

2 1

02 3 2 10
0

11 d
2 d

2 2 d

n
n

n n
n

J vt v
t

  

 



   

6 2cos t  
   

2 1
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11 d
2 d

2 2 d

n
n

n n
n

J vt v
t

 

 



   

7 3sin t  
   

2
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0

1 1 d
3 2

4 3 d

n
n

n n
n

dJ vt v
t

 




    
   

8 
3cos t  

 
   

2 1
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0

1 1 d
3 2

4 3 d

n
n

n n
n

dJ vt v
t

 

 


    
   

9 
4sin t  

 
   

1
2 1

02 22 3 2 10
0

13 1 d
1 2

8 2 2 d

n
n

nn n
n

dJ vt v
t

  

 


     
   

10 
4cos t  

 
   

2 1

02 22 3 2 10
0

13 1 d
1 2

8 2 2 d

n
n

nn n
n

dJ vt v
t

 

 


     
   

11 5sin t  
   

2

02 2 20
0

1 5 1 d
5 2

8 6 3 10 5 d

n
n

n n n
n

dJ vt v
t

 



      
   

12 
5cos t  

 
     

2 1

02 1 2 1 2 10
0

1 5 1 d
10 2 d

16 3 5 d

n
n

n n n
n

J vt v
t

 

  


     
   

13 sin cost t  
 

   
2

02 1 20
0

1 d
2 d

2 d

n
n

n n
n

J vt v
t

 





   

14 
2 2sin cost t  

   
1

2 1

02 3 2 10
0

11 d
2 d

8 2 4 d

n
n

n n
n

J vt v
t

  

 





   

15 
3 3sin cost t  

   
2

02 1 2 1 20
0

1 3 1 d
2 d

32 2 6 d

n
n

n n n
n

J vt v
t

 

 


    
   

16 
4 4sin cost t  

 
   

1
2 1

02 1 2 2 10
0

13 1 d
1 2

128 32 4 4 d

n
n

n n n
n

dJ vt v
t

  

  


      
   

17 
5 5sin cost t  

   
2

02 2 1 2 1 20
0

1 5 5 1 d
2 d

512 2 6 10 d

n
n

n n n n
n

J vt v
t

 

 


     
   

18 sinh t   
2

020
0

d
2 d

d

n

n
n

J vt v
t

 



  

19 cosh t   
2 1

02 10
0

d
2 d

d

n

n
n

J vt v
t
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2sinh t   

2 1

02 1 2 10
0
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n
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Table 3. Laplace transform properties with respect to the Proposition 3. 

S. No  f t   f t  L  

1 
 d

d

i

i

f t

t
          

1
1

1

0 00

e 0
i

i k kst n i

n

n k

s f t s f
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d
t t i

i
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n

n

s f t


 




 
  

  

3  mt f t         
1

1
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1 e
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n
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n j s f t
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m

f t

t
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0

1 e
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m
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n j

s f t
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5 
 d

d

i

m

i
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t
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1 1

1

0 00 10
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n
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6 
 d1

d

i
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f t

t t
      

   
   

 

111
11

0 01 0
0

0
1 e 1

n m i ki k mm mi
m mnst

n kj j

s f t s f

n i j i k j

     


  

 
   

     
    

7   
0 0

times

d
t t im

i

t f   

         

1

1

0 0 0

1 e
m

m st n m i

n

n j

n i j s f t




  


 

 
   

 
  

8   
0 0

times

1
d

t t i

m

i

f
t

  

       

 
1

0 1
0

1 e

n m i
m

m nst

n j

s f t

n i j

 


 

 
  

   
  

9  d

d

i

m

i
t f t

t
              

1 1
1

1

0 00 0

1 e 0
m i

m i k kst n i m m

n

n kj

n j s f t s t f


 

   


 

 
   

 
   

10 
 d

d

i

i m

f t

t t
      

 
 

   1
1 1

0 01
0

0
1 e

n i m km i
m n i kst

m
n kj

s f t f
s

n j t

  
  

 

 
  

  
   

11   
0 0

times

d
t t im

i

f   

         

1

1

0 0 0

1
m

m n i m

n

n j

n j s f t




 


 

 
  

 
  

12 
   

0 0

times

d
t t i

m

i

f 


 

       

 
1

0 1
0

1

n i m
m

m n

n j

s f t

n j

 


 

 
  

  
  

13 Periodic function    
0

1

0

1
e

1 e

st n

nsT
n T

s f t







 
   

  

14    
0

d
t

f t g           2

1 1

0 0

e st n

n n

n

s f t g t




 


   
  

15 Initial Value      1

10
0 0

lim lim e st n

nt s
n

f t s f t


 

 


    
  

16 Final Value      1

10
0 0

lim lim e st n

nt s
n

f t s f t


 

 


    
  

 

Theorem 2 The Laplace transform of  antideri- 

vative of f(t), in the domain 

-i th

 0, t  with respect to , is 

given by, 

t Proof. Applying Equation (1) in 
 

i

f t

s

 L 
 and  

  
   

10 0
0

0times

d e

n
t t i st

n i
n

i

f t
f

s
  .





 



  
     
   

 
L




 

performing the usual computations, yields the RHS of the 

equation above and proves out theorem. 

Theorem 3 For , the Laplace transform of the 

function 

1m 
 m

t f t , is given by, 
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(a)                                                       (b) 

Figure 1. Graph of example 1. (a)    t tJ t
1

; (b)  
 

F s

s
3

2 2

1

1




. f

 

 
(a)                                                      (b) 

Figure 2. Graph of example 2 with a = 1, b = 2. (a)   e et t

f t
t

2 
 ; (b)    

 
 

s
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1
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L


 

Proof. From the theory of Laplace transform  

     d
1

d

m
mm

m
t f t f t

s
      L L

is given by Equation (1), 

   
   

1
0

0

d
1 e

d

nm
mm st

m n
n

f t
t f t

s s









                
L .   (2) 

 , when  f t  L   
When 1m   in Equation (2), 
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(a)                                                      (b) 

Figure 3. Graph of example 3. (a) ; (b)   
t

f t τ τ τ
0

sin d  
 

F s
s

2
2

2

1



. 

 

 
(a)                                                      (b) 

Figure 4. Graph of example 6 with a = 5. (a)  f t tcos 5 ; (b)    
s

F s
s
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L

     (3) 

When  in Equation (2), 2m 
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0
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e
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1 2
e .

n

st

n
n

n
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L

   (4) 

Finally for the non-negative integer , after simplifi- m
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(a)                                                      (b) 

Figure 5. Graph of entry 17 of Table 2 and its Laplace transform. (a)  f t t t
5 5

sin cos ; (b)  
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which yields the result of Theorem 3.  

Theorem 4 The Laplace transform of the function  

 
m

f t

t
, for , is, 1m 
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Proof. Substituting Equation (1) for  F   in  

     
times

d
m

m s s

m
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F
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L  and after the usual  

computations, Theorem 4 follows.  

Example 1 As an application of Theorem 3, the 

Laplace transform of , where   1tJ t

   
 

2 1m m
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1
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mm
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 , denotes the first kind  

order one Bessel function, is calculated as follows, 

(graph shown in Figure 1), 
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The multiple-shift theorems that follow are useful in 

treating differential and integral equations with poly- 

nomial coefficients. 

Example 2 The Laplace transform of 
e ebt at

t

 
 is  

calculated by taking, 

     
   
         

1

2 2 2

1

e e , e e ,
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Theorem 5 Let  when the  derivative of 

the function 

, 1i m 


-i th

f t , with respect to  is shifted by , 

then the Laplace transform is given by, 

t
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L   is given by Theorem 1. 

Theorem 6 For non-negative integers i and , when 

the  derivative of the function 

m

-i th  f t , with respect  

to  is shifted with t
1
m

t
, then the Laplace transform is  

given by, 
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Proof. The LHS of above equation is  
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1

 are given  

by Theorem 1, and after proper calculations, the proof is 

calculated. 

Theorem 7 For , the Laplace transform of the 
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m
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Proof. Applying Theorem 2 in LHS yields the RHS of 

the Equation above. 

Theorem 8 The Laplace transform of the  anti- 

derivative of the function 

-i th

  ,f t  with respect to  in  t

the interval  0, t  shifted with 
1

; 1,
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m
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  is given by, 
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Proof. Computing the summation in the RHS of the 

Equation in Theorem 2 with respect to s  in the domain 

 ,s  ,  times, yields the proof. m

We now establish the following results, 

Theorem 9 For , the Laplace transform of the 

 derivative of 

,i m 1

-i th  m
t f t  with respect to t  is given 

by, 

       

     

1
0 1

0

1
1

0

d
e

d

0 .

ni m
m st

i n
n j

i
i k km

k

n j f t
t f t

t s

s t f

i m





  

 


 



  
            







L

 (7) 

Proof. Substituting Theorem 3 in 
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       1 1

0
0

i i k km m

k
t f t s t f

  


    L
i

s . 

Theorem 10 The Laplace transform of the   

derivative with respect t

-i th

o t  of 
 

,
m

f t
 for non-nega

t
tive  

ve , integers, i  and ,m  is gi n by

 

   
 

     

1

1
0 0

0

11

0

d

d

e

0
.

i m

nm
st

n i m
n j

i k ki

m
k

t t

f t

n j s

s f

t





  

 

 



 
  
   

 
   

  







L

      (8) 

Proof. Substituting Theorem 4 in  

i f t 

   
   1 1 0
k

i i kf t f   
0

i

m mk
s s

t t
 

 
L . 

Example 3 Consider the function, 
0

sin d
t

   , then  

taking   sin ,f t t  yields the expected derivatives,  
            1 2 2

sin , , 1 sin
nn

cos ,f t t t t f t t    ,f
 2 1 nn

   

and,    1 cosf t t  ;


  0n  . Next, for  

1  in Theorem 11, i m

       
30

0
0

1
d e

n
t st

n
n

n f t
f

s
   .









          
L  




Therefore (Figure 3), 

   
 

   

 

4 6 2 20

4 2 2

2
2

1 2 12 4
sin d

1 12 2
1

2
.

1

n
t

n

n

n

n

s s s

n

s s s

s

  


        

  
    

 




 



L

 



Theorem 11 For non-negative integers  and  

th

i m ,

e Laplace transform of the -i th  antiderivative with 

respect to t  in the domain  0, of  m
t f t , is given 

by,  

t  

  

     

0 0

times

1
0 1

0

d

e

t t im

i

nm
st

n i m
n j

f

n j f t

s

  





  

 

 
 
 
 

 
  

  

 




L

 

.



Proof. From the property of Laplace transform, the  

LHS of above equation is  in which Theo-  

rem 3 is substituted and simplified.  

lace transfo

 e domain

 m
t f t

Theorem 12 The Lap rm of the -i th  

antiderivative with respect to t  in th   0, t  of  

 
m

f t

t
, where, , 1i m  , is given by,  

   
   

 
1

10 0
0 0

0

d e

n

.
m n i m

n j
i times

f t

n j s






m
t t i st

f






      

 

  
 
     
 

L  

Proof. The proof is straightforward where we mul  

tiplied 

- 

1
i

s
 to Theorem 4. 

pl  function, Exam e 4 Consider the
0

1 e
d

t






 , which  

Laplace transform we can find by taking,   1 e t
f t

  ,

and,  

  

yielding, 
       1 2

e , e ,
t t

f t f t
      

      1
1 e .

nn t
f t

    Now, since from  the theorem

 we have, above, for 1,i m 

     
10

0
0

,
t

n
n

f

ns




d e

n

st
f t







 
   




 

    
  

we consequently get, 

L

 

 

0
d

1

2 3 4 1

1

2

1 e

1 1 1 1
1

2 3

1 1 1 1 1 1
1 log 1 .

2

t

n

n

n

n

s s s ns

s s s ss ns









 

     

            
   





 

From Theorem 5 through Theorem 12, there is no re- 

striction on positive integers  and , which means 

bot


 

 
L

m i

h can be same (or) different and either of the integer 

can less than (or) greater than to one another. 

The Theorem 5 and the Theorem 9 varies only in the 

coefficients, that is the order of the derivative, the same 

holds for Theorem 6 and Theorem 10, again the Theorem 

7 and Theorem 11 varies only in the coefficients, that is 

the order of the anti-derivative, similarly for Theorem 8 

and 12. Hence we have the following propositions, re- 

spectively. 

Proposition 1 If the function  f t  and its  1i   

derivative with respect to t  go to zero as 0t  , then, 

i
s

  L

   
 Co

d d
.

d d

i i
m m

i i
t f t t f t

t t

  
      

   
L L   (9) 

efficients i



   
 Coefficients

d 1 d
.

d d

i i

i m m i

i

f t
f t

t t t t 

    
    

     
L L   (10) 

Proposition 2 
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0 0

times

0 0

times Coefficients

d

d .

t t im

i

t t im

i i

f

t f

  

 



 
 
 
 


 
 
 

 

 









L

L

 


    (11) 

   

  
 

0 0

times

0 0

times Coefficients

d

1
d .

t t i

m

i

t t i

m

i i

f

f
t






 



 
 
 
 
 
 
 
 

 

 









L

L

     (12) 

The following initial and final value, convo

function periodicity related theorems can 

verified through conventional Laplace transform theory. 

Theorem 13 Let the function, 

lution, and 

be easily 

  ,f t  be Laplace 

transformable, then, 

 
   

0
lim lim e .

n

st

nt s

f t
f t

s






 

 
          (13)

0n  0

 

 
   

0
0

0

lim lim e .

n

st

nt s
n

f t
f t

s






  

 
   


  


     (14) 

Theorem 14 The Laplace transform of the convolution 

of two functions  f t , and,  g t , is given by, 

   
   

 

   
2 10

0
0

n s
d e .

n
t st

n

f t
f t g  

n
g t







       L  

he L  tran periodic 

function 

    

Theorem 15 T aplace sform of the 



 f t  with period  so that  


 ,T

  f t T t ,f   is given by, 

 
   

1
0

e .
1 e

st

sT n
n

f t
s


 


0

1
T

n
f t 

        
L  

 Equation (1) Proof. Writing as, 

   

 

1
0

0

1
0

d1
e

d

d1
e st

d

T
n

st

n n
n

n

n n
n

T

f t
f t

s t

f t

s t












 
     

  


 
  

L

 

Now substituting 




 

t T 
e equation so

 in the second infinite 

series of the abov  that the limits  ,T   

changes to  a ng 0, nd by havi     n n
ff T   

proof. 

 
pletes the and after rea uating com

Example 5 The full sine-wave rectifier is given by the  

rranging and eval

function,   sin ,f t E t  with the period 



T  .  

Using Theorem 15, the Laplace transform of the full 

sine-wave rectifier is calculated by using the entries of 

column 5 of Table 1, 

 

   

3 5 7 2 1

2 4 6 8 2 1

1 e
1

1 e

s

n
n

s n

E E E E E

s s s s





    


 

 

2 2
cosh .

2

t

s

E s

s






sinE

 
       



L



     

3. Laplace Transforms by Integration by 
Parts 

The Laplace transform of is calculated by substituting 


  

t  

 f t t  in the Lapla tegral transform, now by ce in

taking u t  and d e dst
v t

  evaluating by parts gives  

2

1

s
. On the other hand, to calculate the Laplace trans-  

 

aluation leads 

form of sin t , we take sinu t  and d e dst
v t

  and 

after ev
2

1

1s 
. Here we can also take u =  

e st  and d sin dv t t  again it gives the same Laplace 

transform  se  so

integral eq on by takin

. Hence, in this

uati

ction, we lve the Laplace 

g, e st , and u   t , d dv f t
and integrating by par elow, the sub-scripts in say ts. B

   n
f t  represents th egration n  in the  e order of int

variable ,t  

 

  
times

d
n

n

f t t


 

 
 
 . 

Su ect to some constraints we then generally ave, 

osition 3 The Laplace transform of a or’s 





bj  h

Prop  Tayl

nometric function  seriezable trigo ,  f t , is given by, 

     1
e d ;

nst n
f t s f t t

 
0

1 times
0

Re( ) 0.

n
n

s









 
     
 




  L

 

e st
u


e

Proof. Now , so that  
       0 1

e , , , 1 e
nnst s

s
t

u u u s
n st    , 

Next 

  
 d dt tv f , leads to  

          

 

2

0 1

1

1 time

d , d , ,

d

n

n

v f t t v f t t v

f t t



 



 
 



    n

s

Substituting  and in the Bernoulli’s formula 

of continuous i ation parts and observing 

is positive for s Proposition 3.  

Example 6 The Laplace transform of

 n
u

ntegr

all n

 n
v  

by 

give
 2

1
n  

0  

 cos at  with 
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non-negative integer, a, is calculated by simply integra- 

ting the function. Now, for 0n  , 

     

   
 

1

2 1 2 1

1 sin
n

n n

a

at
f t 




 

2a

and,  

sin
cos , , ,

at
f t at f t  

    1

2 2 1

1 cos
n

n n

at
f t

a



 


 . Furthermore, in view  

of Proposition 3, when applying the upper and lower 

limits in the antiderivatives above, we get.    2 1
0,

n
f t    

and  
  1

2 1 1

1
n

n n
f

a



 


 , whence we get, (function and its  

Laplace transform in Figure 4) 

 

 

3 2 1

2 1

2

cos

.

n
s s

at
a a a

1
1

n

n

s

2 2

1 1
n

n

n

s s s

a s

 
    

s

a a a

          





  

 



e agree that co

roposition 3, since the 

continuous integration of constant and polynomials with 

respect to does not converge anywhere when 

and 

3.1. New Infinite Series Representation for Trig 
Functions 

In


 

L

W nstants and polynomials cannot be 

Laplace transformed with the P

t  

0 . 

,t   

t 

 the Proposition 3 the limitations of  f t  to be 

Taylor’s seriezable trigonometric function is acceptable 

only on a theoritical point of view, from the evaluation of 

Laplace tra sform of trigonometric functions vice-versa 

of De on

n

finiti  of Section 2 and Proposition 3. On the other 

hand, we show under what condition the Proposition 3 

inve ansform of Proposition 3. 

ositio

exists? Definitely the answer would be by finding the 

rse Laplace tr

For simplicity’s sake, re-writing the Prop n 3, is 

akin to evaluating the limits and representing,    1n
f t , 

in Proposition 3. The Laplace transform of Taylor’s se- 

riezable trigonometric function  f t  is simply defined 

by, 

     

ove equ

r a star n  in 

 1
0 0

; Re 0.lim
n

n
t n

f t s f t s



 

     L  

The inverse Laplace transform of Proposition 3 would 

be same as inverse Laplace transform of the ab - 

ation, and hence it is enough to find the inverse Laplace 

transform of , 0n
s n  . 

Fo t up, whe  0n  ,n
s  

 t
the inverse La- 

place transform of be  which is Dirac  

delta function [2] since, .  

Again when 

1 would 

   
0

e d 1st
t t t 

 


    L

1n  n in s  

e Sum

the inverse Laplace transform 

of s is given by the first derivative of Dirac delta function 

with respect to t , 
   

udu transform context (see 

Eq 18 d (

rm o

1
t . In particular, readers are 

invited to consider connected relation to Dirac delta 

function but in th

uations (2.19), (2.20), ( ), an 4.20) in [9]). In 

general, the inverse L place transfo f n

4.

a s  is given by  

   n
t , since 

     
0

e d n n st n
t t t

 


    s . In a

 n-th a

L ll  

cases upto the  deriv tive the initial value theorem is 

undefined for   ,t  and 
   

nct

functio ted in new infinite series,

coefficients are calculated by integrating the fu

 4 Th

zable trigonometric function 

n
t  leads of course to the 

study of generalized fu ns (see [2], and references 

therein for more details). 

We prove the inverse Laplace transform of singular 

functions that satisfy the Tauberian (initial value) theo- 

rem in the following proposition where the trigonometric 

io

ns are represen  where 

nction, 

[24]. 

Proposition e necessary condition for the exist- 

ence of Proposition 3 (and hence the above equation) is 

that, the Taylor serie

 tf   can be expressed as, 

       01 00
0

d
2 d .

d

n

n n
t

n

f t f t J vt v
t

 

 

    

Proof. Taking inverse Laplace transform of  

     0 10
lim .n

t nn
f t s f t 

       

     1

0 0

.lim
n

t n


L

1nf t s f t




 

  L       (15) 

In [14] the Bilateral Laplace Sumudu Duality ( SD) 

was established. the inverse Laplace transform of  is 

gi

BL

1
ven by (see Equation (5.10) in [14]),  

   0 00 0

0

2 d d

1
e d 1.

v

s

J 2vt v J vt v

v

 

s



       

 

 



L L

   (16) 

Thus    1

00
1 2 dJ vt v

  L , here the  


     
 0 20

1
2

!

m m

m

vt
J vt

m






  is the first kind Bessel’s  

function of order zero. And this particular function will 

play the major role in the exponential kerneled

transforms (see Equations (30) through (35) in [20]). And 

the Laplace transform is taken with respect to , since v 

and ndependent, the perm rchange 

of of integration is consid ur. Though  

the function 

 integral 

t

ntet  are i issibility of i

 order ered in favo

 00
2 dJ vt v



  gives no meaning (as be-  
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comes zero when evaluated) but as per the Laplace (in- 

tegral) transform point of vie

rem 5.1. Equation (5.8) in [14]). By having, 

w this is worth (see Theo- 

 0
0

lim 2 1.
t

J vt


          (17) 

The Laplace transform of the first derivative of  

 0 2J vt  with respect to t  is e 1

v

s

  and with the  

help of Equati 7), ons (16) and (1

 
   0 00 00
2 d lim 2

t

00

d
2 d

d
J vt v

t

d .s J vt v J


    L

 (18) 

vt v s



 

 
  

 

L

Therefore the inverse Laplace transform of s  is  

 00

d
2 d

d
J vt v . In general, from place trans-  

t



  the La

function with respect to form of the -n th  derivative of 

t , 

 

     
   1

0
0

d
lim 2 .

d

n k

kt

0

1
1

1
1

0

d
2

d

d
2 lim 2

e

n

n

kn
n kn

v kn
n s

k

J vt
t

0 0
0

0 d kt
k

s J vt s J vt

s s


 





 
 
 

  

 





L

L  (19) 
t 

J vt
t

 



But, 

     
0

0

1d
lim 2 ; 0 .

!d

k kk

kt

v
J vt k

kt


     (20) 

Finally from Equations (19) and (20), 

 
   

   

 

00

11
1

0 0
0

1 11

0
0

d
2 d

d

1
e d d

!

1
.

! 1

n

n

k n k kv n
n s

k

k n k kn
n

k

J vt v
t

s v
s v

k

s v
s

k k



  




  



 
 
 


 

 
   

  



 



L

 v    (21) 

ide of Equation 

(21) is zero, 

Since the second part of right hand s

     1

00

d
2 d ; 0

d

n
n

n
s J vt v n

t

  L  .   (22) 

Substituting Equation (22) in Equation (15) for 

 1 n
s


L  completes the proof of Proposition 4. 

Thus, the function  00

d
2 d

d

n

n
J vt v

t



  from the Equ-  

at

de

wing example. 

Example 7 Consider the function  then  

ion (20) satisfies the initial value theorem (unlike Dirac 

lta function) which is zero. To concretize ideas, we 

give the follo
2sin t ,

  2sinf t t ,  1

sin 2

2 4

t t
f   ,  

2

2

cot t
f  

s 2
,  

2 2! 8

 

3

3

sin 2

! 16

t t
 ,  2 3

f 


4

4

cos 2
, ,

2 4! 32

t t
f  


   

       1
1 sin 2

n
t


 

2 1n
t



2 1 2 12 2 1 ! 2
n n

f t
n

 
 

 
, and,  

  
 

  
 2 1 1 cos 2

nn tt
f t

 
 

2 2 2 322 2 1 !
n n

n
    

. Applying Pro- 

position 4, a tends to zero, a the s t ll    2 1
0,

n
f t   and  

   
 

2 2 2 3

1
,

2

n

n n
f t 


  and since 

1

2
 is the common factor,  

0n  ,

infin

 the function,  can be written  the new 

ite series as, 

2sin t ,  in

   
2 1

2

02 3 2 10
0

11 d
sin 2 d .

2 2 d

n n

n n
n

t J
t

 

 



    vt v

From Equation (22), it is wothy 

Laplace transform of the integral of  derivative of 

to note that the 

-n th

 0 2 ,J vt  with respect to t, in the do  0,  main with 

respect to v, is sim we

vative of 

ply the s po r the order of the deri-  

 J0 2 vt

e fun

 Proposition 4,  gives all new 

infinite series expansions of ba metric func- 

tions. The extra factor in the infi  of entries 5, 6, 

9, 10

. 

Along with that of th ction, 2sin t , in light of this 

new infinite series Table 2

sic trigono

nite series

, 14, 16, 20 and 21 are common for all 0,n   

while integrating. Furthermore, the following expression 

is easily derivable from the Bessel’s function,  

   
 

0d 2 1
.

n m m m nJ vt v t
 

   
0 ! !d n

m m m nt  

 ofTherefore, the Laplace transform  2sin ,t  can be 

calculated through, 

   

2

2 1

02 3 2 10
0

sin

11 d
2 d

2 2 d

n n

n n
n

t

 
 

2 1

2 3 2
0

11 2
.

2 2 4

n n

n
n

J vt v
t

 

 


  

s

s s s






 
  

  


  




Lapla

re 5), 

 

L

L  

Entry 17 of Table 2 has the following ce trans- 

form (shown in Figu

 

5 5

2

2 2 1 2 1
0

sin cos

1 5 5 1
.

512 2 6 10

n

n

n n n
n

t t

s


 


  

      


L
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3.2. LaplaceTransform Properties in View of 
Proposition 3 

The Laplace transform of multiple shifts functions can 

readily be derived with the help of Proposition 3. Since 

the derivation of the various properties are straight- 

forward and similar to the theorems of Section 2.1, we 

give directly the Laplace transform of shifted functions, 

ba

e transform of the function, 

sed on Proposition 3 in Table 3 where m  and i are 

non-negative integers. 

Example 8 The Laplac

sint a ,t  is obtained by simply integrating sin at ,  

thus   sinf t at     , 
1

cos at
f t

a
  ,   , 

   
 

 
1n

2 1 2 1

1 cos
n n

at
f t

a
 


 ,    

 
 

1

2 2 1

1 sin
n n

f t 




n
at

a



.  

When, 1m  , in entry 3 of Table 3, 

     1

1
0 0

e .st n

n
n

tf t ns f t


 




       
L  

Therefore, when 0t  , and t  ,    2
0,

n
f t2

   

and    
 

 
 ; 0 ,n   yielding, 

1

2 1

1
n

n
f t








2 1n

a


   
   

   

3

3 5

2n 1

2 3 2
2

2 4
sin

1 2 1 2
.

n

n

s s
t at

a a

n s s a

s aa





    

 
 



L

 

Example 9 The Laplace transform of



 
cos t

t
 is cal-  

culated by integrating cost. Now,   cosf t t , 

   1
sinf t t , 

 2 2  cos      1
, , 1 sin ,

n

n
f t t f t  

1n

t  and  ,  

     2 1
1 cos

n
f t t  

 , 0t f t   and


. Now, for,  and, 

, , 

Finally, with in the entry 4 of Table 3, 

0t  ,

  f t   2 1n     1

2 1
1 ; 0

n

n
n


  . 

1,m   

     
 

1

1

0
0

e .
1

n

nst

n

s f tf t

t n








  
        

L  

So that, 

  

 
   

1 12 4 6 1cos
n

t s s s
       

2

2 14
2

1

11 1
lo .

2 2 1

n

n n

s

n

s
s

n







   
          





L

 

Example 10 The La form 

2
g

1s
 

2 4 6 2t

s

  

place trans of, 
t

0
cos d ,     

is calculated. For,   cosf t  et  after taking limits, w  

lying the 

formu

,

1
1

get,      1

2 1
; 0 .

n

n
f t n


   Hence, app 

la with, i m  , in entry 11 of Table 3, 

.t   2

10
0 0

d e
t st n

n
n

f ns f  


 




          
L  

We consequently then have, 

   

   

     

      

   

1 2 1

0
0

1 2 1

1

1 12 1 2 1

2 2

0 0

2

2
2

cos d 1 2 1

1
1 2 1

1

1 2 3 1 1

1
1

t n n

n

n n

n

n nn n

n n

n

n s

n s
s

s

n s
s

s s s n s
s

s
s

  


 




 



 
  



      

    

  

           
      







L



1 1

1 1 1
n n

n s n
s  

       

1 1

4 2

1
1 1 1 1

1

n n

n

n n

s n s
 

 



     

   

 

s  
2

2

2

1
.

1

s 


It is important to note that with respect to the entries 5 

and 9 (and entries 6 and 10) of Table 3, the proposition 1 

Equation (9) (and Equation (10)) holds true. Similarlly 

with respect to the entries 7 and 11 (and entries 8 and 12) 

of Table 3, the proposition 2 Equation (11) (and Equa- 

tion (12)) remains the same. 

3.3. Concluding Remarks and Future Work 

As far as the Section 2 is concerned, when the function is 

Laplace transformed by differentiation, then the inverse 

Laplace is automatically an integration process. Having 

worked with various examples, our proposed methods 

lead to exact solutions. A remaining open query is that of 

defining the inverse for the Laplace transform by using 

similar tools and processes as in Proposition 3. But in 

vi

ess of differentiating. For 

example consider the function , its Laplace trans-  

2
s s 

 

ew of the concept of Section 2 above, Laplace and 

inverse Laplace transform are the respective reciprocal 

processes of differentiation and integration of the func- 

tion. 

If so, then with the Proposition 3, the inverse Laplace 

transform will be the proc

cos t

form by the Proposition 3 is given by  
0

1
n

n

2 1n
s

 


   

which gives 
2 1

s

s 
. Hence for finding the original func- 

tion, when equating the coefficients of identical powers 

of 

 

s  with Proposition 3, we get    
As t e sub-scripts denote the order 

  1

2 1
1 .

n

n
f t


    

h of integration. Now 
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by differentiating        1

2 1
1 , 2 1

n

n
f t n


     times, 

one should get the infinite series of the function, cost as 

entry 4 of Table 2. 
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