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Abstract

Low-density multiple-input multiple-output code (LDMC) can reduce the complexity of tree-search detection in

MIMO systems. In this paper, we present a new modified progressive edge-growth (PEG) algorithm to construct large

girth LDMCs, which are referred to as PEG-LDMCs. We analyze the complexity of the LDMC constrained sphere

decoding (SD) and show that the LDMC constrained SD detection can be used for high reliability of the data

transmission in MIMO systems. Furthermore, we propose two new efficient iterative decoding algorithms for LDMCs,

which are high speed serial decoding and fast convergence shuffled decoding. Finally, we compare the bit error rate

(BER) performance of PEG-LDMCs to that of the existing LDMCs. The simulation results show that the PEG-LDMCs can

achieve better BER performance than that of the existing LDMCs.

Keywords: Low-density parity-check (LDPC) codes, Multiple-input multiple-output (MIMO), Sphere decoding (SD),

Low-density MIMO codes (LDMCs)

1 Introduction
Multiple-input multiple-output (MIMO) techniques have

been widely studied during the past decades as they

can provide significant multiplexing and diversity gains

in transmission. Therefore, MIMO techniques have been

identified as one of the most practical methods to combat

fading and to increase the capacity of wireless channels in

the recent years [1–4].

In order to provide high reliability of the data transmis-

sion in MIMO systems, special attention has to be paid in

the receiver design. Maximum-likelihood (ML) detection

is the optimal detection for MIMO systems [5, 6]. How-

ever, the complexity of the exhaustive searching in ML

detection is too high for practical use. Therefore, subopti-

mal but low complexity detections were proposed, which

include linear detection, such as zero-forcing (ZF) [7, 8],

minimummean-square error (MMSE) [9], and non-linear

detection, such as sphere decoding (SD) [10]. The per-

formance of MMSE detection is better than that of ZF

detection, due to the fact that the correlation between the

noises in ZF detection is neglected in the projection oper-

ation. However, both the ZF detection and the MMSE

*Correspondence: xqjiang@dhu.edu.cn
1School of Information Science and Technology, Donghua University, 2999

Renmin N Rd, Songjiang, 201620 Shanghai, China

Full list of author information is available at the end of the article

detection suffer from serious performance degradation

with respect to the optimal ML detection. On the other

hand, the SD detection draws attention of researchers as

it can achieve a near-ML detection performance [11]. The

main idea of the SD detection is that it only searches the

ML candidate symbols which lie inside a specific sphere.

For a given sphere size, the detection complexity of SD

detection in MIMO systems becomes very high when the

number of candidates is large.

Practically, error-correction codes are usually applied

in MIMO systems. In particular, low-density parity-check

(LDPC) codes have drawn attention of many researchers

due to their Shannon limit approaching performance

[12–14]. As a subclass of LDPC codes, low-densityMIMO

codes (LDMCs) were presented in [15, 16], which reduce

the complexity of the ML detection by introducing con-

straints in each transmission vector. The transmission

vector is defined as the set of symbols which are transmit-

ted simultaneously via multiple antennas. In [17], LDMCs

with low-encoding complexity are further presented.

Motivated by the near-ML detection performance of the

SD detection and the complexity reduction property of the

LDMCs, in this paper, we study the design of LDMCs and

the concatenation strategy of LDMCs and SD detection in

MIMO systems.
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Furthermore, we proposemore efficient iterative decod-

ing algorithms for LDMCs. It is well known that the

iterative decoding converges to the optimal solution pro-

vided that the parity-check matrix of the code is of large

girth [18]. Therefore, LDMCs of large girth are particu-

larly desirable. Hence, we propose a modified progressive

edge-growth (PEG) algorithm to construct LDMCs of

large girth. The contributions of this paper are as follows:

• We propose a new modified PEG algorithm to

construct large girth LDMCs for good performance.
• We analyze the complexity of SD detection in the

LDMC-coded MIMO systems, which indicates that

the LDMC-constrained SD detection can be used for

MIMO systems with large number of transmit

antennas.
• We propose two efficient iterative decoding

algorithms for LDMCs for high speed and fast

convergence decoding.

This paper is organized as follows. In Section 2, we

review MIMO systems and LDMCs. In Section 3, we

introduce a modified PEG algorithm to construct large

girth LDMCs. In Section 4, we compare the complex-

ity of LDMC-constrained SD detection with that of the

MMSE and ZF detections. In Section 5, we introduce two

new shuffled decoding algorithms for LDMCs. Examples

of the LDMC-constrained SD detection in MIMO sys-

tems and the corresponding simulation results are given

in Section 6. Finally, Section 7 concludes the paper.

Notation: bold lower case letters represent vectors,

while bold upper case letters denote matrices. (·)T , (·)H ,
and ‖ · ‖ denote transpose, Hermitian, and norm opera-

tions, respectively. Cm×n stands for the complex space of

sizem × n.

2 Preliminaries
This section introduces some background concepts that

will be used throughout the paper.

2.1 MIMO systems

Let Mt be the number of transmit antennas and Mr

be the number of receive antennas. The source binary

information bits b =[ b1, · · · , bnR] are first encoded

using an LDPC encoder to generate a codeword w =
[

w1,w2, · · · ,w n
MtQ

]

, where R is the code rate and n is the

length of the codeword. Then, each group of MtQ coded

bitswi =[ b1, · · · , bMtQ] is mapped to a group ofMt trans-

mission vector x =[ x1, · · · , xMt ]
T , where xj is taken out of

the constellations of size 2Q. x is then passed to the trans-

mit filter and sent through the Mt transmit antennas. x is

denoted as the transmission vector in the following.

Without loss of generality, we express the system

model as

y = Hx + z. (1)

Here, y ∈ C
Mr×1 is the complex received signal vec-

tor. H ∈ C
Mr×Mt is the Rayleigh fading channel matrix

with independent entries that are complex Gaussian dis-

tributed with zero mean and unit variance. H is assumed

to be known to the receiver, but not to the transmitter, and

the channel coefficient randomly varys in time. z ∈ C
Mr×1

is complex white Gaussian noise with variance σ 2 per

dimension.

Referring to [22–24], the received signal is iteratively

detected and decoded by mutually exchanging soft infor-

mation between the detector and LDPC decoders. The

detection computes the log-likelihood ratios (LLRs), Li,

for each coded bit by using

Li = log

(
Pr[wi = 1|y,H]

Pr[wi = 0|y,H]

)

,

= log

⎛

⎝

∑

x:wi=1 e
−‖y−Hx‖2+

∑

j logPr[wj]

∑

x:wi=0 e
−‖y−Hx‖2+

∑

j logPr[wj]

⎞

⎠ , (2)

where i = 1, 2, . . . , n. Transforming (2) into a tree-search

problem and using the SD detection allows efficient com-

putation of the LLRs [22, 23].

Let (3) denote the distribution of the searching candi-

dates in the searching space,

ηSD = (1, . . . , 1
︸ ︷︷ ︸

ηP

,Q, . . . ,Q
︸ ︷︷ ︸

ηQ

), (3)

each of whose elements is the number of constellation

symbols to be searched at each antenna. Here, ηP + ηQ =
Mt . ηQ denotes the number of candidates, which are con-

sidered to be fully searched, and ηP denotes the number of

candidates are not required to be searched. It is clear that

if ηQ = Mt , the SD detection becomes the ML detection.

The search over bit possibilities within x scales expo-

nentially with the number of antennasMt and the constel-

lation size Q. In addition, the complexity of SD detection

is very high when the number of bits mapped to the trans-

mission vector and the constellation are large. Then, the

complexity of the SD detection is the major problem for

applying SD detection to MIMO systems with large num-

ber of transmit antennas. In the next subsection, we will

describe that the LDMC is a subclass of LDPC codes and

can reduce the complexity of the SD detection for MIMO

systems.

2.2 Low-density MIMO codes

LDMCs are linear block codes which can be described by

PwT = 0, where P is a parity-check matrix of n columns

and m rows. Therefore, the overall code rate is R = 1 −
m/n. The LDMC parity-check matrix can be described by

two layers as
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P =
(

Pg

Pe

)

=

⎛

⎜
⎜
⎜
⎝

Pg

P′
e · · · 0

0
. . . 0

0 · · · P′
e

⎞

⎟
⎟
⎟
⎠
. (4)

The first layer Pg is a sparse parity-check matrix, while

the second layer Pe is defined by multiple, unconnected

sub-codes P′
e. Each sub-code P′

e corresponding towi has a

code lengthN ′
e ≤ MtQ. LetNg = n/N ′

e denote the number

of sub-codes in an LDMC codeword. The size of P′
e is q ×

MtQ and the size of Pg is (m − Ngq) × n.

As mentioned before, each transmission vector x carries

MtQ bits. It has to be guaranteed that all bits of a sub-code

P′
e are transmitted within one transmission vector x. Thus,

each transmission vector x carries an embedded code P′
e,

i.e., P′
ew

T
i = 0.

It has been shown that, the SD detection achieves near-

ML performance if ηQ ≥
√
Mt − 1 [19]. Therefore, it

requires at least 2Q(
√
Mt−1) times searching to achieve

near-ML performance. With q constraints in LDMC-

constrained SD detection, the number of searching in

LDMC-constrained SD will downscale to 2Q(
√
Mt−1)−q

[15, 16].

3 LDMC design based on PEG algorithm
It was stated in [18] that large girths facilitate iterative

decoding and impose a respectable minimum distance

bound that enhances decoding performance. Among the

existing approaches for constructing LDPC codes, one of

the most successful approaches is PEG algorithm [17].

Recently, several PEG algorithms have been proposed

[25–27], which can be applied to construct Pe. For a given

symbol node sj, define its neighborhood within depth l,

N l
sj
, as the set consisting of all check nodes reached by a

subgraph (or a tree) spreading from symbol node sj within

depth l. Its complementary set, N̄ l
sj
, is defined as Vc\N l

sj
,

or equivalently N̄ l
sj

⋃

N l
sj

= Vc. Denote the symbol-degree

sequence by

Ds = {ds0 , ds1 , . . . , dsn−1} (5)

in which dsj is the degree of symbol node sj, 0 ≤ j ≤ n − 1

and ds0 ≤ ds1 · · · ≤ dsn−1 . The PEG algorithm constructs a

Tanner graph by operating progressively on symbol nodes

to establish edges required by Ds. To establish an edge

incident to sj, the PEG algorithm first spreads a tree from

sj up to maximum depth l and then chooses a check node

ci at random from the check nodes of the lowest degree

in N̄ l
sj
. In this section, we introduce a modified PEG algo-

rithm to construct large girth LDMCs, which is referred

to as PEG-LDMC algorithm and the corresponding codes

as PEG-LDMCs in this paper.

Let Dg and De denote the degree sequence associated

with Pg and Pe, respectively. The parity-check matrix P of

Algorithm 1 High-level description of PEG-LDMC algo-

rithm
Input: code length n, sub-code length Ne, parity

length n, sub-code parity length q, the symbol-degree

sequence Dg and De

for k = 1 to Ng do

Construct P′
e with the P′

e-PEG algorithm and

symbol-degree sequence De.

for j = k · N ′
e to (k + 1) · N ′

e do

Construct the jth column of Pg with the Pg-

PEG algorithm and symbol-degree sequence Dg .

end for

end for

Output: parity-check matrix P

Algorithm 2 P′
e-PEG algorithm

Input: sub-code length N ′
e, sub-code parity length q,

symbol-degree sequence De

for j = 0 to N ′
e − 1 do

if j ≤ q then

Establish the edge (ci, sj).

else

Establish the edge (ci, sj) with the PEG algorithm.

end if

end for

Output: parity-check matrix P′
e

LDMC can be constructed by the PEG-LDMC algorithm

with the following steps.

Preprocessing process :

From the optimized degree distribution for the

code rate 1 − (m − Ngq)/n and code rate 1 −
q/N ′

e, generate the symbol-degree sequences Dg =
{ds0 , ds1 , . . . , ds(N ′

e−1)
} andDe = {ds0 , ds1 , . . . , ds(N ′

e−1)
},

respectively.

Constructing process :

Step 1. Construct q × N ′
e submatrix P′

e of the form P′
e =

[ P̄′
e I] with the PEG algorithm and symbol-degree

sequence De, where I denotes an identity matrix of

size q × q and P̄′
e is of size q × (N ′

e − q).

Step 2. Construct the columns of Pg , which are in the

same columns as Pe in P. If the construction of P is

not finished, go back to Step 1. Otherwise, stop the

construction.

It is worth pointing out that in the PEG-LDMC algo-

rithm, the submatrices Pe and Pg of the parity-check
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Algorithm 3 Pg-PEG algorithm

Input: dsj
for k = 0 to dsj − 1 do

Expand a subgraph from sj up to depth l under the

current graph setting such that the cardinality ofN l
sj

stops increasing but is less than m, or N̄ l
sj

�= Ø but

N̄ l+1
sj

= Ø, then Eksj ← edge(ci, sj), where E
k
sj
is the

kth edge incident on sj and ci is a check node picked

from N̄ l
sj
having the lowest check-node degree.

end for

Output: the jth column of Pg

matrix P are constructed simultaneously. Therefore, the

girth of P is optimized. A high-level description of the

PEG-LDMC algorithm is given in Algorithm 1 and the

algorithms for steps 1 and 2 are given in Algorithm 2 and

Algorithm 3, respectively.

4 Analysis of detection complexity
In this section, we compare the detection complexity

of the LDMC-constrained SD detection in the LDMC

coded MIMO system with that of ZF and MMSE detec-

tions. To estimate the computational complexity, we use

the number of multiplications required in the detection.

Rough computational complexity estimations are given

in Table 1. The number of additions is relatively small,

therefore, it is omitted in the analysis.

Generally, SD is a searching algorithm for detection. It

performs an exhaustive search based on setting a radius

constraint. This has been proved by Hassibi [11] that the

expected total number of points visited by the sphere

decoding is proportional to the total number of candidates

inside spheres of dimension k = 1 . . .m:

ω =
m

∑

k=1

π
k
2

Ŵ

(
k
2 + 1

)k
, (6)

where d is radius and Ŵ(n) = (n − 1) ! represents the

Gamma function. Clearly, ω depends on the radius d.

Therefore, the channel state information (CSI) estimation

does not impact the complexity in SD.

Table 1 Number of multiplications in LDMC-constrained SD, ZF,

and MMSE detections

Detection technique Computational complexity

LDMC-constrained SD 2Q(
√
Mt−1)−q(Mt + 2)

Zero forcing 2M3
t

MMSE 2M3
t

Specifically, if SD is performed in an LDMC coded

MIMO system, the norm ‖ y − Hx ‖2 in the LDMC-

constrained SD detection in (2) needs 2(Mt + 2) multipli-

cations. Thus, the total number of multiplications in the

LDMC-constrained SD detection is

CLDMC = 2Q(
√
Mt−1)−q+1(Mt + 2). (7)

On the other hand, the ZF detection is represented by

x̄ = (HHH)−1HHy, (8)

and the MMSE detection is represented by

x̄ = (HHH + σ 2I)−1HHy. (9)

From the (8) and (9), it is clear that the MMSE and

ZF detections consist of a complex inversion of Mt × Mt

matrix, and some matrix multiplications and additions.

Mt × Mt matrix inverse and matrix multiplication opera-

tions are both known to need M3
t multiplications. Conse-

quently, the total number of multiplications in MMSE and

ZF detections are both

CMMSE = CZF = 2M3
t . (10)

Note that the computational complexity of linear detec-

tor mainly depend on Mt while the computational com-

plexity of LDMC-constrained SD detection depends on

Mt , Q, and q. If q is large enough, it is possible that

the computational complexity of LDMC-constrained SD

detection is lower than that of ZF and MMSE detections.

LetM3
t ≥ 2Q(

√
Mt−1)−q2(Mt + 2), we have

q ≥ Q(
√

Mt − 1) + 1 − log2
M3

t

Mt + 2
. (11)

If q satisfies condition (11), the computational com-

plexity of LDMC-constrained SD detection with near-ML

performance can be lower than that of ZF and MMSE

detections. From Fig. 1, we can see that the complexity

of the LDMC-constrained SD detection is lower than that

of the MMSE and ZF detections if we choose q prop-

erly. Note that a larger q reduces the size of Pg of the

LDMC matrix, which is constructed by the PEG algo-

rithm. Among the existing approaches for constructing

LDPC codes, the most successful one is the PEG algo-

rithm. The LDPC code constructed by the PEG algo-

rithm is one of the best codes of good error-correcting

performance. Therefore, a larger q not only leads to

worse error-correcting performance, but also lower SD

detection complexity. Hence, there is a trade-off between

performance and detection complexity by choosing the

value q.

5 Efficient decoding algorithm
In this section, we proposed two new decoding algorithms

for LDMCs for high speed decoding and fast convergence
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Fig. 1 Complexity comparison of MMSE, ZF, and LDMC-constrained SD detections for varyingMt and q

decoding. We denote the set of symbol nodes that par-

ticipate in check node ci by N(i) = {j : Pij = 1},
and the set of check nodes in which sj participates as

M(j) = {i : Pij = 1}.
The standard belief propagation (BP) decoding algo-

rithm consists of initialization, check-node updating,

symbol-node updating, stopping criterion test, and out-

put steps [20]. In the proposed decoding algorithms, the

initialization, stopping criterion test, and output steps

remain the same as that in the standard BP algorithm, and

therefore omitted here.

5.1 High-speed serial decoding

In LDMCs, the code length n can be divided into sub-

codes P′
e of length N ′

e. In the high-speed shuffled decod-

ing algorithm, the updating of sub-codes is processed

sequential, but the updating of symbol nodes and check

nodes corresponding to each sub-code P′
e remain in

parallel. Let rlij and glij be the LLRs sent from check

node ci to symbol node sj, and sent from the sym-

bol node sj to check node ci, respectively, in the lth

iteration.

In the standard BP algorithm, all value rlij should be

updated before updating all value glij. We observe that,

since the sub-codes P′
e in transmission vectors should not

be connected to each other as shown by (4), all value

rlij for updating g
(l+1)
ij of kth sub-code have already been

updated before updating rlij of the (k + 1)th sub-code,

1 ≤ k ≤ (Ng − 1). Therefore, the updating of g
(l+1)
ij

for kth sub-code can be computed in parallel with the

updating of rlij for (k + 1)th sub-code. In the high-speed

serial decoding (HSSD), the check-node updating and

the symbol-node updating of the HSSD are carried out

alternately as follows.

Check-node updating corresponding to Pg : for 1 ≤
i ≤ (m − Ngq) and each j ∈ N(i), process

τ lij =
∏

j′∈N(i)\j
tanh

⎛

⎝

g
(l−1)
ij′

2

⎞

⎠ (12)

rlij = log
1 + τ lij

1 − τ lij

. (13)

For 1 ≤ k ≤ Ng , process jointly the following two steps.

• Check-node updating: for k · q ≤ i ≤ (k + 1) · q and
each j ∈ N(i), process (12) and (13).

• Symbol-node updating: for k ·N ′
e ≤ j ≤ (k + 1) ·N ′

e

and each i ∈ M(j), process

glij = Lj +
∑

i′∈M(j)\i
rlij (14)

glj = Lj +
∑

i∈M(j)

rlij, (15)

where Lj is the LLR of j th bit and initially set

Lj = (4/N0)yj.

Note that compared to the serial BP algorithm, our algo-

rithm has higher decoding speed without increasing the

complexity.
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5.2 Fast convergence shuffled decoding

In the HSSD algorithm, the check-node updating cor-

responding to Pg should be done for only once in

each iteration. To increase the convergence speed, we

modified the HSSD and propose the fast convergence

shuffled decoding (FCSD) algorithm in this subsec-

tion. In this decoding algorithm, the check-node updat-

ing corresponding to Pg will be done at each time

the check-node updating corresponding to sub-code

is done. The check-node updating and the symbol-

node updating of the FCSD are carried out as fol-

lows. For 1 ≤ g ≤ Ng , process jointly the following

two steps:

• Check-node updating: for 1 ≤ i ≤ (m − Ngq),

k · q ≤ i ≤ (k + 1) · q and each j ∈ N(i), process (12)

and (13).
• Symbol-node updating: for k ·N ′

e ≤ j ≤ (k + 1) ·N ′
e

and each i ∈ M(j), process (14) and (15).

Note that compared to the high-speed serial decoding,

this algorithm has faster convergence speed [21].

6 Simulation results
In this section, we compare the bit error rate (BER)

performance of the PEG-LDMCs, LDMCs proposed in

[17] and original LDMCs [16]. The PEG-LDMCs are

constructed with the proposed PEG-LDMCs algorithm.

The code rate is R = 0.5. The channel matrix H is

assumed to remain constant during the transmission

of each codeword. We perform three outer-iterations

between MIMO detector and LDPC decoder. In each

outer-iteration, MIMO detection is performed followed

by 40 inner-iterations inside LDPC decoder. The decod-

ing process is halted if the decoder converges to a valid

code or a maximum number of outer and inner itera-

tions are reached. Note that in [16, 17], only the phys-

ical layer is considered. Therefore, for the sake of fair-

ness, we have only considered the LDMCs of the same

length as that of [16, 17], which are transmitted over the

physical layer.

Figure 2 shows the BER performance of proposed PEG-

LDMCs, LDMCs proposed in [17] and original LDMCs

[16]. The transmission is over a 4×4MIMO channel with

16-QAM and 64-QAM modulations. The first layer Pg is

of size 480 × 1920 and 480 × 2880 for each modulation,

respectively. Therefore, the parity-check matrix P of the

corresponding LDMCs is of size 960 × 1920 and 1440 ×
2880 for 16-QAM and 64-QAM. Thus, the code length

is n = 1920 for 16-QAM and n = 2880 for 64-QAM,

respectively. For the proposed PEG-LDMCs, the HSSD

and FCSD algorithms are both applied for decoding. It can

be seen that our proposed PEG-LDMCs with HSSD and

FCSD algorithms have about 0.3 and 0.5 dB performance

gain compared to original LDMCs with 16-QAMmodula-

tion, and they have about 0.1 and 0.3 dB performance gain

compared to LDMCs in [17] with 16-QAM modulation.

The proposed PEG-LDMCs with HSSD and FCSD algo-

rithms also have about 0.4dB and 0.6dB performance gain

compared to original LDMCs with 64-QAM modulation,

and they have about 0.15 and 0.35 dB performance gain

compared to LDMCs in [17] with 64-QAM modulation.

This is due to the reason that the girth of the PEG-LDMC

is optimized globally by the PEG-LDMC algorithm and

the FCSD has faster convergence speed. Therefore, the

performance of PEG-LDMCs with FCSD algorithm is bet-

ter than that of PEG-LDMCs with HSSD algorithm and

original LDMCs in [16].

Figure 3 shows the BER performance of proposed PEG-

LDMCs, LDMCs proposed in [17] and original LDMCs.

The simulations are under 4 × 4 MIMO and 16 × 16

MIMO with 16-QAM modulations. For the proposed

PEG-LDMCs, the proposed HSSD and FCSD algorithms

are also applied for decoding. It can be seen from Fig. 3

that our proposed PEG-LDMCs with HSSD and FCSD

algorithms have about 0.5 and 0.6 dB performance gain

compared to original LDMCs over a 16×16MIMO chan-

nel, and they have about 0.1 and 0.3 dB performance

gain compared to LDMCs in [17] over a 16 × 16 MIMO

channel. This is due to the reason that the performance

of LDMCs depends on the girth, and our proposed new

modified PEG algorithm can construct PEG-LDMCs with

a girth of 8, which is larger than that of LDMCs proposed

in [17].

7 Conclusions
In this paper, we have introduced the PEG-LDMC algo-

rithm to construct LDMCs of large girth. In order

to reduce the complexity of detection, SD detection

has been adopted into LDMC coded MIMO sys-

tems. The complexity of LDMC-constrained SD detec-

tion has been analyzed and compared to that of

MMSE and ZF detections. Two new decoding algo-

rithms have also been proposed for high-speed decoding

and fast convergence decoding. The simulation results

have shown that the proposed PEG-LDMCs with new

decoding algorithms achieved better BER performance

than that of LDMCs proposed in [17] and original

LDMCs in [16].

8 Methods/Experimental
The purpose of this work is to reduce the detec-

tion complexity in the MIMO systems and to achieve

a good BER performance. For this purpose, we use

the method which is referred to as LDMC-constrained

SD detection. Since LDMCs with large girth have

good performance, we propose a new modified PEG

algorithm to construct large girth LDMCs. In this



Hai et al. EURASIP Journal onWireless Communications and Networking  (2018) 2018:187 Page 7 of 8

6 7 8 9 10 11 12 13

Eb/No (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

B
E

R

Original LDMCs(16-QAM) [16]

Original LDMCs(64-QAM) [16]

PEG-LDMCs with HSSD(16-QAM)

PEG-LDMCs with HSSD(64-QAM)

PEG-LDMCs with FCSD(16-QAM)

PEG-LDMCs with FCSD(64-QAM)

LDMCs proposed in [17](16-QAM)

LDMCs proposed in [17](64-QAM)

Fig. 2 BER performance comparison of PEG-LDMCs, LDMCs proposed in [17] and original LDMCs in [16] with 16-QAM and 64-QAM

paper, we analyze the complexity of SD detection in

the LDMC coded MIMO systems, and compare it to

ZF detection and MMSE detection. Furthermore, we

propose high-speed serial decoding and fast conver-

gence shuffled decoding in order to improve the BER

performance.

In this paper, the comparison of BER perfor-

mance among the PEG-LDMCs, original LDMCs

[16], and LDMCs proposed in [17] is presented. The

PEG-LDMCs are constructed with the proposed

PEG-LDMCs algorithm. The function to generate

the LDMCs and proposed PEG-LDMCs algorithm

for MIMO systems can be made by MATLAB code.

Experimental results in this paper had performed

by using MATLAB R2016a on Intel Core i7-4790 @

3.60GHz platform.
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Fig. 3 BER performance comparison of PEG-LDMCs, LDMCs proposed in [17] and original LDMCs in [16] with 4 × 4 MIMO and 16 × 16 MIMO
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Abbreviations

BER: Bit error rate; BP: Belief propagation; CSI: Channel state information ; FCSD:

Fast convergence shuffled decoding; HSSS: High-speed serial decoding; LDMC:

Low-density MIMO code ; LDPC: Low-density parity-check; LLR: Log-likelihood

ration; MIMO: Multiple-input multiple-output; MMSE: Minimummean-square

error ; PEG: Progressive edge-growth ; SD: Sphere decoding ; ZF: Zero-forcing;
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