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ABSTRACT

The Synthetic Aperture Radar (SAR) has many attractive and desired features to cope with
uncertain weather conditions and also provides superlative resolution in images. In this paper,
a unique multiscale approach of change detection (CD) that integrates the preprocessing and CD
technique of SAR imagery is discussed. Condensed anisotropic diffusion method is employed as a
preprocessing tool for despeckling, and the resultant image is processed by multiscale approach
in the Laplacian pyramid (LP) domain. In each layer of LP, the difference between the pyramid
coefficient of two images of the same area obtained at different periods is estimated through log
ratio operation. Each layer of pyramid coefficient has explicit features at particular scale. Fine scale
related to a band pass layer localizes edges of the change area and the coarse scale related to a
low pass layer preserves more detail information of the change region. Reconstruction of LP
provides exact difference image with perfect boundary. Otsu's algorithm is used to generate
binary change map to distinguish changed and unchanged pixels. The efficiency of the proposed
method is tested by using simulated and real SAR image datasets. The confusion matrix para-
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meters are used to prove competence of the proposed CD method.

Introduction

In remote sensing, satellite images are acquired by both
active and passive sensors. Synthetic Aperture Radar
(SAR) comes under active microwave sensors which
uses a broad range of radiometric spectrum. It can
work in all weather conditions, even at day and night,
which enables the SAR to extract correct information
about the targets. Since the microwave sensors are self-
reliant to atmosphere and a cloud cover condition, it
encourages the researcher to use SAR images in various
fields. The remote sensing satellites such as ENVI-
ASAR, TerraSAR-X, ALOS and Radarsat-2 effectively
replicate the active changes about spatial and temporal
information of earth’s surface. Especially ENVI-ASAR
provides constant data sets for geological monitoring
(soil-moisture, agriculture, coastal (Ghosh, Kumar, &
Roy, 2015), forest (John & Woodcock, 1996; Kennedy,
Cohen, & Schroeder, 2007) and ship tracking) and
mapping applications (topographic (Shalaby &
Tateishi, 2007), ice and snow applications). The above
ENVI-ASAR has broad angle coverage with excellent
resolutions during every 35-days revisit cycle using
ScanSAR technique. The ASAR high-resolution images
have 30 m of precision and works from 15° to 45° of
incident angle. The ASAR wave mode creates
5 km x 5 km sketch spaced with 100 km of azimuth
resolution (VV-polarization), whereas the ASAR swath
mode provides 400 km of swath coverage with 150 m
resolution. The Radarsat satellite is most leading sur-
veillance system developed by Canada centre for

mapping, and earth observation is used to track atmo-
spheric changes of flood (Hazarika, Apurba, & Borah,
2015), oil spill, earthquake, land use (Hadjimitsis et al.,
2010) and change map (Ban & Yousif, 2012) applica-
tions. The Radarsat also provides high-quality multi-
temporal images with a steerable beam and single
frequency to offer fine image scale and resolution.
This satellite operates at 5.3 GHz/C-band, 5.6 cm wave-
length with HH-polarization. The Radarsat image mode
has a swath width of 100 km, incident angle span of 20-
49° with 30 m resolution.

Radar sensors play essential role in SAR imagery,
particularly the realization of change map applica-
tions. Change detection (CD) is the measure of iden-
tifying the differences of same geological area
observed at different times (Radke, Andra, Al-kofahi,
& Roysam, 2005; Singh, 1989; Baselice et al., 2014).
Generally, CD methods are categorized into two:
unsupervised and supervised. Unsupervised method
is an analysis of change and no-change classes with-
out prior knowledge about the target image, whereas
supervised method required former information. CD
process consists of three stages (Dogan & Perissin,
2014; Mura, Benediktsson, Bovolo, & Bruzzone,
2008): (1) preprocessing of multitemporal SAR
images; (2) image comparison to identify the changes;
(3) analysis of CD by appropriate thresholding or
clustering methods (Celik, T. 2009b).

In preprocessing stage, SAR images undergo
speckle reduction, geometric correction, digital
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elevation model correction, co-registration, etc., and
these operations are preferred according to the appli-
cation area. Out of all the preprocessing steps, the
speckle reduction is essential for CD application. SAR
images are very sensitive to the coherent nature of
multiplicative noise called speckle (Gong, Cao & Wu
2012). Speckle noise is a granular noise which
degrades the quality of SAR image consequently.
Various adaptive filtering methods are available to
reduce speckle noise like Lee (Lee, 1980), Frost
(Frost, Stiles, Shanmugan, & Holtzman, 1982) and
Kuan (Kuan et al., 1985, Kuan, Sawchuk, Strand, &
Chavel, 1987) methods; they do speckle reduction by
simply converting the multiplicative noise model into
additive model using a logarithmic operator. In addi-
tion, the sensitivity of the filter window size
causes smear edges and blur spatial information of
an image. Recently, diffusion method shows
improved merit compared with adaptive filtering
techniques. Diffusion filter removes speckle from an
image by modifying the image by means of a partial
differential equation (PDE) (you & Kaveh, 2000;
Feddern et al, 2006; Krissian et al., 2007).
Condensed Anisotropic Diffusion (CAD) (Kalaivani
et al, 2012) method is used, which incorporates
energy condenser into nonlinear coherent diffusion.
It can reduce the speckle content with preservation of
edges and fine spatial details (Masoomi, Hamzehyan,
& Shirazi, 2012).

Then, speckle-free multitemporal SAR images are
to be interpreted to identify the difference image (DI)
(Bruzzone & Prieto, 2000) in the subsequence stage.
The DI is achieved by comparing two co-registered
images by various mathematical functions. In the
literature, many comparison methods (Dekker, 1998;
Lu, Mausel, Brondizio, & Moran, 2004; Singh, 1989;
yousif & Ban, 2014) are available to find the DI such
as algebra-based approach (Masroor, Dongmei,
Angela, Hui, & David, 2013), transformation-based
approach (Li & Yeh, 1998), classification-based
approach (Jesus, Arie, & Joost, 2012) and similarity
measures (Chesnokova & Erten, 2013). Out of these
methods, algebra-based approach is a simple method
to find DI which utilizes image differencing (Ma et
al., 2012), image rationing, image regression, image
correlation and change vector analysis (Sartajvir &
Rajneesh, 2014). Existing methods are based on the
analogy of the local neighborhood window to esti-
mate the changes. Generally irrelevant window size
would cause wrong and unwanted detection. In case
of using small window size for correlation analysis,
no detection will be carried on the homogeneous
regions; on the other hand, larger window size will
detect changes only in larger area or high-intensity
regions, such cases produce a coarse resolution DI
(Inglada & Mercier, 2007). The image differencing
method and image ratio methods augment the

foreground pixels by confining the background pixel
information (Gong, Zhou & Jingjing 2012). The ratio
operations have the following limitations: the mean
ratio operator may fail to detect changes because the
DI is emerged from the conversion of the local mean
value of the input images. Image ratio operator and
its distribution depend on relative change of average
intensity between a pair of multitemporal SAR
images. The logarithmic characteristic of log ratio
(LR) method strengthens the low-intensity pixels,
while deteriorating the pixels in the area of high
intensity. Hence, it may not give the real changed
trends to its maximum level. To overcome the
above issues, multiscale approach is introduced in
the CD analysis.

In image processing, the multiscale approach is
a significant concept for retaining spatial information.
Multiscale images are computed by orthogonal and
non-orthogonal basis. Laplacian Pyramid (LP) is
well-known non-orthogonal method. The representa-
tion of multiscale image is in decreased order of the
image resolution and the sample density, obtained
through regular steps. The Gaussian pyramid (GP)
consists of a low pass version of the image. On the
wavelet pyramid, decomposition is based on the out-
come of the orthogonal method. Also, wavelet pyra-
mid transforms are more computationally complex,
and the decomposition is to be done recursively on
the low pass band to obtain other levels.

Techniques in the literature,Bovolo and Bruzzone
(2005) developed CD technique by LR operation and
multiresolution analysis done by stationary wavelet
transform (SWT) to decompose multiple resolutions
of the difference coefficient. Adaptive scale-driven
approach is used to fuse the final change map. This
algorithm provides considerable CD result with accu-
racy, but the decision threshold was elected based on
manual selection of trial and error procedure. Celik
(2009a) proposed undecimated discrete wavelet
transform to decompose the DI. Each pixel of feature
vector is sampled with multiscale difference data. The
binary change map is derived by k-means clustering
algorithm. Though variety of sensor images acquired
in multiple geometric conditions, guaranteed results
are not obtained for multiple selection of sensor data.
Celik (2010b) adapted unsupervised CD by Bayesian
interference with expected maximization algorithm.
Also, dual tree-complex wavelet transform exploits
multiscale approach for DI. However, this multiscale
approach has not provided efficient number of scales
to prefer, and also speckle filter failed to preserve the
boundaries of the changed region exactly. Wang et al.
(2013) used multiclass segmentation method by tri-
plet markov field model. This method obtained
a better solution for CD with low miss rate and
high precision at the cost of long computational
time. yousif and Ban (2013) developed non-local



means (NLM (Coupe et al., 2009)) algorithm for
speckle noise reduction. Principal component analy-
sis (PCA) is used to reduce the neighborhood dimen-
sionality of the feature vector. This NLM-PCA model
takes high computational complexity. Hu and Ban
(2014) proposed that the satellite images are com-
pared by ratio method and then classified by thresh-
olding algorithm. If the DI is bimodal histogram, the
Kittler Illingworth algorithm is used to classify the
change map. Otherwise, multiscale region selection is
executed for unimodal pixel classification. But this
method has not provided the dependency informa-
tion associated with parallel neighborhood pixels to
increase the accuracy of change map. Ajadi et al.
(2016) carried CD in satellite images by multiscale-
driven approach. Fast non-local filter is applied for
speckle noise reduction, and SWT is employed to
decompose the DI. Bayesian threshold is estimated
in each decomposition layer. The localized features
are fused by measurement-level fusion to obtain the
change map, though this algorithm shows blur
change result with false detection.

In order to improve upon previous work, pyra-
mid-based multiscale approach is proposed. The pyr-
amid-based multiscale approach has a great deal of
significance in the representation that contains spatial
localization in the spatial-frequency domain. The pyr-
amid transformation may separate critical modules of
the image pattern, hence they are more feasible to
access and also more compact for data storage and
transfer. Image pyramid is a data architecture
designed to aid dynamic scaled convolution over the
reduced sequence of the original image. It consists of
recursive copies of the original image which have self-
similarity form decreased in both sample density and
resolution. In GP, the original image is convoluted
with low pass filter ensueing with sub sample by
a factor of two to earn the later pyramid levels.
Most of the image processing applications require
medium band resolution (band pass and low pass
images), which demands LP (Adelson, Anderson,
Bergen, Burt, & Ogden, 1984) structure. This may
be achieved by differencing each GP level from
immediate downstream level. Due to this, interpola-
tion has to take place before balancing the sample
density. Band pass copies of the pyramid layers pro-
vide valid details and related components residing in
each decomposing level. LP have been used to analyze
images at various image processing applications such
as image compression (Adelson et al., 1984; Perry,
1997), texture analysis and synthesis, image mosaics
and image filtering techniques. In image compression
technique by LP, less significance of compression
ratio with loss of information is provided (Michael,
1992). In texture analysis technique, the pyramid
structure could not recognize complete perceptual
information of natural textures (Heeger & Bergen,
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1995). Pyramid domain on image mosaics has not
supported an image with movable object and differ-
ent exposures (Burt & Adelson, 1983a). LP-based
noise filtering technique enables only with fine scale
layers and does not comfort to use with course scale
(Zhang, Yoo, Koh, & Kim, 2007). However, pyramid
structure regards poor choice of selection of above-
existing applications. In our paper, we exploit the
strength of the LP domain for CD application to
overcome the existing limitation of LR operation.
Moreover, the band pass copies obtained in LP
enhance the image structures, linear features and
edges which are essential for image interpretation.
The essential property of LP is that it gives an entire
image portrayal: the degenerative stage recoups the
original image absolutely, without any lose of
information.

Finally, the decision theory is utilized to make
perfect automatic classification of the DI. The rea-
listic CD approach is enhanced by thresholding
algorithm to provide an automatic binary change
map. Threshold is a simple and effectual technique
to segregate objects (changed) and the background
(unchanged) pixels (Moser & Serpico, 2006; Rosin
& Ioannidis, 2003; Gong et al., 2014) of an image.
Most of the thresholding algorithms are categorized
according to changed and unchanged classes in the
assumptions of the specific mode (unimodal or
bimodal) of the histogram of an image. In change
map application, unidentified tiny portion may lead
to enormous detriment of environment changes,
particularly in terrain control changes such as
land use, land cover, agricultural monitoring, crop
area observation, deforestation, urban expansion in
the agricultural area and flood risk assessment. On
the above consideration, several threshold algo-
rithms are referred to classify the DI using
Kittler-Illingworth  (KI) algorithm (Kittler &
Mlingworth, 1986), Otsu algorithm (Otsu, 1979;
Yang, Shen, Long, & Chen, 2012), Kapur algorithm
(Kapur, Sahoo, & Wong, 1985), Bayesian thresh-
olding (Bovolo, Camps-Valls, & Bruzzone, 2010),
Tsai method (Tsai, 1995), Rosin algorithm (Rosin,
2001) and Expectation-Maximization algorithm
(Hao, Shi, Zhang, & Li., 2014). In this paper,
Otsu’s thresholding algorithm is utilized for classi-
fication. The optimal threshold is chosen by either
minimum value of within-class variance or maxi-
mum value of between-class variance of the histo-
gram of an image. Otsu algorithm is preferred for
the following merits. It has an unsupervised quality
of threshold selection, quite simple and applies
zeroth- and first-order cumulative distribution to
elect gray-level thresholding. An optimal threshold
is analyzed through the probability of class mean
levels, which will offer automatic and constant
threshold.



466 R. VIJAYA GEETHA AND S. KALAIVANI

In order to consider the above standard processing
stages, we proposed speckle-free, unsupervised CD
for SAR images by following aspects: (1) preproces-
sing by CAD; (2) Image difference by LP-based CD;
(3) Otsu thresholding algorithm for effective classifi-
cation of change map. The rest of the paper is struc-
tured as follows. The Background section presents
basics of the preprocessing technique. Methodology
section elaborates the details of the proposed method.
Result and discussion section describes experimental
significance and related discussion of the proposed
technique. Outcome of proposed method with future
work is given in the conclusion part.

Background
Diffusion in speckle reduction

The fundamental speckle reduction technique is
developed from diffusion process. Diffusion is termed
as a physical process (Rajan & Kaimal, 2006) that
equilibrates two unequal concentrations without
creating or destroying mass. The physical process of
diffusion is expressed by Flick’s law as,

j=-D.(VI) (1)

The homogeneity between the flux j and gradient VI
is represented by the diffusion tensor D, which is
a positive scalar symmetric matrix. Diffusion related
to the image processing is the concentration of gray-
level value in a particular location. Perona & Malik
(1990) proposed anisotropic diffusion using non-
linear PDE. Nonlinear diffusion uses scalar valued
diffusivity instead of the diffusion tensor.

9 =div[D(||VI||.VI)] (2)
Iit=0) = Io

where div is the divergence operator, ||VI|| is the
gradient, D||VI|| is diffusion function, D(x) is scalar
function and Iy is the initial image. This diffusivity
provides maximum likelihood value. Generally,
the second-order PDE-based approach is subjected
to feature blocky effects (Kalaivani et al., 2012b). To
overcome the above issue, fourth-order PDE-based
speckle reduction method (you & Kaveh, 2000),
which gives improved result for speckle noise
removal and reduces edge sensitivity formation, is
used. However, fourth-order PDE method takes
higher number of iterations to converge.

Methodology

This paper aims a unique multiscale approach for
SAR imagery in an unsupervised CD strategy, which
integrates the preprocessing and CD. The proposed
method is demonstrated in sections below.

Preprocessing

A CAD method is suggested as a preprocessing tool
to eliminate speckle noise in SAR images. CAD
method (Kalaivani et al., 2012a) consists of two
terms: a diffusion term and a condenser. The term
of diffusion coefficient is weakening the speckle by
diffusion tensor. The second term of energy conden-
ser enhances the performance of diffusion tensor and
enables to correct the feature broadening effect.
Blending energy condenser into diffusion tensor
leads to preserve the edges of change area, enhance
the local details of lines and bar features, and also
rectifies the feature broadening defect. In this
method, the scalar function D(x) acts as a tensor
and controls diffusion process in both gradient and
contour direction. The CAD is stated by,

OI(x,y,t)

o = V(D.VI) + By(I.)' I ' (%,t) (3)

The anisotropic diffusion term is expressed in dis-
crete form as,

Olr) (29

diffusivity matrix Gradient vector

(4)
With reference to semi-explicit form,

n+1 n
It —

flf — Dy (V) + Ds(Vsty; ) + De (Vi)
+ Dy (le;jj) + By (12-,,-) ' (I,ff,-) .
(5)

where Dy Ds, Dy and Dy are diffusion coefficients
summarized as given,

VN =1, I
Vslij = I — I, ©)
Vil =1 — I,
Veli = I — Iy

where I} is a value of (i, j)th pixel at time “ n ” and
Ii’]’-+1 is pixel value at time n + 1.I7;; is an average of
I The 7 is the time interval between two consecu-
tive iterations. The time interval is set at 0.25 to

hz
)

by y < 1 and neighborhood pixel distance is & =1
for the image. In case of weight factor f =0, the
image region is subjected to nonlinear coherent diffu-
sion. When the value f#0, it prevents the coarsening
of high-frequency structure in predominant image
regions.

maintain 0 <y < and these values are chosen



I =1 4 Dy (VNI;jj) + Dy (vsfgjj) + Dy (szgjj)
y y—1
+ D (Vuty) +py(15,) (1)
(7)

The diffusion is an iterative process. The stopping
criterion is decided by mean absolute error (MAE)
between two successive steps (Yu & Acton, 2002).

MAE() =S (10,6~ 10t~ 1))
(8)

where (I(i,j,t),I(i,j,t — 1)) are filtered images at
times ¢t and t — 1 and m, n are columns and rows of
the image, respectively. MAE value decides finest
diffusion process to earn desirable despeckling. For
the implementation of CAD as a preprocessing tool,
the parameters are chosen as a=1,5s=70,5=
0.05,y =0.75 and I. = (I). In each iteration, the
energy of I is updated by a factor of Iy/(I), where
(-) is the mean value. Hence, the proposed image has
similar energy like input Iy. This method provides
impressive speckle noise removal with condensed
feature broadening effect.

m,n

ij=1

Laplacian pyramid

A basic structure of image pyramid is a hierarchical
representation of multiscale images. The pyramid
structure  consists of  decomposition and
a reconstruction stage, which are designed by
approximation and interpolation filter (Burt &
Adelson, 1983b; Yu, 2009). In the decomposition
stage, the signal of the input image is consecutively
decomposed into reduced copies of approximation
and residual signal information. The residual signal
information is estimated by the difference between
the signal on the fine scale and the interpolated
signal from the coarser scale. A fine scale with
respect to lower pyramid layer has its size equal to
the input image. Pyramidal structure is designed by
its specific decimation factor, approximation and
interpolation filter. The pyramid structure decom-
position is done by two techniques: GP and LP. In
GP, the input image Gy is continually filtered and
sub-sampled to achieve the sequence of low-resolu-
tion images G1,G; ..., G4_1., where d is number of
decomposition layers. This consists of a set of low
pass filter layers of the input image whose band-
width reduces by one octave steps.

Gy=1
G; = Reduce [G]_] 9)
L =G — Expand [Gl+1]

LP constructed by two standard operators: Reduce
and Expand The Reduce operator in LP (Michael,
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1992) is realised by 2D low pass filter followed by
sub sampling by a factor of 2 in both directions. The
Expand operator is performed by upsample with low
pass filter followed by a factor of 4; the multiplication
factor is essential to retain the average intensity being
decreased by the insertion of zeros. This operator
increases the image to double in size on both direc-
tions. For an original image I, LP at layer [ is L,
where [1=0,1,2,3...d—1 and d is number of
decomposition layers. The decomposition of GP and
LP structures are shown in Figure 1. The GP consists
of different size of low pass layers of the original
image and the LP decomposes the original image
into the layers of band pass images and a unique
low pass image. Reconstruction stage is done by sim-
ply regenerating the image from LP; it can be realized
by reversing the decomposition steps.

Log ratio (LR) operation

Consider two despeckled SAR images acquired in the
same geographical area at different time sequences,
I, I, respectively. These input images are decom-

posed by LP transform and are represented as Lil’j

and L;’j , respectively.

Y, = {Lllj} where i=1...m.

Y, = {Lgf }

where m, n represents the size of the each decompo-
sition layer. Ratio operators are available to predict
the differences between two images (Ashok,
Varshney, & Arora, 2007). In that, most frequently
used method is a logarithmic ratio method (Bazi,
Bruzzone, & Melgani, 2005). Change differences can
be identified by pixelwise comparison of ratio opera-
tor. Log operator is used to constrict the range of
differences of the ratio image and to stabilize the
values of the pixel either lesser or greater than 1.
The LR operator is defined below and is expressed
in a natural-logarithmic scale.

(10)
j=1...n

Y,

LR = log (?1) = log(Y>) — log(Y7) (11)

Significance of the proposed method

The aim of the LP is to decompose the multitemporal
SAR images into different resolution layers in order
to improve essential signal components like edges,
homogeneous region and geometrical detail informa-
tion of the change map image. LP decomposition of
SAR images is embed with LR operator and its recon-
structed image is the DI. The flow graph of the
Laplacian Pyramid based change detection (LPCD)
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Figure 1. Flowchart of Gaussian (G)) and Laplacian pyramid (L)) .

process is depicted in Figure 2. The D}decomp is LP
decomposion of the DIs that is expressed below,

Qidecomp = [log(L1,1) — log(Ly,1)];
I, I, — input images (12)
1=0,1,2,3 — number of layers

The prime objective (i.e. CD in this study) and the
essential signal components (i.e. edges and change pixel
information) of the DI are typically lying in different
band layers as a result of different spatial components.
Mainly, spatial resolution of the DI provides change
information from coarse to fine scale. Coarse to fine
search is a process of consecutively applying Reduce
and Expand operators to the given image. They repeti-
tively zoom in on the accurate position of an area
depicted at the finest scale. The edges of the objects are
enhanced by fine scale layer and detailed information is
predicted in coarse scale layer. Thus, the estimation of
spatial difference in medium band resolution (band pass
and low pass) can efficiently detect changes without
losing primary information. We have preferred four
decomposition L; : (I = 0,1, 2,3) layers of the pyramid
structure, each make explicit features at specific scale.
The significance of different layers is given below;

Yan
GO J

Lo

5

] fl 0" This is fine scale related to a low

pyramid layer and has a size equal to the input image.
The Reduce and Expand operators are used in origi-
nal image to obtain band pass layer of the image. LR
operator is utilized in high-frequency component
layer to yield exact edges, lines and bar features of
the image.
Second layer

First layer

L
I=1
of the DI. The operators are applied in (I = 0) layer
and transition takes place from finest scale to next
layer. Generating DI in this medium band resolution
restrains unchanged pixels and enhances changed
pixels exactly.

. L
Third layer I—»

the DI. The Reduce and Expand operators are applied
in (I=1) layer to maintain symmetry among the
distribution of two (changed and unchanged) classes
of the DL
Fourth layer

: This is second band pass layer

: This is third band pass layer of

] o 3 This is coarse scale related to

a high pyramid layer. Only Reduce operator is used
in (I =2) layer to get low pass image. It can verify
the hypothesized features tentatively identified at
coarse scale. More detail information presents in
this layer, they computationally efficient by means
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Figure 2. Block diagram of LP-based change detection.

for applying valuable matching operator only in area
of interest. .

Hence, only four layers I =0,1,2,3 of pyrami-
dal structures are considered in the proposed
method. The amount of information obtained
from the individual layers is significantly increased
when LR operator is combined with each layer of
pyramid decomposition. Finally, the DI is gener-
ated by reconstructing the LP through degenera-
tion steps. The flattening of background
information is a common problem in LR method,
which is significantly reduced by combining
with LP.

The proposed LP-based DI is D1, which is expressed
below,

D1 = reconst(@?demmp) (13)

Optimal thresholding algorithm

The CD is to detect the meaningful changes,
thereby increasing the CD accuracy and reducing
error rate (ER). Thresholding is one among the
finest ways to deal with. This threshold algorithm
is proposed by Otsu (Deng-Yuan, Ta-Wei, & Wu-
Chih, 2011; Otsu, 1979) and is a proven method for
selecting threshold for gray-level distribution of the
image. The normalized gray-level histogram of the

DI from DI (L is gray levels, n; is number of pixels
at level i and total number of pixels N) in the form
of probability distribution is given by,

S

L
p, = PiZO;ZP,-:l (14)
i=1

Z|

The total class mean of a gray-level image is,

Lo,
Mrp = Zizl iP; (15)

The effectiveness of optimal threshold is followed
by discriminant criterion measures either from the
minimum value of the weighted within-class var-
iance or maximum value of the between-class var-
iance of the image. The optimized threshold by
maximum between-class variance 0% can be repre-

sented as,

[MrS(k) — M(K)]*

70 = 50 = sk

(16)

S(k) is zeroth-order cumulative distribution of the
gray-level histogram assigned to object (back-
ground), M(k) is first-order cumulative distribu-

tion of the gray-level histogram up to
level k(k € [0,L]).
o3(t") = §C <1 o5(k) (17)
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Algorithm 1 Laplacian pyramid-based change detection Algorithm.

Step 1 Use multitemporal SAR images /; and /, as input images.
Step 2 Preprocess the images by condensed anisotropic diffusion (CAD) method.

® Estimate the absolute gradient in x,y direction |VI| =, /2 + 2.

® Evaluate D, A; and A,

;
N AN AV
VIP\ =l K 0 A\l Ik
2 .
o La1=®7) =) <9,
0 , else
)\2 =a

® (alculate I,fj?“ from [} using semi implicit scheme Equation (5).

® (Continue iterations until converge for time step 1.
Step 3 Generate Gaussian and Laplacian pyramid images G, L, from despeckled images /; and /, using Equation (9).
Step 4 Involving LR operator in each Laplacian pyramid decomposition layers using Equation (12).
Step 5 Reconstruct the degenerated images by reversing the construction steps to obtain the difference image using Equation (13).
Step 6 Apply automatic Otsu thresholding algorithm to get change map using Equations (14)-(17).
Step 7 Analyze the change map image.
Step 8 Evaluate the performance metrics.

Data set satellite in space and is major disaster to ana-

In this work, simulated images and three real SAR
datasets are utilized for experiments;

(i) Simulated Images: This is a Bolivia defores-
tation image, monitored by the Sentinal-1B
spacecraft system under the operation of
ESA during 2016. This observation has con-
sidered for large-scale deforestation for
sugarcane cultivation. The simulated image
is generated with consideration of agricul-
tural field area patches placed to observe
changes.

(ii) Athabasca Dataset: The Athabasca is the lar-
gest oil sand valley that contains the severe
crude oil deposition in a mixed form. This is
the largest basin of tar sand in the world and
also applicable to large-scale open mining.
These images are acquired by ENVI-ASAR
satellite during 2000 and 2005 surveillance.

(iii) Alberta Dataset: This is High-river region of
Alberta caused by flood in June 2013. This
dataset has been tracked by RADARSAT-2

Table 1. Quality measures for speckle reduction assessment.

lyze the extent level of the flood.

(iv) Aare River Dataset: The Aare River flooded
utterly and entered into the parts of cities and
airports. This dataset was captured by ERS-2
satellite before and after flood in April and
May 1999.

Quality measures

This section evaluates the performance metrics in
various stages. In the first stage, the efficiency of the
preprocessing method is evaluated through the typi-
cal measures like Structural Similarity Index Measure
(SSIM) (Pratt, 1978; Michailovich & Tannenbaum,
2006; kalaivani et al., 2012b), Equivalent Number of
Looks (ENL) (Patel, Easley, Chellappa, & Nasrabadi,
2014) and Speckle Suppression Index (SSI) (Sheng &
Xia, 1996) that are used to examine the effectiveness
of speckle and are tabulated in Table 1.

In the second stage, the performance of CD
method is qualified by various quality measures (Lal
& Margret Anouncia, 2015; Shang, Qi., Jiao, Stolkin,

Quality
Measure Definition Description
SSIM (2uy+c1) (204 +¢:) Structural similarity index is used to characterize luminosity, disparity and structural variations,
SSIM(X,Y) = 75—~
(B8 +ar) (R +o3+a)
where ¢;, ¢, are constant and where mean intensity y, = %ZL Xi
chosen lesser than one. 1/2
Standard deviation o, = (ﬁ SN - px)z)
Covariance 0, = %ZL (i — py) (yi - ,uy)
ENL ENL — E[fi]® Equivalent number of looks. The amplitude of an image is calculated by the ratio of mean to
Var(fi) variance. Maximum value corresponds to the better speckle reduction. Here, f, is filtered image.
SSI S| = Var(f) | Efsi]® Speckle Suppression Index. It is defined by the coefficient of variance of the filtered image and

Eff,)”  Var(s)
a speckled image.

normalized by that of the speckle image. SSI provides better results for lesser than one. s, is




& Li, 2014) to assess the CD image with respect to
ground truth image. False positive (FP) defines the
number of unchanged pixels that are wrongly classi-
fied as changed pixels. False negative (FN) defines the
number of changed pixels that are wrongly classified
as unchanged pixels. True negative (TN) is the num-
ber of pixels that are correctly classified as unchanged
pixels. True positive (TP) is the number of pixels that
are correctly classified as changed pixels. False alarm
rate (FAR) is the probability of unchanged pixels that
are wrongly classified as changed pixels and it is also
termed as FP rate, which is close to a minimal value
for ideal case. F1 score measures the harmonic mean
of detection rate and precision. F; closer to one
shows better score. The overall error (OE) is the
sum of FP and EN pixels, and less number of OE
represents better result. The ER measures the ratio
between OE and total number of pixels (N). It pro-
vides best result for minimum rate. Kappa coeflicient
(KC) measures the effectiveness of classification and
is to be closed to 1 for ideal case. Percentage correct
classification (PCC) measures accuracy of prediction.
On the third stage, the critical analysis is carried on
a threshold algorithm using the Region nonunifor-
mity (NU) measure (Mehmet & Sankur, 2004) and
Area overlap measure (AOM) (Rosenfield et al., 1986;
Xu, Xu, Jin, & Song, 2011) to justify the meaningful
change map.

Results and discussion

We have tested the proposed algorithm with one set
of simulated image and three sets of the real SAR
dataset images. The experimental results and its dis-
cussions are given below,

Preprocessing by CAD algorithm

In preprocessing stage, CAD algorithm is used as
a despeckling tool to perform speckle noise reduc-
tion in SAR images. Speckle-free images can able to
give improved response in post-processing stages.
The CAD provides excellent tool for speckle noise
reduction, edge preservation and feature enhance-
ment without broadening effect. The quality of the
filtering technique is verified by effective perfor-
mance metrics such as SSIM, ENL and SSI. These
metric values are evaluated and tabulated in Table
2 and it shows precise values for all three real SAR
datasets. An additional, image profile is used to

Table 2. Performance of various datasets using SSIM, ENL and
SSl.

Dataset SSIM ENL SSI

Athabasca 0.8767 56.3572 0.2406
Alberta 0.8807 24.2520 0.1391
Aare River 0.9200 57.7557 0.2622
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give pictorial representation to validate the inten-
sity profile of an image, which gives visual perfor-
mance to compare the original speckle image and
the filtered image. In Figure 3, the performance of
image profile is depicted in distance along profile
with respect to intensity on 330th row of Athabasca
dataset, 33rd row of Alberta dataset and 67th row
of the Aare river dataset. Thus, validation by above
representations’ CAD algorithm exhibits excellent
speckle noise reduction without disturbing struc-
tural originality of the given image. Importantly,
CAD is applied as a preprocessing tool for all
dataset images to maintain uniformity among the
various comparison techniques and proposed
method to define exact change map analysis.

The performance of proposed LPCD method

Flattening effect is a common problem of LR opera-
tion, which is characterized as strengthening the low-
intensity pixels at the same time as reducing the
strength of pixels in the area of high intensity. In
order to prevent this flattening effect of high-intensity
pixels and to improve the linear features and edges,
LP-based CD is introduced. The proposed LP-based
DI gives excellent pixel distribution between changed
and unchanged classes. The LP is decomposed into [ =
4 layers and each decomposition layer is compared by
LR operation to work under medium band resolution.
The LP-based multiscale decomposition is constructed
and verified by LR operation, and the performance of
band pass and low pass difference coefficients is
depicted in Figure 4 along with reconstructed image
of LP. Reconstruction of LP is the DI. This multiple
scale analysis enhances boundaries, lines and bars fea-
tures in the first three band pass layers and verified
hypothesized feature tentatively identified by a low
pass layer. The proposed LP-based DI is a gray-level
image and it is converted into binary change map by
optimized Otsu thresholding algorithm.

Two time series SAR images are considered as the
input images to experiment for CD and the available
ground truth image is manipulated with reference to
the input images. The performance of the proposed
LPCD method is compared with various change dif-
ference methods like Mean Ratio (MR), LR, and MR
with Kittler-Illingworth algorithm (MRKI), LR with
Kittler-Illingworth algorithm (LRKI), MR with Otsu
algorithm (MRO), LR with Otsu algorithm (LRO),
Fusing MR and LR methods with kittler-Illingworth
algorithm (FMLKI) and Fusing MR and LR method
with Otsu algorithm (FMLO). Comparisons with
above-existing methods are depicted in Figures 5-8
for (i) simulated dataset (ii) Athabasca dataset (iii)
Alberta dataset and in (iv) Aare River dataset, respec-
tively. It is clearly understandable that the figures
mentioned above have the following observations,
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Figure 3. Experimental results of various dataset (a1) Athabasca image with marginal on 330th row, (a2) Image profile beside on 330th
row of original image, (a3) Image profile beside on 330th row of despeckled image, (b1) Alberta image with marginal on 33rd row, (b2)
Image profile beside on 33rd row of original image, (b3) Image profile beside on 33rd row of despeckled image, (c1) Aare image with
marginal on 67th row, (c2) Image profile beside on 67th row of original image, (c3) Image profile beside on 67th row of despeckled image.
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Figure 4. Experimental results on LP-based multiscale decomposition combined with LR operator. Athabasca dataset (a;) L1g—L5o, (a2)
L11—Ly1, (a3) L1—Lyy, (a4) L13—Ly3 and (as) Reconstructed image; Aare River dataset (by) L1o—Lag, (02) L11—L21, (b3) L12—L2a, (bg) L13—Ly3
and (bs) Reconstructed image; Alberta dataset (c;) Lig—Lao, (C2)) L11—La1, (€3) L1o—Lay, (€4) L13—Ly3 and (cs) Reconstructed image.
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Figure 5. Experimental results of simulated images (a) /; (b) /; (c) Ground truth (d) MR (e) LR (f) MRKI (g) LRKI (h) MRO (i) LRO (j)
FMLKI (k) FMLO (I) LPCD.

Figure 6. Experimental results of Athabasca Dataset (a) /; (b) /; (c) Ground truth (d) MR (e) LR (f) MRKI (g) LRKI (h) MRO (i) LRO (j)
FMLKI (k) FMLO (I) LPCD.
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Figure 7. Experimental results of Alberta Dataset (a) /4 (b) /, (c) Ground truth (d) MR (e) LR (f) MRKI (g) LRKI (h) MRO (i) LRO (j)
FMLKI (k) FMLO (1) LPCD.

k

Figure 8. Experimental results of Aare River Dataset (a) /;; (b) I5; (c) Ground truth; (d) MR; (e) LR; (f) MRKI; (g) LRKI; (h) MRO; (i)
LRO; (j) FMLKI; (k) FMLO; (I) LPCD.



and the MR method finds differences by local mean
value of the input images. Change map obtained by
MR method represents unchanged pixels are wrongly
identified as changed pixels, which carry more hot
spots on the CD image. The LR method fails to detect
change class pixels since the characteristics of logarith-
mic operator influenced to fade away the high-inten-
sity pixels. MRKI and LRKI methods used KI
algorithm for thresholding, and due to that, the error
pixels are reduced when compared with direct analysis.
MRO and LRO utilizes Otsu threshold algorithm, and
it gives better pixel distributions of changed and
unchanged classes and shows lesser hot spots. FMLKI
and FMLO methods fuse MR and LR operator using
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principal component analysis (PCA) fusion rule.
Fusing MR and LR method used thresholding techni-
ques of KI and Otsu algorithm providing asymmetrical
detection between two classes of pixels.

The proposed method is compared with above CD
methods and evaluated by performance measures using
confusion matrix parameters and are tabulated in Tables
3-6 with respective (i), (ii), (iii) and (iv) datasets. The
comparison results are proved that the proposed method
is competent and afford excellent KC value of 0.9574 for
(1), 0.8099 for (ii), 0.9018 for (iii) and 0.9064 for (iv)
datasets and provide highest PCC of 99.21% for (i),
99.02% for (ii), 99.05% for (iii) and 99.78% (iv) datasets,
respectively. ER 0.0079 for (i), 0.0098 for (ii), 0.0095 for

Table 3. Evaluation of change detection for simulated images with different methods.

Methods FP FN FAR F, Score OE ER Kappa MsR DR PCC (%)
MR 5889 457 0.1479 0.5448 6346 0.144 0.4743 0.1074 0.8926 85.60
LR 3372 315 0.0869 0.7284 3687 0.0836 0.6819 0.0599 0.9401 91.64
MRKI 5091 522 0.1271 0.5559 5613 0.1273 0.4927 0.1294 0.8706 87.27
LRKI 1897 948 0.0491 0.7595 2845 0.0645 0.7225 0.1743 0.8257 93.55
MRO 4217 605 0.1049 0.5758 4822 0.1094 0.5202 0.156 0.844 89.06
LRO 1450 961 0.0371 0.7703 2411 0.0547 0.7393 0.1921 0.8079 94.53
FMLKI 1188 289 0.0305 0.8678 1477 0.0335 0.8488 0.0562 0.9438 96.65
FMLO 1030 280 0.0264 0.8782 1310 0.0297 0.8614 0.056 0.944 97.03
LPCD 237 111 0.0028 0.9618 348 0.0079 0.9574 0.0513 0.9487 99.21
Table 4. Evaluation of change detection for Athabasca oil sand dataset with different methods.
Methods FP FN FAR F, Score OE ER Kappa MsR DR PCC (%)
MR 23,383 522 0.1992 0.2273 23,905 0.1969 0.1799 0.1293 0.8707 80.31
LR 16,142 192 0.1354 0.1991 16,334 0.1345 0.1721 0.0864 0.9136 86.55
MRKI 17,304 644 0.1474 0.2744 17,948 0.1478 0.2317 0.1595 0.8405 85.22
LRKI 11,283 192 0.0947 0.2613 11,475 0.0945 0.2374 0.0864 0.9136 90.55
MRO 12,753 778 0.1087 0.3252 13,531 0.1114 0.2873 0.1927 0.8073 88.86
LRO 6910 192 0.058 0.3637 7102 0.0585 0.3445 0.0864 0.9136 94.15
FMLKI 4033 106 0.0342 0.6209 4139 0.0341 0.6055 0.0303 0.9697 96.59
FMLO 2080 378 0.0178 0.7763 2458 0.0202 0.7659 0.0814 0.9186 97.98
LPCD 1123 64 0.0095 0.8148 1187 0.0098 0.8099 0.0239 0.9761 99.02
Table 5. Evaluation of change detection for Alberta flood dataset with different methods.
Methods FP FN FAR F, Score OE ER Kappa MsR DR PCC (%)
MR 7783 162 0.1453 0.305 7945 0.1432 0.2628 0.085 0.915 85.68
LR 2914 304 0.0554 0.6175 3218 0.058 0.5893 0.1048 0.8952 94.20
MRKI 4313 351 0.0803 0.3791 4664 0.0841 0.3472 0.1977 0.8023 91.59
LRKI 1964 273 0.038 0.7603 2237 0.0403 0.739 0.0715 0.9285 95.97
MRO 2559 410 0.0475 0.4391 2969 0.0535 0.4158 0.2608 0.7392 94.65
LRO 1008 124 0.0191 0.8227 1132 0.0204 0.8121 0.0451 0.9549 97.96
FMLKI 1016 165 0.0189 0.7203 1181 0.0213 0.7097 0.0979 0.9021 97.87
FMLO 867 199 0.0161 0.7361 1066 0.0192 0.7265 0.118 0.882 98.08
LPCD 456 73 0.0086 0.9068 529 0.0095 0.9018 0.0276 0.9724 99.05
Table 6. Evaluation of change detection for Aare River dataset with different methods.
Methods FP FN FAR F, Score OE ER Kappa MsR DR PCC (%)
MR 13,481 269 0.1602 0.1096 13,750 0.1613 0.0874 0.2413 0.7587 83.87
LR 8224 132 0.0985 0.2767 8356 0.098 0.2508 0.0763 0.9237 90.2
MRKI 10,469 281 0.1244 0.1343 10,750 0.1261 0.1132 0.252 0.748 87.39
LRKI 3889 155 0.048 0.6681 4044 0.0474 0.6451 0.0367 0.9633 95.26
MRO 9170 298 0.1089 0.1319 9468 0.1111 0.1127 0.293 0.707 88.89
LRO 2560 275 0.0314 0.701 2835 0.0333 0.6845 0.0764 0.9236 96.67
FMLKI 1922 161 0.0229 0.5372 2083 0.0244 0.5266 0.1175 0.8825 97.56
FMLO 1433 207 0.0171 0.5865 1640 0.0192 0.5776 0.1511 0.8489 98.08
LPCD 148 40 0.0018 0.9075 188 0.0022 0.9064 0.0416 0.9584 99.78
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(iii) and 0.0022 for (iv) are acquired, and it shows that the
proposed method illustrates most of the changed pixels
are identified correctly with minimum misclassification
error. The rate of FAR and Miss rate (MsR) are lesser,
which implicit the better class distribution of LPCD
method. F; scores obtained by LPCD method are
0.9618 for (i), 0.8148 for (ii), 0.9068 for (iii) and 0.9075
for (iv) dataset, which are comparatively higher than
above-existing methods. The Detection Rate (DR) is
more for LPCD, which shows the perfect classification
of the proposed CD method. The pixel classifications by
EN, FP and OE are comparatively less which proves the
effective performance of the proposed method.
Comparison plot for KC and PCC (%) are portrayed in
Figure 9.

The effectiveness of the proposed method is verified by
comparing with other multiscale approaches like wavelet-
based multiscale decomposition method with scale-dri-
ven approach (SDA) (Bovolo & Bruzzone, 2005), multi-
scale change analysis of similarity measure (KL-MCP)
(Inglada & Mercier, 2007), multiscale CD by bayesian
approach (BA-MCD) (Celik, 2010a) and multiscale SAR
image preparation by the kennaugh element framework

100

(K matrix-MS) (Schmitt, Wendleder, & Hinz, 2015), and
the comparison result is shown in Figure 10. The analysis
of above various multiscale representations give the fol-
lowing facts that, in Figure 10(a), wavelet-based scale-
driven approach showed better accuracy based on trial-
and-error threshold selection, also this technique is
unable to provide correct classification of change map
upto the maximum extent. In Figure 10(b), KL-MCP is
statistical similarity measure and its extension is consid-
ered for multiscale representation, which is wrongly
detecting unchanged class pixels as a change class pixels
and also shows false prediction on class distribution.
Figure 10(c) shows BA-MCD approach, which has not
identified number of scale selections for effective CD, and
the computational complexity is more. In Figure 10(d),
K matrix-MS is Kennaugh element framework for multi-
scale SAR image preparation to detect change map,
which gives CD result in concern with number of looks
of the SAR image. This framework gives blurring effect
on the edges of each scale and takes more computation
complexity. By examination of other multiscale
approaches, it is obvious that the proposed LPCD
method yields better performance, easy execution,
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Figure 9. Comparison Result of PCC for: (a) Athabasca dataset, (b) Alberta dataset, (c) Aare River dataset; Comparison Result of
Kappa Coefficient for: (d) Athabasca dataset, (e) Alberta dataset, (f) Aare River dataset.

Figure 10. Experiment results of comparison with multiscale methods (a) SDA (b) KL-MCP (c) BA-MCD (d) K matrix-MS (e)

Proposed LPCD method.



exact class distribution among changed and unchanged
pixels, edge enhancement and accurate area detection.
The comparison of various performance measures is
evaluated with above-existing approaches in terms of
accuracy, FAR, ER, DR and KC, and are tabulated in
Table 7. This performance measure shows that the
LPCD method has better performance of high accuracy,
less FAR and ER, high DR, high KC and less computa-
tion time.

Class distribution by Otsu thresholding algorithm

The perfect classification of the CD is carried out by
Otsu thresholding algorithm. The optimal threshold
value (t) depends on the maximum class probability
and class mean, where the class mean is the first-order
statistical criterion (cumulative probability). In our pro-
posed technique, Otsu method selects the threshold by
exploiting the between-class variance (0%). The Figure
11 shows the pictorial representation of between-class
variance 0123 for various dataset images (Fan & Lei,
2012). Figure 11(a,c) represents the plot of Ué value
with corresponding gray-level value. Figure 11(d,f)

EUROPEAN JOURNAL OF REMOTE SENSING . 477

corresponding threshold value adapted by various CD
methods (Muthukumaran, Gopalakrishnan, Purna,
Soumitra, & Saravanan, 2017) and shows effective
class distribution and automatic thresholding of the
proposed method.

Thresholding method offers fine distribution of chan-
ged and unchanged pixels of the image. Here, Otsu algo-
rithm is capable to distinguish the changed/unchanged
criterion automatically, even the number of changed
pixels is lesser than 5% of the whole image pixels. In
Figure 12, small change area (tiny portion with <5% of
changed pixels) of the image is considered for testing.

Otsu’s approach is experimented with o2, (within-
class variance) and o3 (between-class variance). The

maximum value of between-class variance oé(mx) can

detect number of changed pixels closely and provides
less OE. The simulation result of 6% and 0% are experi-
mented for small percentage of changed pixels. This
experiment shows 0% detected number of 3020 changed
pixels with respect to ground truth of 3033 pixels, but
02, detected only a number of 2150 pixels. This shows
minimum value of within-class variance o, (miny 18 fails
to detect foreground pixels exactly and spatial informa-
tion are not considered into an account. Hence, the

represents the histogram of an image with
within-class variance afv( min) 18 DO suitable to classify
Table 7. C , ¢ different multiscale method less than 5% of change area of the whole image
able 7. Comparison of different multiscale methods. L. .
Volticcal P - (Alexander et al., 2011) which is verified by NU and
ultiscale . .
methods FAR ER DR Kappa (%)  (seq) AOM, and is tabulated in Table 8.
SDA 04328 00188 09454 06999 98.12 23323 The above experiment results show ¢ provides
KL-MCP 0.6446 05806 0.6071 0.0251 41.94 18937 valid information of changed and unchanged class
BA-MCD 00180 0.0203 09222 07671 97.97 3.1409 S 5
K matrix-MS 00244 00237 08321 06983 97.63 4.8321 distribution compared to o7;. The proposed LPCD
Propots;fdc| 0.0095 0.0098 0.9761 0.8099 99.02 09639  method is classified by the maximum value of
metho
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Figure 11. Otsu thresholding results: o3 Vs gray level (a) Athabasca image, (b) Alberta image, (c) Aare river image; Histogram
with threshold values: (a) Athabasca image, (b) Alberta image, (c) Aare river image.
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Figure 12. Experiment results of Alberta dataset for Otsu thresholding (a) o3 (b) o3,

Table 8. Experimental results for small percentage of changed pixels.
Ground Truth

Dataset Image size (changed pixels) % of change Class Separability Change area pixels OE NU AOM
Alberta Images 175 x 317 3033 <5% a2, (Within-class) 2150 1385 0.0392 0.5783
0§ (Between-class) 3020 433 0.0551 0.8665

(k) 1))

Figure 13. Otsu segmentation result for Athabasca image (a) o3 = 124.76; Threshold = 7, (b) 03 = 164.33; Threshold = 14, (c)
03 = 221.26; Threshold = 27, (d) o} = 256.84; Threshold = 39, (e) o3 = 270.57; Threshold = 58, (f) o} =251.27;
Threshold = 88, (g) o3 = 225.65; Threshold = 104, (h) o3 = 201.78; Threshold = 115, (i) 0§ = 175.15; Threshold = 126, (j)
o3 = 150.70; Threshold = 135, (k) o3 = 124.19; Threshold = 145, (I) 03 = 99.68; Threshold = 154.

between-class variance at aé = 270.5766 and is various values of between-class variance, and the
obtained at threshold value of t = 58. The considera-  test image is classified by minimum to maximum
tion of ¢} dataset (ii) is used to experiment for  threshold values in Figure 13. The Figure 13(e)



Table 9. Area overlap measure (AOM) for Otsu thresholding for different between class variance value in values. Fig.13

Otsu segmentation for different between-class variance values.
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0.5829

0.0479

AOM
Maximum value of between class variances} = 270.58 yields accurate binary classification experimented by AOM.
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represents that the foreground and background pixels
are effectively classified compared to other o% values.
Table 9 carries the performance of AOM evaluated
for different values of between-class variance o3.

The region NU and AOM are performance mea-
surements for evaluating the effective classification
of the thresholding algorithm. The assessment of
effective classification of LPCD and various change
map techniques are measured by AOM and NU,
shown in Figure 14(a,b) respectively. The perfor-
mance measures of NU and AOM are itemized in
Tables 10 and 11 respectively.

From an analysis of the proposed LPCD method
it can be seen that the overall performance per-
ceives best change map detection. The LP-based
multiscale DI incorporated with speckle reduction
and thresholding algorithm provide appreciable CD
results. It enables speckle-free correct classification
result and less computational time of 0.9639s com-
pared to other existing multiscale methods. These
significance makes LP multiscale analysis is apt for
CD application and this method is suitable to work
under crisis situation in disaster management. The
entire experiments are executed on MATLAB in
windows platform on the system configuration of
Intel(R) Core(TM) i5-4210U CPU@1.70GHz
2.40GHz, 4GB of RAM for SAR images.

Conclusions

In this paper, a novel CD method based on LP
multiscale representation and the effective classi-
fication by thresholding algorithm is proposed.
The significance of the proposed method is to
restrain the unchanged class pixels ideally and to
enhance the changed class pixels effectively with
perfect boundaries. As specified in the literature,
the characteristic of LR operation is flattening the
high-intensity pixels and enhancing the pixels in
the area of low intensity, which provides asymme-
trical class distribution. Hence, the multiscale
representation by LPCD is introduced to detect
changes in medium band resolution and it pro-
vides changed and unchanged class distributions
exactly. The proposed LP-based CD method is
experimented with a simulated image and three
real SAR image datasets.

The SAR images are highly degraded by speckle
noise, hence preprocessing is an essential task for
CD. In the first step, CAD is employed as
a preprocessing tool for removing the speckle
noise. CAD effectively suppresses the speckle con-
tent and preserve edges, enhance sharp details and
reduce feature broadening effects. Profile for des-
peckled image shows the effective speckle reduc-
tion ability of CAD, which is proved by the



480 R. VIJAYA GEETHA AND S. KALAIVANI

(a) Area Overlap Measure

= MRKI

=MRO

=LRKI

ELRO

= FMRKI

=FMLO
LPCD

AOM

Athabasca

Alberta Aare River
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Figure 14. Comparison results of (a) area overlap measure (AOM), (b) region nonuniformity (NU) .

Table 10. Performance measures (region nonuniformity) .
Dataset MRKI  MRO LRKI LRO FMRKI FMLO LPCD

Athabasca 0.1705 0.1097 0.1319 0.0736 0.0611 0.0523 0.0296
Alberta 0.1326 0.0934 0.116 0.069 0.0367 0.0304 0.0126
Aare River 0.1034 0.0993 0.0671 0.0655 0.0557 0.0524 0.0446

Table 11. Performance measures (area overlap measure) .
Dataset MRKI  MRO LRKI LRO FMRKI FMLO LPCD

Athabasca 0.159 0.1503 0.1942 0.2223 0.4503 0.6343 0.8542
Alberta 0.2307 0.5016 0.3316 0.5397 0.3673 0.4149 0.8306
Aare River 0.2339 0.6132 0.2813 0.6988 0.5629 0.5825 0.8296

computation of quality measures like SSIM, ENL
and SSI. In second stage, speckle-free images are
processed by LP domain, where the input images
are decomposed into three /=0,1,2 band pass
layers and a unique /=3 low pass layer of the
image. The proposed method preserve edges from
the fine scale layers and the detailed information
tentatively presents in coarse scale layer. The
decomposed pyramid coeflicients are manipulated
by a LR operation and the reconstructed image is
a DI In the third stage, a threshold algorithm of
Otsu’s method is applied on the DI to realize the
automatic classification of the change map image.
With the aid of thresholding experiment by two
different variance approaches, it has proved that,

our proposed method 0123( can detect even less

max)
than 5% of changed class pixels (tiny area) of the
whole image.

The quality of the LPCD method is analyzed by
various standard measures like PCC, KC, F;- score,
FAR, DR and so on. The proposed method affords
perfect CD map with the preservation of required
details. The correct classification of threshold algorithm
is verified by the region NU measure and AOM. The
efficacy of the proposed method is compared with var-
ious multiscale approaches. LP-based multiscale CD
method provides exact change information from coarse
to fine scale layer and can deal with a large selection of
changed pixels with less computing time of 0.9639 s
compared to other existing methods, which makes the

proposed method is suitable to work under emergency
conditions in disaster management. The future devel-
opment of this work could be carried out by considering
the similarity measures in pyramid layers which may
provide higher number of dependency pixels between
two successive layers of the image. Similarity measures
are insensitive to sensor parameters, hence would make
fast evaluation of changed and unchanged pixel separa-
tion framework. Also, it would be a concern to extend
the proposed multiscale approach for multiband and
polarimetric SAR images.
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