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ABSTRACT Monitor systems are ubiquitously deployed in public areas. However, monitor systems face a 

major challenge regarding long-distance object recognition. Super-resolution constitutes a popular choice to 

address this challenge. Since super-resolution methods are used in many applications, it is necessary to 

understand these methods and make a comparative study of them. In this paper, we perform a comparative 

study on six super-resolution methods over two recognition algorithms. The paper evaluates super-

resolution performance based on recognition accuracy, and serves as a summary assessment of image 

super-resolution algorithms. 

INDEX TERMS: super-resolution; sparse representation; deep learning; convolutional neural networks. 

I. INTRODUCTION 

Visual surveillance is the latest paradigm of monitor public 

security through machine intelligence. It comprises the use of 

visual data captured by various cameras placed in vehicles, 

corridors, traffic signals, etc. Visual surveillance facilitates 

the recognition of human behavior, faces, vehicles, crowd 

activities, and gestures to achieve application-specific 

objectives. However, in surveillance applications, objects are 

often far away from cameras, leading to low resolution, as 

shown in Fig. 1. The low resolution object contain little 

information for recognition leading to poor recognition 

accuracy [1, 2] for most classification algorithms. Improving 

image resolution is a promising way to increase recognition 

accuracy.  

Super-resolution (SR) technology constitutes a popular 

method to improve image resolution. At present, there are 

various SR methods. Generally, SR methods can be divided 

into three categories: (1) interpolation-based methods; (2) 

multi-frame-based methods; and (3) example-based methods. 

Fig. 2 presents a summary of different image super-

resolution methods.  

Interpolation-based methods [3, 4, 5] estimate high 

resolution (HR) pixels through information from neighboring 

pixels. However, these methods suffer from producing 

blurred edges and artifacts since they cannot introduce new 

details. 

 
FIGURE 1.  An image obtained from a monitor system.  

Multi-frame-based methods [6, 7, 8] improve resolution 

by combining information of serious low resolution (LR) 

images obtained from the same scene with slightly-moved 

viewpoints, as shown in Fig. 3. However, information from 

the frames of the same scene is limited. These methods fail to 

achieve satisfactory resultant images for large magnification 

factors. 
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FIGURE 2.  Summary of image super-resolution 
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HR image

LR frames with 

slightly-moved 

viewpoints  
FIGURE 3.  Implementation of multi-frame SR methods. 

 

Example-based methods usually utilize a database 

containing many LR–HR patch pairs to establish the 

mapping relationship of the corresponding LR and HR 

patches (see Fig. 4). Generally, there are four types of 

example-based methods: (1) nearest neighbor (NN) -based 

methods [9, 10]; (2) regression-based methods [11, 12, 13, 

14]; (3) sparse-coding-based methods [15, 16, 17, 18, 19, 24]; 

and (4) deep-learning-based methods [20, 21]. Figs. 5–8 

illustrate the four types of methods. NN-based methods 

assume that the corresponding LR and HR patches possess 

locally similar geometry at certain manifolds (see Fig. 5). 
Regression-based methods build a regression model 

estimating the relationship of the corresponding LR and HR 

patches (see Fig. 6). Sparse-coding-based methods compute 

sparse coefficients of the input LR patch, and use them to 

estimate an HR patch (see Fig. 7). Deep-learning-based 

methods employ deep convolutional neural networks (CNN) 

to estimate the mapping relationship of corresponding LR 

and HR images (see Fig. 8).  

Input LR image

Patch partition

Integrating

Output HR image

Mapping relationship

 
FIGURE 4.  Implementation of example-based SR methods. 

 

SR methods have been widely applied to improve image 

quality. However, precisely how different SR methods effect 

recognition performance is still not well understood. 
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FIGURE 5.  Implementation of the NN-based method. 
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FIGURE 6.  Implementation of regression-based methods. 
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FIGURE 7.  Implementation of sparse-coding-based methods. 
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FIGURE 8.  Implementation of deep-learning based-methods. 

 

The objective of this paper is to provide a comparative 

study of SR methods and elucidate their effectiveness for 

recognition in low-resolution images for monitor systems. 

Our contributions include the following: 

1) Understanding the differences between various SR 

methods;  

2) Demonstrating the effectiveness of SR methods in 

recognition accuracy of LR images;  

3) Learning the relationship between accuracy performance 

with upscale factors. 
The remainder of this paper is as follows. The details of 

different SR methods are discussed in Section 2. 

Experimental results are presented in Section 3.  Conclusions 

are given in Section 4. 
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II.  SUPER-RESOLUTION METHOD 

The objective of SR is to improve the resolution of LR 

image Y to reconstruct its corresponding HR image X: 

( )Y F X SHX                                                              (1) 

where H denotes a low-pass filter; and S is a down-sampling 

operator. The problem of super-resolution is, given an LR 

image Y, finding an image X with X ≈X.  

Generally, example-based methods successfully surpass 

other methods, such as interpolation-based methods or multi-

frame-based methods in perceptual quality. Furthermore, due 

to their good performance, sparse-coding-based methods and 

deep-learning-based methods have widely utilized SR 

methods in recent years. This study focuses on the 

performance of sparse-coding-based methods and deep- 

learning-based methods. 

A. Sparse-coding-based methods 

Sparse-coding-based super-resolution methods work 

on the basis that natural image patches could be sparsely 

represented by an over-complete dictionary. Let x and y 

denote the HR and LR patches, respectively. We use Dh and 

Dl to denote the HR and LR dictionaries, respectively. The 

HR patch x and LR patch y can be sparsely represented as 

x=Dhαh and y=Dlαl, respectively. 

1) TRADITIONAL SPARSE-CODING-BASED METHOD 

The traditional sparse-coding based (TSC) SR method 

[16] assumes that the corresponding y and x share the same 

sparse coefficients, according to the Dl and corresponding 

Dh, respectively, i.e., αl =αh. Thus, the sparse coefficients of 

a low-resolution patch in terms of Dl will be used to 

reconstruct the corresponding high-resolution patch from 

Dh. 

To ensure that x and y share the same sparse 

coefficients with respect to Dl and Dh, respectively, the two 

dictionaries are learned simultaneously. Let X={x1,x2,…,xn} 

be the set of HR patches and Y={y1, y2,…, yn}be the set of 

LR patches. Ah={αh1, αh2,…, αhn} and Al ={αl1, αl2,…, αln}are 

sparse coefficients of X and Y respectively. HR and LR 

dictionaries learning can be approached through solving the 

following minimization problem: 
2 2

, , ,

2

1 1

min X Y

{ }

h l h l
h h l l

D D

h l h l

D D

 

 
    

      

                        (2) 

 and  are regularization parameters to balance the terms 

in the objective function. The dictionaries 𝐷𝑙 and 𝐷h can be 

easily generated from a set of samples by the methods such 

as KSVD. 

For reconstruction, the input LR image is divided into 

overlapping patches. It is just necessary to calculate the 

sparse coefficients of LR patch yinput according to LR 

dictionary Dl, with the following optimization problem: 

2{ }
min

l
input l ly D


                                                        (3) 

The corresponding HR patch xout can then be obtained by 

the product of HR dictionary Dh and coefficients αl, as xout 

=Dhαl. Finally, the SR output is recovered by averaging all 

of the overlapping HR patches. An implementation of the 

TSC method is presented in Fig. 9. 
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FIGURE 9.  Implementation of the traditional sparse-coding-based 
method. 
 
2) SEMI-COUPLE DICTIONARY LEARNING-BASED 
METHOD 

The semi-couple dictionary learning (SCDL) based 

method [18] assumes that the sparse coefficients of 

corresponding LR and HR patches are linearly related, i.e., 

αl = Wαh. So, W, HR and LR dictionaries can be approached 

through solving the following minimization problem: 
2 2

, , , ,

2

1 1

min X Y

{ }

h l h l
h h l l

D D W

h l h l

D D

W 

 
    

       

                       (4) 

For reconstruction, the sparse coefficient αl of the LR 

patch can be obtained by Eq. (3). Then, the sparse 

coefficient of HR can be obtained as αh=Wαl. HR patch xout 

can be produced by the product of HR dictionary Dh and 

coefficients αh, as xout =Dhαh. Finally, the SR output is 

recovered by averaging all of the overlapping HR patches. 

The implementation of the SCDL-based method is 

illustrated in Fig. 10. 

3) COUPLE DICTIONARY LEARNING-BASED METHOD 

The couple dictionary learning (CDL) based method 

[19] assumes that the sparse coefficients of the 

corresponding LR patch y and HR patch x are the same in a 

certain space, i.e., Uαl = Vαh. So, U , V, HR and LR 

dictionaries can be approached through solving the 

following minimization problem: 
2 2

, , , , ,

2

1 1

min X Y

{ }

h l h l
h h l l

D D V U

h l h l

D D

V U 

 
    

       

                    (5) 

For reconstruction, the sparse coefficient αl of the LR 

patch can be obtained by Eq. (3). The sparse coefficient αh 
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of HR can then be obtained as αh= V-1Uαl. HR patch xout 

can be produced by the product of HR dictionary Dh and 

coefficients α, as xout =Dhαh. Finally, the SR output is 

recovered by averaging all of the overlapping HR patches. 

The implementation of the CDL-based super-resolution 

method is presented in Fig. 11. 
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FIGURE 10.  Implementation of the semi-couple dictionary learning 
based method. 
 

B. Deep-learning-based methods 

Deep-learning-based methods use convolutional 

neural networks (CNN) to estimate the mapping 

relationship of the corresponding LR and HR images, 

demonstrating promising SR performance. The SRCNN 

method [20] and VDSR method [21] are state-of-the-art 

deep-learning-based methods. 
1)  SRCNN METHOD 

The SRCNN method [20] works on the assumption 

that mapping from LR to HR patches could be learned in an 

end-to-end manner by CNN.  

The SRCNN method comprises three layers: (1) patch 

extraction and representation; (2) non-linear mapping; and 

(3) reconstruction.  

In the patch extraction and representation layer, the 

image is divided into overlapping patches and represented 

as a high-dimensional vector. This layer can be interpreted 

as an operation that convolves the input image with a set of 

filters, and obtains an n1-dimensional feature for each patch. 

In the non-linear mapping layer, the n1-dimensional 

feature is nonlinearly mapped to the n2-dimensional vector 

that represents the HR patch. This layer can be interpreted 

as a nonlinear map between LR and HR domains.  

In the reconstruction layer, HR patches are combined 

to generate the final reconstructed HR image through 

averaging. This HR image is expected to be similar to the 

ground truth X.  

Denote the convolution layer as Conv(fi, ni, ci), where 

the variables fi, ni, and ci represent filter size, number of 

filters and number of channels, respectively. The SRCNN 

method uses three layers, including Conv(9,64,1), 

Conv(5,32,64), and Conv(5,1,32) as the network structure. 

The CNN-based super-resolution method is presented in 

Fig. 12. 
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FIGURE 11.  Implementation of the couple dictionary learning-based 
method. 
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Non-linear 
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FIGURE 12.  Implementation of the SRCNN method [20]. 
 
1)  VDSR METHOD 

The VDSR method [21] utilizes deep convolutional 

networks for SR. VDSR also uses multiple layers. The first 

layer operates on the input image. The last layer is used for 

image reconstruction. The remaining layers are of the same 

type, i.e., 64 filter of the size 3×3×64. These filters operate 

on a 3×3 spatial region across 64 channels (feature maps).  

The network structure consists of 20 convolution 

layers, including Conv(3,64,1), 18×Conv(3,64,64), and 

Conv(3,1,64). For the training process, residual learning 

and adjustable gradient clipping were employed for fast 

training. Regarding the scales, it uses a single model for 

multiple SR scales by embedding training samples with 

different scales. An implementation of the VDSR method is 

shown in Fig. 13. 

 

 
FIGURE 13.  Implementation of the VDSR method [21]. 

III. EXPERIMENT 
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The objective of this work is to perform a 

comprehensive analysis for how SR could improve 

recognition performance in low-resolution images. The 

super-resolution-based recognition scheme combines super-

resolution and recognition. For a comprehensive analysis, 

we are only concerned with face recognition applications. 

The scheme is shown in Fig. 14. 

LR face
HR face

Super-resolution Face recognition

 
FIGURE 14.  The super-resolution-based recognition scheme. 

 

The experiments investigate the following issues: 

1) The impact of image resolution on recognition accuracy; 

2) Comparison of SR methods’ performance on improving 

recognition accuracy; 

3) The relation of upscale factors with the improvement of 

recognition accuracy. 

Experiments are conducted to evaluate the scheme on 

the ORL database (http://www.cl.cam.ac.uk/research/dtg/ 

attarchive/facedatabase.html). The ORL database contains 

approximately 400 face images of 40 individuals.  

 
FIGURE 15.  Samples of the ORL database. 

A.  Recognition method 

To understand the performance of different SR 

methods, the combination of SR methods and recognition 

algorithms are tested in the experiments. The following SR 

methods are considered: Bicubic [2], TSC [16], SCDL [18], 

CDL [19], SRCNN [20], and VDSR [21]. For recognition, 

it is generally difficult to determine which recognition 

algorithms are optimal. So, we take two popular face 

algorithms, i.e., LBP and VGG Face, to evaluate the 

improvement performance of the SR method. A brief 

description of each face recognition algorithm is given in 

Table I. The implementation of each algorithm is presented 

in Figs. 16-17 
TABLE I 

PROPERTY DESCRIPTION OF METHODS 

Method Brief descriptor 

LBP [22] The LBP method forms labels of each 

pixel in an image by thresholding the 
neighborhood of the pixel, and considers 

the result as a binary number. 

VGG Face 
[23] 

The VGG Face method is based on the 
CNN architecture. The network is 

composed of a sequence of 

convolutional, pool, and fully-connected 

(FC) layers. The VGG-Face network has 
a deep architecture composed of 3×3 

convolution layers and 2×2 pooling 

layers, and three fully-connected layers. 

 

Input face

LBP face descriptor

LBP descriptor 

of block  
FIGURE 16.  Implementation of LBP Face descriptor. 

 

Convolutional Layer Full connected Layer
Descriptor

VGG face CNN

Input face

 
FIGURE 17.  Implementation of VGG Face descriptor. 

 

A.  Experiment results 
1)  IMPACT OF IMAGE RESOLUTION ON 
RECOGNITION ACCURACY 

We conduct several experiments to evaluate the 

impact of resolution on recognition accuracy (see Fig. 18). 

In the experiments, the face images in the ORL database are 

resized to different sizes, i.e., 10×10, 20×20, 40×40, 60×60, 

and 80×80. We conduct LBP and VGG Face algorithms on 

the faces. Figure 19 shows the recognition accuracy of the 

faces with different resolutions. From Fig. 19, it is observed 

that face recognition accuracy is correlated with face 

resolution. All of the face recognition methods achieve poor 

recognition accuracy for faces with a resolution of 10×10, 

due to the less information contained for these faces. 

Overall, recognition accuracy increases as resolution 

increases. The cause of this phenomenon is that high 

resolution faces could provide more information than low 

resolution faces. However, when the resolution of a face is 

higher than 40×40, recognition accuracy is stable. We can 

conclude that, for better face recognition accuracy, face 

resolution should be more than 40×40. 

Original face 

image

(100×100)

10×10

15×15

20×20

30×30

40×40

60×60

80×80

LBP

VGG Face

Downsampling

Results

Results

 
FIGURE 18.  Illustration of the experiment to evaluate the impact of 
resolution on recognition accuracy. 
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FIGURE 19.  Recognition accuracy for faces at different resolutions. 

 
2)  COMPARISON OF SR METHODS’ PERFORMANCE 
ON IMPROVING RECOGNITION ACCURACY 

To determine the effectiveness of the SR method on 

face accuracy, we compare face recognition results by using 

different SR methods, i.e., Bicubic, TSC, SCDL, CDL, 

SRCNN, and VDSR (see Fig. 20). We resize the images to 

size 20×20 as LR images. The upscale factor is set to ×3. 

Visual outputs of the different SR methods and the original 

images are depicted in Fig. 21. From Fig. 21, it can be seen 

that, even though there are some artifacts in the face region 

for the results of the SR methods, the overall quality of the 

image has improved. In addition, the reconstructed images 

of the VDSR methods are very close to the original HR 

images. 

 

Bicubic

TSC

SCDL

SRCNN

VDSR

LBP

VGG Face

Results

Results

SR methods

Recognition 

methods

LR face image

CDL

 
FIGURE 20.  Illustration of the experiment for comparison of SR 
methods’ performance on improving recognition accuracy. 
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FIGURE 21.  Visual comparison of different SR methods. 

 

Face recognition results of different SR methods and 

the original HR images are shown in Fig. 22. The 

experimental results are presented in terms of recognition 

accuracy. It is observed that deep-learning-based methods 

outperform other methods. In addition, the VDSR method 

has the highest recognition accuracy and consistently 

outperforms the other SR methods. The VDSR method 

improves performance by 8.75% and 7.5% in accuracy 

compared with that of the Bicubic method by LBP and 

VGG Face algorithms, respectively. In fact, the recognition 

accuracy of reconstructed faces by using the VDSR method 

is almost as good as that of the original faces. We can thus 

conclude that reconstructed HR images are more similar to 

the original images, and the recognition accuracy of the 

reconstructed HR images is closer to that of the original 

images. Consequently, in monitor systems, high recognition 

accuracy can be obtained by employing SR methods to 

improve face resolution to solve the challenge of monitor 

system face recognition. 

 

 
FIGURE 22.  Recognition accuracy with different SR methods. 
 
3)  RELATION OF UPSCALE FACTOR WITH 
IMPROVEMENT IN RECOGNITION ACCURACY 

We subsample the original face images to different 

sizes, i.e., 10×10, 15×15 and 20×20, to obtain low 

resolution face images. Then, we upscale the LR face 

images with different upscale factors, i.e., ×2, ×3, and ×4 

(see Fig. 23). Visual outputs are shown in Figs. 24-26. SR 

results for LR images with a size of 20×20 have the best 

visual quality, and consistently compare well with the other 

SR results.  

  Faces with 

different sizes

×2

×3

×4

LBP

VGG Face

Results

Results

10×10

15×15

20×20

Upscaling factor Recognition method

 
FIGURE 23.  Illustration of the experiment to evaluate the relation of 
upscale factors with improvement in recognition accuracy. 
 

Figs. 27-38 show the recognition accuracy of HR 

images from LR images with a size of 10×10 and 15×15. 

We find that accuracy of HR images is poorer that of the 

LR images. Consequently, we can conclude that, if 

resolution is too small, SR methods will fail to improve 

quality. This is because LR images with a size of 10×10 

and 15×15 contain too little information. The SR method 
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could include some incorrect information, which leads to 

poor performance. 

Figs. 39-44 show the recognition accuracy of HR 

images from the LR image with a size of 20×20. We find 

that the accuracy of HR images is poorer than that of the 

LR images for the Bicubic method and sparse-coding-based 

methods. While accuracy of HR images is better than that 

of the LR images for deep- learning-based methods. 

Furthermore, we find that when we upscale up to three, the 

improvement of the recognition accuracy is stable for deep-

learning methods. Deep-learning-based methods could 

improve recognition accuracy effectively and robustly. 

10×10

×2

×3

×4

Bicubic TSC SCDL CDL SRCNN VDSR  
 

FIGURE 24.  SR results of different upscale factors for an LR image with 
a size of 10×10. 

 

15×15

×4

×3

×2

Bicubic TSC SCDL CDL SRCNN VDSR
 

FIGURE 25.  SR results of different upscale factors for LR images with a 
size of 15×15. 
 

 

20×20

×4

×3

×2

Bicubic TSC SCDL CDL SRCNN VDSR  
FIGURE 26.  SR results of different upscale factors for an LR image with 
a size of 20×20. 

IV. CONCLUSION 

The proposed scheme uses super-resolution methods 

to improve recognition accuracy for monitor systems. 

Recognition is performed after super-resolution. We 

conduct experiments with six super-resolution methods and 

two recognition methods. We can conclude that, when the 

resolution is too low, no recognition method is successful. 

Reconstructed HR images are more similar to original 

images, and the recognition accuracy of reconstructed HR 

images is closer to that of the original images. Therefore, in 

monitor systems, we can increase recognition accuracy by 

employing the SR method to improve face resolution. 

 
FIGURE 27.  Recognition accuracy with different scales for faces of 
10×10 by the bicubic method. 

 

 
FIGURE 28.  Recognition accuracy with different scales for faces of 
10×10 by the TSC method. 

 

 
FIGURE 29.  Recognition accuracy with different scales for faces of 
10×10 by the SCDL method. 

 

 
FIGURE 30.  Recognition accuracy with different scales for faces of 
10×10 by the CDL method. 
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FIGURE 31.  Recognition accuracy with different scales for faces of 
10×10 by the SRCNN method. 
 

 
FIGURE 2.  Recognition accuracy with different scales for faces of 
10×10 by the VDSR method. 

 

 
FIGURE 33.  Recognition accuracy with different scales for faces of 
15×15 by the bicubic method. 
 

 
FIGURE 34.  Recognition accuracy with different scales for faces of 
15×15 by the TSC method. 

 
FIGURE 35.  Recognition accuracy with different scales for faces of 
15×15 by the SCDL method. 
 

 
FIGURE 36.  Recognition accuracy with different scales for faces of 
15×15 by the CDL method. 
 

 
FIGURE 37.  Recognition accuracy with different scales for faces of 
15×15 by the SRCNN method. 

 

 
FIGURE 38.  Recognition accuracy with different scales for faces of 
15×15 by the VDSR method. 
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FIGURE 39.  Recognition accuracy with different scales for faces of 
20×20 by the bicubic method. 
 

 
FIGURE 40.  Recognition accuracy with different scales for faces of 
20×20 by the TSC method. 

 
FIGURE 41.  Recognition accuracy with different scales for faces of 
20×20 by the SCDL method. 

 
FIGURE 42.  Recognition accuracy with different scales for faces of 
20×20 by the CDL method. 

 

 

 
FIGURE 43.  Recognition accuracy with different scales for faces of 
20×20 by the SRCNN method. 
 

 
FIGURE 44.  Recognition accuracy with different scales for faces of 
20×20 by the VDSR method. 
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