
 

Lepton-specific universal seesaw model with left-right symmetry

Ayon Patra
1,*

and Santosh Kumar Rai
2,†

1
Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012, India

2
Regional Centre for Accelerator-based Particle Physics, Harish-Chandra Research Institute, HBNI,

Jhusi, Allahabad 211019, India

(Received 10 November 2017; published 25 July 2018)

We propose a left-right symmetric framework with a universal seesaw mechanism for the generation of

masses of the Standard Model quarks and leptons. Heavy vectorlike singlet quarks and leptons are required

for generation of Standard-Model-like quark and lepton masses through a seesaw mechanism. A softly

broken Z2 symmetry distinguishes the lepton sector and the quark sector of the model. This leads to the

presence of some lepton-specific interactions that can produce unique collider signatures which can be

explored at the current Large Hadron Collider run and also future colliders.

DOI: 10.1103/PhysRevD.98.015033

I. INTRODUCTION

Left-right symmetric (LRS) models [1] are one of the

most well-motivated and widely studied extensions of

the Standard Model (SM). The popularity of LRS models

stems from the fact that in these models it is possible to

explain several phenomena which are not very well under-

stood in the framework of the SM. Fundamentally parity

(P) is a good symmetry in these models and can be

spontaneously broken at some high scale leading to a

SM-like gauge structure at the electroweak scale. Thus we

can understand the origin of parity violation as a sponta-

neously broken symmetry rather than it being explicitly

broken. Parity symmetry also prevents one from writing P

and charge-parity (CP) violating terms in the quantum

chromodynamic Lagrangian. Since CP violating terms in

the color sector are highly constrained from neutron electric

dipole measurements, the absence of these terms can solve

the strong CP problem [2] naturally without the need to

introduce a global Peccei-Quinn symmetry [3]. The gauge

structure of these models forces us to have a right-handed

neutrino in the lepton multiplet. This right-handed neutrino

can generate a light neutrino mass through the seesaw

mechanism [4].

Generally, in LRS models, an SUð2ÞR triplet Higgs boson

is responsible for generation of the right-handed neutrino

mass while a bidoublet field is needed to produce the quark

and lepton masses and Cabibbo-Kobayashi-Maskawa

(CKM) mixings. This multitude of scalar fields makes the

scalar sector quite complicated.
1
It would be interesting, on

the other hand, to consider a Higgs spectrum consisting

purely of doublets. This would be similar to the two Higgs

doublet model (2HDM) but we would need four doublets

instead of two (two similar to the 2HDM and the other two

their right-handed counterparts). The model we study here is

a lepton-specific scenario where one pair of Higgs doublets

couples only to the leptons. This has the distinct advantage

that the quark and charged lepton masses can be generated

keeping the Yukawa couplings to be of the same order for

each generation. Thus we can easily avoid the large

hierarchy observed in the Yukawa sector of the SM.

To arrange the lepton-specific framework, we need to

introduce an extra Z2 symmetry under which a couple of

Higgs boson doublets as well as the heavy lepton singlet

fields are odd, all other fields being even. As these odd-Z2

Higgs bosons get a nonzero vacuum expectation value

(VEV), one expects this discrete Z2 symmetry to be

spontaneously broken. This could lead to domain walls

and can make the model unstable from a cosmological

point of view [6]. Such instabilities however can be avoided

by introducing soft-breaking terms in the scalar potential.

The consequence of these terms is that it leads to mixing

between the different scalars in the doublets and can lead

to interesting phenomenology. With the Large Hadron

Collider (LHC) running, it is imperative to consider differ-

ent scenarios for signals beyond the SM. In that spirit our

model within the framework of left-right symmetry pro-

poses new signals arising from a lepton-specific framework

which generates all the SM fermion masses and gives
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A detailed study of various scalar sectors in LRS models is

discussed in [5].
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lepton rich final states that could be observed or excluded

at the LHC.

All the fermion masses in this case are generated

through a universal seesaw mechanism [7] by introducing

singlet fermionic states. Most of the charged singlet

fermions are quite heavy except the top quark partner

to some extent, which is required to be lighter than the

others and of the order of a few TeV. The other low lying

states are the heavy neutral leptons and some extra scalars

in the model.

The rest of the paper is organized as follows. In Sec. II,

we discuss our model in detail and in Sec. III we discuss the

phenomenological implications of our model including the

experimental constraints and possible collider signatures.

Section IV contains our conclusions and discussion.

II. MODEL AND LAGRANGIAN

We consider a left-right symmetric model with the gauge

group being SUð3ÞC × SUð2ÞL × SUð2ÞR ×Uð1ÞB−L. An
extra Z2 symmetry is introduced which prevents several

interactions facilitating a lepton-specific scenario. The

charge of a particle in this model is defined as

Q ¼ I3L þ I3R þ B − L

2
: ð1Þ

The chiral matter fields consist of three families of quarks

and leptons:

QL ¼
�

u

d

�

L

∼

�

3; 2; 1;
1

3

�

;

QR ¼
�

u

d

�

R

∼

�

3; 1; 2;
1

3

�

;

lL ¼
�

ν

e

�

L

∼ ð1; 2; 1;−1Þ;

lR ¼
�

ν

e

�

R

∼ ð1; 1; 2;−1Þ; ð2Þ

where the numbers in the parentheses denote the quantum

numbers under SUð3ÞC × SUð2ÞL × SUð2ÞR ×Uð1ÞB−L
gauge groups respectively.

The scalar sector in this model does not contain any

bidoublet fields and hence heavy singlet quarks and leptons

are necessary for the generation of the quark and lepton

masses through the seesawlike mechanism. We introduce

heavy up- and down-type quarks given as ULð3; 1; 1; 43Þ,
URð3; 1; 1; 43Þ, and DLð3; 1; 1;− 2

3
Þ, DRð3; 1; 1;− 2

3
Þ respec-

tively. The heavy charged leptonic states are ELð1; 1; 1;−2Þ
and ERð1; 1; 1;−2Þ while the heavy neutrino states are

given as NLð1; 1; 1; 0Þ and NRð1; 1; 1; 0Þ. It is worth noting
that while all the (B − L) charged heavy states can only

have Dirac-like terms, the heavy neutrinos can admit both

Dirac and Majorana-like terms. Of course one can still

argue that the LRS models with triplet Higgs are also lepton

specific as they do not couple to the quarks. However one

must note that the scalar sector would then define a

significantly different phenomenology from that of the

standard triplet scenarios, in particular with the absence of a

double charged scalar in the spectrum.

The minimal Higgs sector consists of the following

fields:

HRQð1;1;2;1Þ ¼
�

Hþ
RQ

H0

RQ

�

; HLQð1;2;1;1Þ ¼
�

Hþ
LQ

H0

LQ

�

;

HRlð1;1;2;1Þ ¼
�

Hþ
Rl

H0

Rl

�

; HLlð1;2;1;1Þ ¼
�

Hþ
Ll

H0

Ll

�

;

ð3Þ

whereHLQ andHRQ interact specifically with quarks while

HLl and HRl only have leptonic interactions. The H0

RQ and

H0

Rl get nonzero VEVs and are responsible for breaking the

right-handed symmetry. The heavy WR and ZR gauge

boson masses are generated at this scale. The VEVs of

the H0

LQ and H0

Ll fields on the other hand are the ones

responsible for the electroweak symmetry breaking and

generation of the W and Z boson masses. Since H0

Rl and

H0

Ll, which are both odd under the Z2 symmetry, get

nonzero VEVs this could lead to formation of domain walls

and destabilize the model. This problem is addressed by

introducing soft Z2-breaking terms in the scalar potential

which we discuss later.

The VEVs of the Higgs fields are naturally given as (for

the universal seesaw mechanism to work)

hH0

RQi¼vRQ; hH0

Rli¼vRl; hH0

LQi¼vLQ; hH0

Lli¼vLl;

ð4Þ

with the condition that v2LQ þ v2Ll ¼ v2EW. The hierarchy of

the VEVs responsible for symmetry breaking is arranged as

vRQ; vRl ≫ vLQ > vLl: ð5Þ

This ensures a naturally heavy mass for the right-handed

gauge bosons which have so far eluded any signal at

the LHC.

We introduce a lepton-specific Z2 symmetry under

which the EL, ER, NL, NR, HLl and HRl fields are odd

while all other fields are even. This prevents the Z2-odd

Higgs fields from interacting with the quarks. Table I has a

list of all the particles along with their respective quantum

numbers.

The covariant derivatives appearing in the kinetic terms

of the Lagrangian that lead to interaction vertices of the
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fermions and scalars with the gauge bosons (for all the

doublet fields) in this model are defined as

DμQL ¼
�

∂μ − i
gL

2
τ:WLμ − i

gV

6
Vμ

�

QL;

DμQR ¼
�

∂μ − i
gR

2
τ:WRμ − i

gV

6
Vμ

�

QR;

DμlL ¼
�

∂μ − i
gL

2
τ:WLμ þ i

gV

2
Vμ

�

lL;

DμlR ¼
�

∂μ − i
gR

2
τ:WRμ þ i

gV

2
Vμ

�

lR;

DμHR ¼
�

∂μ − i
gR

2
τ:WRμ − i

gV

2
Vμ

�

HR;

DμHL ¼
�

∂μ − i
gL

2
τ:WLμ − i

gV

2
Vμ

�

HL; ð6Þ

where Vμ is the Uð1ÞB−L gauge boson and gV its gauge

coupling, while WL, WR and gL, gR are the gauge bosons

and gauge couplings corresponding to the SUð2ÞL and

SUð2ÞR gauge groups respectively. The gauge boson

masses can be calculated from the kinetic terms for the

Higgs boson fields involving the above covariant deriva-

tives. The charged gauge boson mass-squared matrix in the

basis ðW�
R ;W

�
L Þ is given as

"

1

2
g2Rðv2RQ þ v2RlÞ 0

0
1

2
g2Lðv2LQ þ v2LlÞ

#

: ð7Þ

We can clearly see that unlike the case of LRS with

bidoublet scalar fields, there is no mixing between the two

W boson states in this case. The mass of the heavy WR

gauge boson and the SM WL gauge boson states are thus

trivially given as

M2

W�
R

¼1

2
g2Rðv2RQþv2RlÞ; M2

W� ¼
1

2
g2Lðv2LQþv2LlÞ: ð8Þ

The neutral gauge boson mass-squared matrix in the basis

ðW3R;W3L; VÞ is given as

2

6

6

4

1

4
g2Rðv2RQ þ v2RlÞ 0 −

1

4
gRgVðv2RQ þ v2RlÞ

0
1

4
g2Lðv2LQ þ v2LlÞ −

1

4
gLgVðv2LQ þ v2LlÞ

−
1

4
gLgVðv2LQ þ v2LlÞ −

1

4
gRgVðv2RQ þ v2RlÞ 1

4
g2Vðv2RQ þ v2Rl þ v2LQ þ v2LlÞ

3

7

7

5

: ð9Þ

This matrix has a zero eigenvalue corresponding to the

massless photon state and two other nonzero eigenvalues

corresponding to the Z and the ZR bosons. In the limit

vEW ≪ vRQ; vRl and keeping only terms up to v2EW=v
2

RQðRlÞ,
the masses of the two massive neutral gauge bosons are

given by

M2
ZR

≃
1

2

�

ðg2R þ g2VÞðv2RQ þ v2RlÞ þ
g4Vðv2LQ þ v2LlÞ

g2R þ g2V

�

;

M2
Z ≃

1

2
ðg2L þ g2YÞðv2LQ þ v2LlÞ; ð10Þ

with the effective SM Uð1ÞY gauge coupling given as

gY ¼ gLgV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2L þ g2V
p : ð11Þ

Quite clearly, in this model the ZR is heavier than the WR

and therefore a strong limit on the WR mass from experi-

ments would mean an indirect bound exists on the ZR

gauge boson too.

A. Fermion masses and mixings

We now look at the mass of the matter fields in the

model. The gauge invariant Yukawa Lagrangian respecting

the additionally imposed Z2 symmetry in this model is

given as

TABLE I. Particle spectrum for the lepton-specific LR univer-

sal seesaw model.

Field SUð3ÞC SUð2ÞL SUð2ÞR Uð1ÞB−L Z2

QL ¼
�

u

d

�

L

3 2 1 1

3
+

QR ¼
�

u

d

�

R

3 1 2 1

3
+

lL ¼
�

ν

e

�

L

1 2 1 −1 þ

lR ¼
�

ν

e

�

R

1 1 2 −1 þ

UL, UR 3 1 1 4

3
þ

DL, DR 3 1 1 −
2

3
þ

EL, ER 1 1 1 −2 −

NL, NR 1 1 1 0 −

HRQ ¼
� Hþ

RQ

H0

RQ

�

1 1 2 1 þ

HLQ ¼
� Hþ

LQ

H0

LQ

�

1 2 1 1 þ

HRl ¼
�

Hþ
Rl

H0

Rl

�

1 1 2 1 −

HLl ¼
�

Hþ
Ll

H0

Ll

�

1 2 1 1 −
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LY ¼ ðYuLQ̄LH̃LQUR þ YuRQ̄RH̃RQUL þ YdLQ̄LHLQDR

þ YdRQ̄RHRQDL þ YνL l̄LH̃LlNR þ YνR l̄RH̃RlNL

þ YeL l̄LHLlER þ YeRl̄RHRlEL þMUŪLUR

þMDD̄LDR þMEĒLER þMNN̄LNR þ H:c:Þ
þMLNLNL þMRNRNR ð12Þ

where the YiA’s are the Yukawa coupling matrices and the

MX’s are the singlet mass terms allowed by gauge sym-

metry. The conjugated scalar fields are defined as

H̃L=R ¼ iτ2H
�
L=R: ð13Þ

It is easy to see that the quark and charged lepton mass

matrices will consist of off-diagonal terms proportional to

left- and right-handed VEVs while diagonal terms exist for

only the heavy fields. Thus the quark and charged lepton

mass matrices would be very similar in form to the type-I

seesaw neutrino mass matrix and all fermions have the

same mechanism of mass generation in this framework.

1. Quarks

The quark masses in this model are obtained by

diagonalizing a 6 × 6 mass matrix quite similar to what

happens in the seesaw mechanism. The up quark mass

terms in this model can be written as

Lu ¼ ð ū Ū ÞðMuPL þMT
uPRÞ

�

u

U

�

; ð14Þ

where

Mu ¼
�

0 YuRvRQ

YT
uLvLQ MU

�

ð15Þ

is the 6 × 6 up quark mass matrix while YuL, YuR and MU

are all 3 × 3 matrices. The first 3 × 3 block corresponding

to the light up-type quark is zero due to the absence of a

bidoublet field in the scalar spectrum. The off-diagonal

terms are obtained from the YuL and YuR terms of Eq. (12)

which involve the mixing of the light and heavy states

through the Higgs doublet field, while theMU matrix is the

mass term for the heavy up-type quarks. For simplicity we

will choose all the Yukawa and heavy mass matrices to be

diagonal in the up sector. This would mean that the CKM

mixings will be generated entirely from the down sector

which is exactly what we do for the SM.

Similarly the down-type quark mass matrix can be

written as

Md ¼
�

0 YdRvRQ

YT
dLvLQ MD

�

; ð16Þ

where the first 3 × 3 block is again zero due to the absence

of a bidoublet scalar while the off-diagonal blocks arise

from the Yukawa couplings. TheMD term is the mass term

for the heavy down-type quarks. In the down sector too,

we keep the right-handed 3 × 3 Yukawa matrix YdR and

the MD matrix to be diagonal while only the left-handed

Yukawa matrix YdL is nondiagonal and sufficient to

generate the correct CKM mixings for the SM quarks.

To diagonalize these nonsymmetric matrices we require

biunitary transformations. For the up-type quark mass

matrix we have

M
diag
u ¼ UuLMuU

†
uR; ð17Þ

where UuL and UuR are the left- and right-handed rotation

matrices respectively. Similar for the down sector

M
diag
d ¼ UdLMdU

†

dR: ð18Þ

We will get two CKM mixing matrices in this case—one

for the left-handed quarks and another for the right-handed

quarks—given by

UCKM
L ¼ UuLU

†

dL ð19Þ

and

UCKM
R ¼ UuRU

†

dR ð20Þ

respectively. These will be 6 × 6 matrices whose top-left

(bottom-right) 3 × 3 block will correspond to the light

CKM mixings for ascending (descending) arrangement

of eigenvalues by mass. For our choice of parameters and

with only the left-handed Yukawa being nondiagonal, the

right-handed CKM matrix would be almost diagonal with

the mixings being quite small while the left-handed CKM

mixings must be the same as the experimentally measured

values.

The mixing between the heavy singlet quarks and the

SM quarks is determined by the magnitude of the Yukawa

terms in comparison to the singlet mass terms. For light

quarks and even for the b quark, the Yukawa terms are

much smaller than the bare mass term and hence the mixing

is very small. For the top quarks though, because of its

heavy mass compared to the other SM quarks, the mixings

can be quite significant.

2. Charged lepton

The charged lepton mass matrix is given as

Me ¼
�

0 YeRvRl

YT
eLvLl ME

�

: ð21Þ

This is very similar to the quark mass matrix with YeL and

YeR being the 3 × 3 Yukawa matrices while ME is the
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heavy lepton mass matrix. Here we will choose all the

matrices to be diagonal to prevent charged lepton flavor

violation at the tree level. The mixing between the heavy

singlet leptons and the SM charged leptons is almost

negligible due to the hierarchical structure of the diagonal

and the off-diagonal elements required for generation of

correct lepton masses.

3. Neutrino

The neutrino matrix, on the other hand, would be quite

different due to the Majorana-like ML and MR terms that

could be written for the heavy neutrino states. The neutrino

mass matrix in the basis ðν�L; NR; νR; N
�
LÞ is given as

0

B

B

B

@

0 YνLvLl 0 0

YT
νLvLl MR 0 MT

N

0 0 0 YT
νRvRl

0 MN YνRvRl ML

1

C

C

C

A

: ð22Þ

Thus we see that all the fermion masses in this model arise

from the seesawlike mass generation mechanism. Hence

this model is also popularly known as the universal seesaw

model. It is worth noting here that the neutrino mass matrix

is actually symmetric (if the Yukawa couplings and heavy

mass matrices are symmetric) and can be diagonalized by a

simple unitary transformation.

The neutrino mass matrix allows for a number of very

unique scenarios in the neutrino sector. Firstly, there is the

possibility that only the three left-handed doublet neutrinos

are light and everything else is heavy. We explore such a

scenario where we get three light neutrinos, three with mass

at around the electroweak scale and the rest at the TeV

scale. We will refer to this scenario as the Majorana case for

obvious reasons. Similar to the previous cases we will again

choose most of the Yukawa and mass matrices here to be

diagonal except YνL which is chosen to be a nondiagonal

symmetric matrix to explain the experimentally observed

Pontecorvo-Maka-Nakagawa-Sakata (PMNS) neutrino

mixing matrix elements. The mixing between the light

and the heavy states is again quite small here leading to

no significant limits from experimental observations. The

heavy singlet states though can mix among themselves due

to the presence of the MN term, but due to their masses

being at the TeV scale, no observable effects have been

discovered so far.

The second case that we can get is when the singlet

neutrino Dirac mass term MN is zero. In this case the

neutrino mass matrix becomes block diagonal with

ðνL; NRÞ and ðνR; NLÞ bases being the diagonal blocks.

In this case we get pseudo-Dirac-like states with both the

left and right doublet neutrinos being degenerate and light

while the heavy singlet states may or may not be degenerate

depending upon the choice of parameters. We refer to this

scenario as the pseudo-Dirac case. If we choose both ML

and MR to be diagonal and equal, we are forced to choose

both YνL and YνR to be nondiagonal. Furthermore, in order

to get equal masses for the now light left-handed and right-

handed doublet lepton neutral components (neutrinos) we

get the condition

YνRij
¼ vLl

vRl
YνLij

; ð23Þ

given we takeML ¼ MR. The mixing between the light and

heavy states in each block diagonal submatrix are still very

small due to the fact that the Yukawa terms are now

extremely small compared to the mass terms required to

generate the light neutrino masses. The heavy states in this

case do not mix as the MN term is also absent.

B. Scalar masses and mixing

The full gauge invariant scalar potential for our model is

given as

VðHÞ ¼
X

4

i¼1

μiiH
†
iHi þ

X

4

i;j¼1

i≤j

λijH
†
iHiH

†
jHj

þ
h

α1H
†
LQHLlH

†
RQHRl þ α2H

†
LQHLlH

†

RlHRQ

þ μ2
12
H†

LQHLl þ μ2
34
H†

RQHRl þ H:c:
i

ð24Þ

where

H1¼HLQ; H2¼HLl; H3¼HRQ; H4¼HRl: ð25Þ

The last two terms involving μ12 and μ34 are responsible for

breaking the discrete Z2 symmetry softly without intro-

ducing any domain walls which could otherwise destabilize

the model. We minimize this potential and get the following

minimization conditions

μ11 ¼
1

vLQ
ðαþ

12
vLlvRlvRQ þ 2λ11v

3

LQ þ λ12v
2

LlvLQ

þ λ13vLQv
2

RQ þ λ14vLQv
2

Rl − μ2
12
vLlÞ;

μ22 ¼
1

vLl
ðαþ

12
vLQvRlvRQ þ λ12vLlv

2
LQ þ 2λ22v

3

Ll

þ λ23vLlv
2

RQ þ λ24vLlv
2

Rl − μ2
12
vLQÞ;

μ33 ¼
1

vRQ
ðαþ

12
vLlvLQvRl þ λ13v

2
LQvRQ þ λ23v

2

LlvRQ

þ 2λ33v
3

RQ þ λ34v
2

RlvRQ − μ2
34
vRlÞ;

μ44 ¼
1

vRl
ðαþ

12
vLlvLQvRQ þ λ14v

2

LQvRl þ λ24v
2

LlvRl

þ λ34vRlv
2
RQ þ 2λ44v

3

Rl − μ2
34
vRQÞ; ð26Þ

where αþ
12

¼ ðα1 þ α2Þ.
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The Higgs boson spectrum in this case is significantly

large and consists of four CP-even states, two CP-odd
states and two charged Higgs bosons. Two charged

Goldstone bosons are eaten up by the WL and WR gauge

boson to give themmass while two neutral Goldstone states

give mass to the Z and ZR. The charged Higgs mass-

squared matrix in this case is a 4 × 4 block diagonal matrix

with two blocks of 2 × 2. In the basis ðHþ
LQ;H

þ
Ll;H

þ
RQ;H

þ
RlÞ

the charged Higgs mass-squared matrix is given as

0

B

B

B

B

B

B

@

vLl
vLQ

fμ2
12
− αþ

12
vRlvRQg αþ

12
vRlvRQ − μ2

12
0 0

αþ
12
vRlvRQ − μ2

12

vLQ
vLl

fμ2
12
− αþ

12
vRlvRQg 0 0

0 0
vRl
vRQ

fμ2
34
− αþ

12
vLlvLQg αþ

12
vLlvLQ − μ2

34

0 0 αþ
12
vLlvLQ − μ2

34

vRQ
vRl

fμ2
34
− αþ

12
vLlvLQg

1

C

C

C

C

C

C

A

: ð27Þ

Diagonalizing this matrix we get two Goldstone states

which are given as

Gþ
1
¼ 1

v2Ll þ v2LQ
ðvLQ; vLl; 0; 0ÞT ;

Gþ
2
¼ 1

v2Rl þ v2RQ
ð0; 0; vRQ; vRlÞT : ð28Þ

The two physical charged Higgs boson masses are

m2

Hþ
1

¼
v2Rl þ v2RQ

vRlvRQ
ðμ2

34
− αþ

12
vLlvLQÞ;

m2

Hþ
2

¼
v2Ll þ v2LQ

vLlvLQ
ðμ2

12
− αþ

12
vRlvRQÞ; ð29Þ

with the eigenstates being

Hþ
1
¼ 1

v2Rl þ v2RQ
ð0; 0;−vRl; vRQÞT ;

Hþ
2
¼ 1

v2Ll þ v2LQ
ð−vLl; vLQ; 0; 0ÞT : ð30Þ

It is easy to see here that if we choose μ2
12

¼ μ2
34
∼ v2EW then

the right-handed charged Higgs boson is indeed the lightest

state. This is due to the fact that the left-handed charged

state has an additional enhancement of vLQ=vLl except for a
very fine-tuned region around

α1 þ α2 ≈
μ2
12

vRlvRQ
: ð31Þ

The CP-odd Higgs boson mass-squared matrix in the

basis ðImH0

LQ; ImH0

Ll; ImH0

RQ; ImH0

RlÞ is

0

B

B

B

B

B

@

vLl
vLQ

ðμ2
12
− αþ

12
vRlvRQÞ αþ

12
vRlvRQ − μ2

12
vLlvRlðα2 − α1Þ vLlvRQðα1 − α2Þ

αþ
12
vRlvRQ − μ2

12

vLQ
vLl

ðμ2
12
− αþ

12
vRlvRQÞ vLQvRlðα1 − α2Þ vLQvRQðα2 − α1Þ

vLlvRlðα2 − α1Þ vLQvRlðα1 − α2Þ vRl
vRQ

ðμ2
34
− αþ

12
vLlvLQÞ αþ

12
vLlvLQ − μ2

34

vLlvRQðα1 − α2Þ vLQvRQðα2 − α1Þ αþ
12
vLlvLQ − μ2

34

vRQ
vRl

ðμ2
34
− αþ

12
vLlvLQÞ

1

C

C

C

C

C

A

: ð32Þ

This again will have two zero eigenstates corresponding to

the two Goldstone bosons required for Z and ZR mass

generation. It is also easy to see here that in the case where

α1 ¼ α2 this CP-odd mass-squared matrix would reduce

to the block diagonal charged Higgs boson mass-squared

matrix.

The CP-even scalar Higgs boson mass-squared matrix

elements in the basis ðReH0

LQ;ReH
0

Ll;ReH
0

RQ;ReH
0

RlÞ can
be expressed in terms of the CP-odd Higgs mass-squared

matrix elements as

M2

ij;CP-Even ¼ M2

ij;CP-Odd þ 2Sijλijvivj; ð33Þ

where i, j ¼ 1, 2, 3, 4, v1¼vLQ;v2¼vLl;v3¼vRQ;v4¼vRl
and

Sij ¼
	

2; if i ¼ j

1; otherwise:
ð34Þ

We choose our parameters such that the lightest eigenvalue

of this CP-even Higgs mass-squared matrix is the one

corresponding to the SM-like Higgs with mass of

125 GeV. This state is consistent with the SM Higgs

properties in all its decay channels and branching ratios,

while all the other states are chosen to be much heavier.

Note that we have implemented the model in SARAH [8] and
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use the generated SPHENO [9] code to obtain the model

spectrum and calculate the decay of various particles. We

have checked that the light Higgs boson of 125 GeV is

consistent with the expected branching ratios as well as the

total decay width of the Standard Model Higgs boson. If we

consider theH1 → γγ decay channel for instance, it gives us

a branching ratio of 2.27 × 10−3. We can write the partial

decay width as [10]

ΓH1→γγ ¼
GFα

2m3
H1

128
ffiffiffi

2
p

π3













X

f

NcQ
2

fgH1ff
A
H1

1=2ðτfÞ

þ gH1VV
A
H1

1
ðτWÞ þ

M2
WλH1H

þ
1
H−

1

2c2WM
2

H�
1

A
H1

0
ðτH�

1

Þ

þ
M2

WλH1H
þ
2
H−

2

2c2WM
2

H�
2

A
H1

0
ðτH�

1

Þ












2

ð35Þ

which can be reexpressed as

ΓH1→γγ ¼
GFα

2m3

H1

128
ffiffiffi

2
p

π3













X

f
F
H1

1=2ðτf; gH1ff
Þ þ F

H1

1
ðτW ; gH1VV

Þ

þ
X

i
F
H1

0
ðτH�

i
; λH1H

þ
i
H−

i
Þ












2

ð36Þ

giving us a better idea of the relative contribution from

each sector. The benchmark point that we have chosen

(Table II) gives us λH1H
þ
1
H−

1

¼ 0.034, λH1H
þ
2
H−

2

¼ 1.20,

MH�
1

¼ 224.7 GeV, MH�
2

¼ 6772.4 GeV. The terms in

Eq. (36) are thus

F
H1

1=2ðτt; gH1tt̄
Þ ¼ 1.835;

F
H1

1
ðτW ; gH1VV

Þ ¼ −8.324;

F
H1

0
ðτH�

1

; λH1H
þ
1
H−

1

Þ ¼ 0.0013;

F
H1

0
ðτH�

2

; λH1H
þ
2
H−

2

Þ ¼ 3.6 × 10−5;

where the four contributions are from the top quark, W
boson and the two charged Higgs states respectively. Note

that the contributions from the charged Higgs bosons are

orders of magnitude lower compared to the top quark and

gauge boson contributions and do not affect the H1 → γγ

branching ratio.

The lightest charged and pseudoscalar Higgs boson

masses come out to be around a few 100 GeV while the

heavier ones are around a few TeV. In Table II we give a list

of the physical Higgs boson masses and the respective

eigenstates for a sample benchmark point. Note that unlike

the case of 2HDMs, here only the pseudoscalar and charged

Higgs bosons are light while all other CP-even scalars turn

out to be very heavy. In addition both the light pseudoscalar

and charged scalar are admixtures of the right-sector scalar

doublets. To check whether the Higgs potential is stable for

our choice of benchmark points, we examine the coposi-

tivity conditions for the stability of the potential when the

couplings are negative [11]. The condition for the stability

of the potential for the negative coupling λ14 is given by

λ11 ≥ 0; λ44 ≥ 0; λ14 ≥ −

ffiffiffiffiffiffiffiffiffiffiffiffi

λ11λ44
p

; ð37Þ

which are easily satisfied. We checked the condition

for α1 numerically by constructing the principal subma-

trices and found that it satisfies the criteria for stability

as well.

III. PHENOMENOLOGICAL IMPLICATIONS

We now look at the phenomenological implications

of this model, viz. the allowed parameters, experimental

constraints and unique signals of this model which may be

studied at the colliders. As has been discussed before,

almost all of the matrices are taken to be diagonal except

the YdL and YνL
matrices. These are necessarily off

diagonal in order to generate the CKM and PMNS mixing.

Unlike the SMwhere the Yukawa couplings can range from

10−6 to 1, this model requires a much smaller range of

TABLE II. Scalar eigenstates for α1 ¼ −0.2;α2 ¼ 0.1; λ11 ¼ 0.168; λ12 ¼ 0.8; λ13 ¼ 0.05; λ14 ¼ −0.1; λ22 ¼ 0.5; λ23 ¼ 0.1; λ24 ¼ 0.1;
λ33 ¼ 0.2; λ34 ¼ 0.1; λ44 ¼ 0.1;μ2

12
¼ 2.5× 104;μ2

34
¼ 2.5× 104, vRQ ¼ vRl ¼ 6.0 TeV, vLQ ¼ 173.4 GeV, vLl ¼ 14 GeV.

Particle Mass (GeV) Eigenstate

H1 125.2 0.996ReðH0

LQÞ − 0.008ReðH0

RQÞ þ 0.080ReðH0

LlÞ þ 0.019ReðH0

RlÞ
H2 3386.1 −0.0209ReðH0

LQÞ − 0.381ReðH0

RQÞ þ 0.001ReðH0

LlÞ þ 0.924ReðH0

RlÞ
H3 5638.1 0.001ReðH0

LQÞ − 0.924ReðH0

RQÞ þ 0.008ReðH0

LlÞ − 0.381ReðH0

RlÞ
H4 6772.5 0.080ReðH0

LQÞ − 0.007ReðH0

RQÞ − 0.997ReðH0

LlÞ þ 0.004ReðH0

RlÞ
A1 214.8 0.001ImðH0

LQÞ − 0.707ImðH0

RQÞ − 0.010ImðH0

LlÞ þ 0.707ImðH0

RlÞ
A2 6772.7 −0.080ImðH0

LQÞ − 0.007ImðH0

RQÞ þ 0.997ImðH0

LlÞ þ 0.006ImðH0

RlÞ
Hþ

1
224.7 −0.707Hþ

RQ þ 0.707Hþ
Rl

Hþ
2

6772.4 0.080Hþ
LQ − 0.997Hþ

Ll

LEPTON-SPECIFIC UNIVERSAL SEESAW MODEL WITH … PHYS. REV. D 98, 015033 (2018)

015033-7



Yukawa couplings ranging from 10−3 to 1 for all the

charged particles. In general we have chosen

Y11

uðL;RÞ ∼ Y11

dðL;RÞ ∼ Y11

eðL;RÞ ≈ 10−2;

Y22

uðL;RÞ ∼ Y22

dR ∼ Y22

eðL;RÞ ≈ 10−1;

Y33

uðL;RÞ ∼ Y33

dL ∼ Y33
eR ≈ 1; ð38Þ

while the other elements in the YdL matrix are of the order

of 10−3. We further choose Y33

dR ¼ 0.023 and Y33

eL ¼ 0.26 so

that the third-generation heavy fermion masses are all of the

order of a few TeV. With this type of Yukawa structure we

can easily get the correct masses of all the fermions by

choosing the appropriate values of the heavy masses. The

left-handed CKM matrix elements are obtained entirely in

the down sector similar to the SM, while the right-handed

down quark mixings are very small due to the diagonal

structure of the YdR matrix. The VEVs are taken to be

vRQ¼vRl¼6.0TeV; vLQ¼173.4GeV; vLl¼14GeV:

ð39Þ

The bare masses of the singlet heavy vectorlike fermions

are chosen accordingly so as to get the correct masses for

the SM-like fermions. Here we note that since the third-

generation fermions are the heaviest followed by the

second generation and then the first-generation fermion

masses, the reverse order is generally followed by the

vectorlike singlet fermion masses. For each type of fermion

(up quark, down quark and charged leptons), our choices

are such that the third-generation vectorlike fermion is the

lightest while the first generation is the heaviest. This can

be understood easily as in the seesaw formula the mass of

the light state is inversely proportional to the heavy mass in

the seesaw matrix for the same value of off-diagonal

terms. Though it is not strictly valid for this case as the

off-diagonal Dirac masses are also higher for the third

generation, we choose our Yukawa couplings so that

the third-generation vector fermions are indeed lightest.

In Table III we list the mass of all the new fermions in our

model. With the strong sector exotic quarks and charged

leptons having masses above 3.5 TeV, it would be quite

impossible to observe any signals for these fermions at the

current LHC energies. However they could be more

copiously produced at future 100 TeV machines such as

the FCC-hh Collider [12].

The mixing between the heavy singletlike states and the

light SM-like states is very low (≲1%) except for the top

sector which behaves quite differently. To get the correct

top quark mass we need to takeM33
u to be quite small to be

around 350 GeV. The heavy top partner mass almost

entirely comes from the right-handed top quark contribu-

tion and hence the right-handed CKM mixing of the top

quark is almost entirely coming from the heavy singlet top

partner. Thus the decay of the heavy gauge bosons which

belong to the SUð2ÞR do not couple with the same strength

to the third-generation SM quarks as they do to the first two

generations. This effect is clearly visible in the WR decay

modes where its branching ratio Wþ
R → tb̄ is significantly

suppressed (∼0.2%) while for the first two-generation light

quarks it is around 33% each. This in turn would make the

bounds on the WR gauge boson much stronger from

existing dijet data than that of conventional LRS models

which have slightly lower branchings into light jets. The

current bound on a heavy SM-like W0 from the LHC is

2.6 TeV [13]. At a mass of 2.6 TeV, a SM-likeW0 goes into
light quarks with a branching ratio of 47.6%. TheWR in our

case has a 66% branching ratio into light quarks and

therefore the limits would be stronger. Using the exper-

imental bound on the cross section×branching ratio

(σ × BR) we get a lower bound on WR mass of

2.75 TeV in our model. For our choice of benchmark

points, the mass of the WR boson comes out to be ∼4 TeV

and is safe from dijet bounds. It is also allowed from heavy

neutrino searches [14], provided the heavy neutrino mass is

not very heavy. We show the WR decay modes and the

branching probabilities as a function of its mass in Fig. 1.

In the neutrino sector there are two specific scenarios

(Majorana and pseudo-Dirac) as has been discussed earlier.

TABLE III. Fermion masses.

Neutrino

Up-type quark Down-type quark Charged lepton Majorana Pseudo-Dirac

Mν4
¼ 136 GeV,

Mν5
¼ 258 GeV,

Mν6
¼ 317 GeV,

MT ¼ 4.51 TeV, MB ¼ 3.97 TeV, ME3
¼ 6.13 TeV, Mν7

¼ 9.07 TeV, Mν4
¼ 200.0 GeV,

MC ¼ 6.17 TeV, MS ¼ 10.4 TeV, ME2
¼ 9.92 TeV, Mν8

¼ 9.13 TeV, Mν5
¼ 300.0 GeV,

MU ¼ 30.0 TeV MD ¼ 17.2 TeV ME1
¼ 12.3 TeV Mν9

¼ 9.16 TeV, Mν6
¼ 400.0 GeV

Mν10
¼ 11.06 TeV,

Mν11
¼ 11.1 TeV,

Mν12
¼ 11.2 TeV
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Here we will only discuss the case of normal hierarchy for

the neutrino masses.
2
For the Majorana case, we fit the

experimental data for neutrino oscillation parameters [15]

with the variations being within the 3σ range of their

respective central values obtained in the global fits. We

have listed the values used for the fit in Table IV while

scanning the parameter space of our model. We choose all

the matrices to be diagonal except YνL which is a

symmetric matrix. We choose

MR ¼ ML ¼ Diagð104; 104; 104Þ;
MN ¼ Diagð103; 103; 103Þ; ð40Þ

while the elements of the Yukawa coupling matrix

YνRii
∼ 0.1 and YνLij

∼ 10−5. This choice gives us our

desired neutrino masses with the three light neutrino states

lying between 0.001 to 0.05 eV while the next three heavy

states have masses around a few 100 GeV. The rest of the

physical states have mass around 10 TeV. The three light

neutrino physical states are almost entirely from the three

generations of νL and the next three (masses of a few

100 GeV) come mostly from νR. This is very similar to the

type-I seesaw in conventional LRS models and would give

very similar phenomenology with same-sign lepton signals

and neutrinoless double-beta decay. However the modified

scalar sector interaction with the heavy neutrinos leads to

much different collider signals which we shall discuss later.

The much heavier eigenstates which would be beyond the

reach of current accelerator energies are a mixture of NL

andNR. In Fig. 2(a) we show the allowed parameters which

give us the correct neutrino mass-squared differences

and the correct PMNS mixing angles for normal hierarchy.

We can see that Yν33
is indeed the largest owing to ν3 being

the heaviest in the normal hierarchy case, while Yν13
is the

smallest in magnitude as required to explain the small value

of the mixing angle θ13.

The 12 × 12 neutrino mass matrix is symmetric and

hence it can be diagonalized with a simple unitary trans-

formation. The first 3 × 3 block corresponds to the three

light neutrinos and satisfies the experimental 3σ bounds of

the PMNS matrix. The other mixing of the light neutrinos

with the heavier ones is extremely small with sin θij ≲ 10−8

where θij is the mixing angle between the heavy and light

states. Hence there are no bounds coming from lepton

flavor changing processes. The three mass eigenstates with

masses of a few 100 GeVare almost the same as the flavor

eigenstates of νRi
with small mixing (∼1%) with NLi

. The

six heavier states of masses around 10 TeV are almost

equally constituted of NLi
and NRi

, where i ¼ 1, 2, 3.

Table III gives a list of all the neutrino masses in this

scenario for a particular benchmark point.

In the pseudo-Dirac neutrino case the singlet neutrino

mixing term MN is taken to be zero. Then we choose our

parameters as MR ¼ ML ¼ Diagð200; 300; 400Þ. To get

the correct light neutrino masses and mixings for this

choice of ML and MR, we are forced to choose both YνL

and YνR to have nonzero off-diagonal elements (still being

symmetric matrices). Now we get two block diagonal 6 × 6

symmetric matrices each of whose three light eigenvalues

should be equal and satisfy the experimentally observed

mass-squared differences for them to form pseudo-Dirac-

like states. Using Eq. (23) along with the observed mass-

squared differences and mixing constraints gives us the

following choice of the matrix elements: YνLij
∼ 10−6 and

YνRij
∼ 10−9. The neutrino mixings in this case again have

to satisfy the experimental PMNSmixing limits and have to

be the same for both sectors. This is easily satisfied by

using the condition given in Eq. (23). Figure 2(b) gives

some allowed parameters for this case which satisfy the

neutrino mass-squared differences and the mixing angles

for normal hierarchy. As observed in the previous case, we

find that Yν33
is usually the largest while the elements for

Yν13
are the smallest for most of the points.

The mixing between the states of νL and νR which are

now of equal masses in this scenario are not quite as small

as the previous case. Typically, the mixing angle θ between

FIG. 1. Branching ratio for the WR boson as a function of its

mass.

TABLE IV. Experimental3σ ranges for light neutrino parameters.

7.03 × 10−5 eV2 < Δm2

21
< 8.09 × 10−5 eV2

2.407 × 10−3 eV2 < Δm2

31
< 2.643 × 10−3 eV2

0.271 < sin2θ12 < 0.345

0.385 < sin2θ23 < 0.635

0.01934 < sin2θ13 < 0.02392

UPMNS
 

0.800 → 0.844 0.515 → 0.581 0.139 → 0.155

0.229 → 0.516 0.438 → 0.699 0.614 → 0.790

0.249 → 0.528 0.462 → 0.715 0.595 → 0.776

!

2
It is worth noting that an arrangement for the inverted

hierarchy of the neutrino masses is equally possible in our
model, which we have not considered here.
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two light states of equal masses is such that sin θ ∼ 10−2.

The heavy states again have negligibly small mixing with

light states like in the previous case. Note that as we have

taken MN ¼ 0 there is no mixing between the heavy states

and they are purely compositions of NLi
or NRi

. As a result

their decay width in this case becomes very small and with

suitable choice of parameters it may lead to observable

displaced vertex signals. It is worth noting that when the

charged Higgs is lighter than the heavy neutrino states, it

becomes the primary channel of decay and therefore can

provide for interesting signal channels for the model at

collider experiments, which we discuss later in more detail.

A. Experimental constraints

The scalar sector of the model discussed in this paper

may be considered as a left-right extension of the lepton

specific 2HDM. As such there are a number of flavor

constraints which restrict the parameter space of the

2HDM. The most stringent of these constraints comes

from the b→ sγ process and constrains the charged Higgs

mass to mH� > 460 GeV [16] in the type-III 2HDM. The

main process responsible for b→ sγ in the 2HDM is given

in Fig 3. In our case, though this process is present, the

lighter charged Higgs boson of mass around 200 GeV

actually corresponds to the right-handed charged Higgs

boson as can be seen from Eq. (30). As the right-handed

down-type Yukawa coupling matrix is diagonal in this

model, the CKM mixings are really small. This results in a

much weaker bound on the lightest charged Higgs boson

mass in this case. There are no significant bounds from the

flavor observable on the pseudoscalar mass in the lepton-

specific 2HDM and hence there are no bounds in this model

as well.

There is a bound on the 2HDM pseudoscalar Higgs

boson mass from the single production and associated

production of the pseudoscalar decaying into two τ final

states [17]. This gives a lower limit on the pseudoscalar

mass as a function of the σ × BRðA → ττÞ for both the

single and the associated production mode. For both these

production channels the important couplings would be

A1qq̄ where q is a quark. To get significant production, the

third-generation quarks are the most important but here

again the couplings of the pseudoscalar with the third-

generation quarks will be much weaker than in the case of

the 2HDM. This is because the coupling here would be

fL
AuūðAdd̄Þ ¼ Y33

uLðdLÞ × ZL
Ai × Z

Qq

uRðdRÞ ð41Þ

where ZL
Ai is the amount of H0

LQ contained in the eigenstate

of A and Z
qQ

uRðdRÞ is the mixing of the right-handed heavy

and the light up-type (down-type) quarks. A similar

formula can be written for the right-handed pseudoscalar

coupling with two quarks with L↔ R in Eq. (41). The

light pseudoscalar in this model is coming from the right-

handed doublets and its couplings with the third-generation

quarks come out to be much weaker than the 2HDM case.

So for our model this limit will not be applicable because

the production cross section of the pseudoscalar will be

much smaller than in the 2HDM.

B. New collider signals

This model can lead to a number of interesting new

signals at accelerator experiments. We primarily focus on

mentioning the ones from the scalar sector in the form of

charged Higgs as well as the heavy Majorana neutrinos

which can be accessible to the current run of the LHC. Note
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FIG. 2. (a) Benchmark points satisfying the neutrino masses and PMNS mixings for the Majorana case. (b) Benchmark points

satisfying the neutrino masses and PMNS mixings for the pseudo-Dirac case.

FIG. 3. b → sγ through the charged Higgs.
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that the other exotics such as the heavy quarks and leptons

are beyond the reach of the LHC because of their extremely

heavy masses.

To highlight the signals for the model at the LHC we

choose two representative points in the model parameter

space as BP1 and BP2 and list them in Table V. Unlike other

models for heavy neutrinos including left-right symmetric

models we find that the decay modes of the heavy Majorana

neutrinos, as listed in Table V, are quite different. Note that

the heavy neutrino decays are again driven by their compo-

sition and therefore could be either singlet dominated or even

SUð2ÞR doublet dominated. As the Yukawa couplings

YνRii
∼ 0.1 we find that the dominantly right-sector charged

Higgs which is light, would couple to the heavy Majorana

neutrinos which have dominant right-handed components

as well as singlet components over the left-handed compo-

nents. This plays a crucial role in deciding the decay of the

heavy neutrinos in the model. The heavy neutrinos prefer to

decay via the off-shell charged Higgs while the subleading

contributions come from the decay via off-shell WR.

Although both the mediating particles would contribute, a

quick look at the decay probabilities in Table V shows the

absence of the leptonic modes for BP1 which are highly

suppressed. This indicates that the decay is driven by the off-

shell charged Higgs over the much heavierWR gauge boson.

The challenge of observing the signals of these heavy

neutrinos would be dictated by the production mechanism.

At the LHC, it would mean that they could be produced via

exchange of WR and ZR in the s channel. This would give a
resonant production of the heavy neutrinos and therefore the

dominant channel. So we can produce the heavy neutrinos as

pp→ W�
R → l

�
i νj;

pp → ZR → νjνj

where i ¼ 1, 2, 3 and j ¼ iþ 3.

We find that aWR of mass 4 TeV consistent with current

experimental limits has a combined branching of nearly

30% to decay to a SM charged lepton and heavy neutrino,

with the dominant mode of the three being the decay to the

first two generations ∼11%. Similarly a ZR of mass around

4.8 TeV has a combined ∼20%–22% branching probability

to decay in the pair of ν4, ν5, ν6 for BP1 and BP2,

respectively. Resonant production of heavy neutrinos can

be useful to have appreciable rates of production [18]

without depending on the active-sterile mixing parameter

in the neutrino sector. As the decay in Table V suggests, the

heavy neutrino decays to a single flavor charged lepton in

association with jets with a 100% branching probability for

BP1, leading to same-sign dilepton signals with jets in the

final state provided the charged Higgs in the model is

heavier. In fact one can also have the interesting signal where

pp → ν5ν5 → μ�μ�H∓
1
H∓

1
→ 2μ� þ 2e∓ þ 4j:

The pair production cross sections at the LHC for the

heavy neutrinos with
ffiffiffi

s
p ¼ 13 TeV are

BP1∶ σðpp→ ν4ν4Þ ¼ 0.121 fb;

σðpp→ ν5ν5Þ ¼ 0.101 fb;

σðpp→ Hþ
1
H−

1
Þ ¼ 5.27 fb:

The ν4 production gives the familiar same-sign lepton signal

pp→ ν4ν4 → 2e� þ 4j:

By slightly changing our parameters we get a spectrum

where all the heavy neutrinos are actually heavier than the

lightest charged Higgs represented by BP2 as shown in

Table V. We have only modified the neutrino sector making

sure that the new set of parameters is still consistent with

the neutrino oscillation data, while keeping the other

sectors almost the same as before. In this case where all

the Majorana neutrinos are heavier than the lightest charged

Higgs which in turn is heavier than the top quark, a very

unique and different signal is produced. With no heavy

neutrino decay available to the charged Higgs, it decays to

the quark final states with the dominant channel being

Hþ
1
→ tb̄ (see Table V). Now as the charged Higgs comes

TABLE V. Representative benchmark points of the particle spectrum where the massive neutrino states are

Majorana type. We also illustrate the dominant decay modes of the lightest charged Higgs and heavy neutrino states.

The heavy gauge bosons for both BP1 and BP2 are the same with MWR
¼ 4 TeV and MZR

¼ 4.7 TeV.

Particle Width (GeV) Important decay channels

BP1 Mν4
¼ 136.4 GeV 7.12 × 10−9 ν4 → e�jj ∼ 99.3%

Mν5
¼ 258.3 GeV 4.57 × 10−4 ν5 → μ�H∓

1
∼ 100%

Mν6
¼ 317.0 GeV 2.97 × 10−3 ν6 → τ�H∓

1
∼ 100%

MH�
1

¼ 224.7 GeV 4.6 × 10−4 H�
1
→ ν4e

� ∼ 99%

BP2 Mν4
¼ 317.0 GeV 2.11 × 10−3 ν4 → ϵ�H∓

1
∼ 100%

Mν5
¼ 550.9 GeV 3.03 × 10−2 ν5 → μ�H∓

1
∼ 100%

Mν6
¼ 837.6 GeV 1.04 × 10−1 ν6 → τ�H∓

1
∼ 100%

MH�
1

¼ 224.7 GeV 5.78 × 10−6 Hþ
1
→ tb̄ ∼ 92.9%
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from the decay of a heavy Majorana neutrino then one gets

an interesting signal where one has same-sign leptons as

well as same-sign top quarks in the final state. This is

completely free from any SM background and would be a

unique signal for discovery. Thus we have for example

pp→ ν4ν4 → e�e�H∓
1
H∓

1
→ 2e� þ 2t̄=tþ 2b=b̄

when the ν4 is pair produced. Again one gets 2μ
∓ þ 2t=t̄þ

2b̄=b when ν5 is pair produced. The total cross sections for

the pair production of the heavy neutrino pairs at the LHC

with
ffiffiffi

s
p ¼ 13 TeV are

BP2∶ σðpp → ν4ν4Þ ¼ 0.096 fb;

σðpp → ν5ν5Þ ¼ 0.076 fb:

Subsequent decay probabilities for heavy neutrino decay

as well as charged Higgs decay are almost 100%. To

compare it with the SM background, there are no sub-

processes that can contribute directly to similar final states.

Due to charge mismeasurements we can consider the

process pp→ eþe−tt̄bb̄ as a possible background. The

cross section for this process at the LHC with
ffiffiffi

s
p ¼

13 TeV is around 0.16 fb. The charge mismeasurement

probabilities are much below 10−3 and therefore this would

hardly give any event even with an integrated luminosity of

3000 fb−1. The signal would still yield a handsome 516

events for BP2 where we add the contributions for both the

ν4 and ν5 channels in the case of BP2. Although the signal

would be difficult to observe in the near future at both

ATLAS and CMS, but with the very high luminosity option

at the LHC, it would be a very unique channel to observe.

For the charged Higgs (H�
1
) lighter than the top quark it

decays to the light quarks thus giving a more conventional

signal of same-sign leptons with multiple jets. However a

marked difference is the absence of the SMW andZ boson in

the decay cascades of the heavy neutrino decay. Thesemodes

become available for the scenario with pseudo-Dirac heavy

neutrinos. Similarly, the single production of the heavy

neutrino through WR resonance would lead to a signal with

a same-sign lepton along with a top and bottom quark, where

σðpp → WRÞ ¼ 3.2 fb forMWR
¼ 4 TeV.We leave a much

more detailed signal analysis of the collider signals of the

model for futureworkand focusonpointingout the interesting

signals that one can expect to observe at the LHC here.

In addition, if the charged Higgs’s are heavier than the

heavy neutrinos, then they would dominantly decay into

them and the corresponding charged lepton. This can lead

to a significantly different search signal for the charged

Higgs when compared to conventional ones. Thus even

when the charged Higgs is heavier than the top quark, the

presence of a light Majorana neutrino completely over-

whelms the tb decay option. The charged Higgs production

would mostly be via the photon exchange,

pp → Hþ
1
H−

1
→ νjνjl

þ
i l

−
i

where again i ¼ 1, 2, 3 while j ¼ iþ 3. The heavy

neutrino would decay via the off-shell charged Higgs in

the three-body decay channel νj → l�jj0. This quite

clearly gives a multilepton signature for the charged

Higgs mediated by lepton-number violating interactions

which again has very little or no SM background and can be

a very unique signal of the model. For example in the case

of BP1 there is a four-lepton channel contribution coming

from the pair production of charged Higgs

pp→ Hþ
1
H−

1
→ ν4e

þν4e
−
→ 2e� þ 4jþ eþe−:

Here again this is a very interesting signal channel in the

form of three same-sign electrons which has negligible SM

background. This would prove to be an interesting signal

[19] to look for the charged Higgs search in this model.

Another unique signal of this model which differentiates it

from other LR models involves the WR decay channels.

Figure 1 gives a plot of the various WR decay branching

ratios in this model. In general LR models an important

decay channel for the WR boson is a ðtb̄Þ final state but that
channel is almost absent in this case owing to the extremely

small branching ratio as can be seen in Fig. 1. In fact once the

heavy T fermion channel opens up, a significant branching is

into this ðTb̄Þ. Thus the model opens the possibility of some

very interesting signal topologies which are quite nonstand-

ard and can give surprisingly different and unique signals

from the production of the heavy Majorana neutrino as well

as charged the Higgs boson at the LHC.

IV. CONCLUSION

In this work we have proposed a model for SM fermion

mass generation through a universal seesaw mechanism.

The model is based on a left-right symmetric framework

where all the gauge symmetries are spontaneously broken

via SUð2Þ scalar doublets only. The gauge symmetry is

augmented with an additional Z2 discrete symmetry which

differentiates the quarks from the lepton sector. Additional

heavy vectorlike singlet fermions are needed for the

generation of the SM quark and lepton masses through a

universal seesaw mechanism. The neutrino matrix, on the

other hand, can lead to two very interesting physical

scenarios—one with Majorana-like neutrinos and the other

where the neutrinos are pseudo-Dirac in nature.

The scalar sector here may be considered as a LRS

extension of the lepton-specific 2HDM. The SM-like

neutral Higgs boson (with mass of 125 GeV) and the

lightest charged and pseudoscalar Higgs states remain light

of the order of a few hundred GeV. The most stringent

bounds on the charged and the pseudoscalar Higgs masses in

a general 2HDM scenario come from the flavor-changing
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processes and two τ final state decay modes. These bounds

are quite relaxed in this model due to the right-handed nature

of both of these light scalars and their much reduced

effective couplings in this model. Hence the light charged

or pseudoscalar states can be easily accommodated here

which can lead to interesting collider signatures.

The model also presents us with some unique collider

signatures that could be observed at the LHC. We have

considered two benchmark points in our model to highlight

their signal strengths. In addition to an interesting signal

from heavy neutrino production where one gets same-sign

leptons and a same-sign top quark pair in the same event,

the model also gives a very unique and different signal for

the charged Higgs in the model. As no search has been

performed at either ATLAS or CMS for such event

topologies, the observation of such nonstandard signal

events at the LHC could provide hints on new physics

with an underlying model quite different from the popular

left-right models.
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