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1. Introduction and preliminaries
Denote by A, the family of analytic functions in the unit disc

D={z:lz2l<1,z€C}

whose members are

@) =z+ ) A, (1.1)
k=2
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and normalized by h(0) = A’(0) — 1 = 0. Let continuous complex- valued harmonic function in a
complex domain Q be f = u +iv, if both # and v are real and harmonic in Q. We write f = h+ g, where
h and g are analytic in C C Q, a simply-connected domain. We appeal % the analytic part and g the
co-analytic part of f. Clunie and Sheil-Small [1] pointed out that f to be locally univalent and sense
preserving in C if and only if |A’'(z)| > |g’(z)| in D .

Denote by H the family of all harmonic functions of the form f = h + g, is given by,

f@ =2+ Y 1A+ > Bz, (0<B;<1), (12)
=2

=1

where

h@=z+ ) A, g@)=) B, Bil<l, (zeD),
J=2 Jj=1

are members of A. We let

Tu={f@ =2+ ) 1A= Y IBjle/, 0<B <. (1.3)
=2 k=1
Symbolize Sy, the subclass of H that are univalent and orientation preserving in D. Note that {—_Ig €

S'u whenever f € Sy. Due to Clunie and Sheil-Small [1] we also let
SS={f=h+g€Su:g (0)=B, =0}.

Further, let K%, ST% and C% are the subclasses of S% which are harmonic convex, starlike and close-
to-convex in D respectively. Also T}, denotes typically real harmonic functions for further details
refer [1-4].

We recall following lemmas proved in [1,2].

Lemmal. ([1,2]). If f € KI(_’I is assumed as in (1.2) with B; = 0, then
j+1
2
Lemma2. [1,2]Iff € ST% (or f € C%) is assumed as in (1.2) with By = 0, then

2j+DG+ 1D 2j-DG-1

Lately, for f € Sy whose members are given by (1.2), Dziok [5] introduced a new class Sj;(F, G)
(-G<F<G<1)by

A <

i~ 1
and [Bj| < ]T (1.4)

|A)| < (1.5)

S;(F,G):{f:h+§eH:®}1é§Z)<112?;}, (1.6)
where Dy f(z) = zh'(z) —z¢’(z) and z € D. Also let
Ku(F.G) = f € S : Duf € Siy(F,G). 1.7)
In particular Ry(F, G), the class discussed by Dziok [6] is given by
RH(F,G):{f:h+§eH:®HZJj(Z)<i:gi}. (1.8)
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Remark 1. We note that

D). §(F,G) := §;,(F,G) N A was introduced by Janowski [7].

2). For 0 <9 < 1 the classes S,(1) := S;,(29 — 1, 1) and Ky(9) := Ku(29 — 1, 1) were investigated

by Jahangiri [8,9].

3). Also S}, := §3(0) and Ky := Ky (0) are the classes harmonic starlike and convex functions in D

and Sy, (F,G) C §;,, Ku(F,G) C Ky.
Lately, Dizok [5] gave the following coeflicient conditions:

Lemma 3. [5] Let f € H be assumed as in (1.2), then f € S,(F,G) if

Al +

i(](1+G) (1+F)

Jj=2

G-F

where Aj =1;B; =0and -G <F<G<1.
Lemmad4. [5] Let f € Ty be assumed as in (1.3) and

y - JA+G)-(+F) JA+G)+(+F)
feS‘TH(F,G)@]Z:;( Al o Bil|<1
where Aj = 1;B; =0and -G <F<G<1.
Remark 2. If f € S;,(F,G), then
G-F G-F

and

Al < JA+G)-(1+F) B/l < jJA+G)+ (A +F)

Lemma 5. [5] Let f € Ty be assumed as in (1.3) and

jA+G)-(1+F)
G-F

1Al +

feKTulF,G) e j(

where Ay = 1;B; =0and -G <F <G < 1.

Lemma 6. [6]Let f € H be assumed as in (1.2) then f € Ry(F,G) if
— [ j(1 +G) i(1+G)

Z(’ A+ I=—21B, |)

J
2\ G-F G-

where Aj = 1;B; =0and -G <F<G<1.

Lemma 7. Let f € Ty be assumed as in (1.3) and

f € RTu(F.G) & Z (

=2

1+G 1+G
J( )| A+ J( )|le <1,
G-F G-F

where Ay = 1;B; =0and -G < F <G < 1.

J+G)+(1 +F)|Bj|) <1

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)
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Remark 3. 1f f € Ru(F,G), then |A | < <475 and [B| < 755, k> 2.

Mittag-Leftler [10] defined a function E,(z) given by
(=) Zj
E.(2) = _ C, C, with R 0
() ;F(aj+1) (z€C, a€C, with Rea>0)

was commonly known as the Mittag-Leffler function. Wiman [11] defined a more general function
E, s generalizing E,(z) was given by

bl J
E,4() = JZ:(; m (z€C, a,f€C, with Rea >0, Re > 0.). (1.15)

Perceive that the function E,z comprises many well-known functions as its exceptional case, for
example, Eoo(z) = X707, E11(2) = €, Eip(x) = <2, Eg(2) = coshz, Ey (=7%) = cosz,
Es»(z?) = smhz JEoo(=7%) = 2 Eu(z) = 2[cosz”4+coshz”4] and E;(2) = [eZ P1e27 " cos( 7).
Itis of 1nterest to note that by fixinga = 1/2and g = 1 we get

E%’I(Z) =& -erfe(—z) = 1+ = Z n'((znll 1) 2+

The Mittag-Leffler function ascends logically in the elucidation of fractional order differential and
integral equations, and primarily in the investigations of fractional generalization of kinetic equation,
random walks, Lévy flights, super-diffusive transport and in the study of complex systems. Numerous
properties of Mittag-Leffler function and generalized Mittag-Lefller function can be found e.g., in
[12-15]. We prompt that Mittag-Leffler function E, 4(z) is not a member of A. Consequently, it is
probable to cogitate the following normalization of E, z(z) as below due to Bansal and Prajapat [13] :

N I'B) :
Eap(z) = A (B)Ep(z) = 2+ . 7,
g g 24 (i~ 1D +p)

it grasps for complex parameters z € C, a,f € C, with Rea > 0, Ref > 0.

In our present study, we shall confine our attention to the case of real-valued @, and z € D and
hence define a new linear operator based on convolution (or hadamard ) product as below:
For real parameters «,3,v,0 (a,B,v,0 ¢ {0,-1,-2,...}), we let

(9]

_ I'B) : _ I'(6) :
Gasl =2t ; faG-n+p° 0 0= LigG-n+9" (110
and define the convolution operator A (f) by
F@)=Af2) = h@)*Ep(z) +8(2) * E,5(2)
R B 1) RN o B £ O B
T LTG0t AT neat 0
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Inclusion relations between different subclasses of analytic and univalent functions by using
hypergeometric functions (see for example, [16-21]) and by the recent investigations related with
distribution series (see for example, [22-24] and references cited there in) were exclusively studied
in the literature. Lately, there has been triggering interest to investigate mapping properties and
inclusion results for the families of harmonic univalent functions including various linear and nonlinear
operators, (see [25-28]) and references cited there in) and also by Bessel functions studied by Porwal
[29]. Motivated by aforementioned works and recent study in [30], in our current paper, we launch
connections among the classes KOH, SEO, CIO_I, Su(F,G), and Ry(F, G) by applying the convolution
operator A related with Mittag-Lefller function.

2. Mapping properties of the class H, related with Mittag-Leffler function

In order to establish our main results, throughout this paper we let the following:

> e SR
Eupl2) = . i & =1 . 21
W= LG et 0= GG e @b
and
’ ]F(ﬁ) i—1 / N ]r(ﬁ)
& =1 7= 8 (D) -1= . 2.2
w,ﬁ(Z) + J:Zz TG -1 +ﬁ)z (r,ﬁ( ) s Ta(j—1)+p) (2.2)
7" N .](.] - l)r(ﬁ)
& = XTaG- 11 2
= j(i— G- 2T@)
& = -1+ -

Now by using Lemma 1, we establish connection between harmonic convex functions and Sy(F, G):

Theorem 2.1. Let a,,v,0, (a,B,v,0 ¢ {0,—1,-2,...}) are real. If for some -G < F < G < 1 and
the inequality

(1+ G)S”B(l) +(1+2G - F)E, ﬁ(l) (I + F)&E,p5(1)
+(1 + G)S;"é(l) +(1+ F)S;’d(l) -(1+F)&,5(1) <4G-F). (2.5)
is satisfied then A (K%) c S;(F,G).

Proof. Let f € K(})[ be as assumed in (1.2) with B; = 0. We requisite to show that A (f) = F(z) €
S;,(F, G), which is given by (1.17) with B; = 0. In view of Lemma 3, we need to assert that

w
(=D +p)

I'(6) |
FyG-D+6)

¥, = S L1+6) - <1+F>]|

<G-F

M8 N

[j(1+G)+(1 +F)]'

Il
NS}

J
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: i1 -1
In view of Lemma 1, we have A; = &= and B; = L, thus

I
Z(J+ DL +G) = (1 + F)] D

Y <z ;
j=2 F(a/(] - 1) +ﬁ)

(6
Fiy(G-D+9)

I')
Fa(j-1) +5)

+Z(j—1)[j<1+G>+<1+F>]

Z (P + DA +G) =+ DA+ F))

J=

I\JI_‘

I'(0)

+ Z{j(j— DA+G6G)+ (- DA +F)}m .

J=2

Expressing j> = j(j — 1) + j, we get

i, . o r(p)
Y, = 2{; G- +G)+ j(1+2G - F) (1+F)}F(oz(j— D+p)
I'(0)

+ Z{j(j—l)(l+G)+j(1+F)—(1+F)}W

j=2
1 o _JG = DIg) N JT(B)
-~ |la+06) + (142G~ F)
27 2.t

2 @(=D+h) j=D+p)
re =i~ DI)
- +F)Zr( G-D+p) +<1+G>;r(y(j— D+0)
iT(6) I'(9)
””F);r(y(j—l)m) )Zrm—l)m)

Now by using (2.1)—(2.3), we get
¥, [(1 + G)8”ﬁ(1) +(1+2G - F)[S;ﬁ(l) =11 =+ F)[Eup(1) - 1]
+ (1 +G)E 1)+ (1 + F)E (1) - 1) — (1 + F)[E,5(1) - 1]]

((1 +G)E, 4(1) + (1 +2G = F)E, 4(1) = [1 + F1E,5(1) + 2[F — G]
+ (1 +G)E 1)+ (1 + F)E, 5(1)— (1 + F)8y5(1))

but ¥, is bounded above by G — F, if and only if (2.5) holds. O

As in Theorem 2.1, using Lemma 2,we determine the analogous results for the classes STEO, C%
with S (F, G).
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Theorem 2.2. Let a,,v,0, (a,B,v,0 ¢ {0,—1,-2,...}) are real. If for some -G < F < G < 1 and
the inequality

2(1+ G)E (1) +[9G = 2F + 71E, 4(1) + [6G — SF + 1]E, 4(1)

— (1 + F)8,5(1) + 6(F = G) + 2(1 + G)E/45(1) + [3G + 2F + 518/4(1)
— (1+ P&, 4(1) + (1 + F)[&,5(1) < 12[G ~ F] (2.6)

is satisfied, then A(S]*_io) C §;(F,G) and A(C%) C §;(F,G).

Proof. Let f € § ;’0 (or CIO{) be as assumed in (1.2) with B; = 0. It is adequate to verify that A (f) =
¥ (2) € S;;(F, G). In sight of Theorem 3, it is profuse to show that

ST I'(B)
¥ = Y [U+G) —(1+F)] =—— A,
’ Z; TCTENET L
<y ['(6)
+ [jA+G)+(1+F)|————|Bj|<G-F.
; GG-n+5
By Lemma 2, we have A = (2"“6# and B; = (21_1# thus
1< .. . : I'(B)
v < ) Qi+ DG+ DA +G) -1+ F)] :
: 6 LZ; Ta(j -1 +p)
()

+ ;@j— DU= DA +6)+(+ Pl e

= . .
82;{2(1+G)]3+(3G—2F+1)12
=

I'®)
La(j-D+p)

Z{Z(1+G)j3+(2F—3G—l)j2
=

; (G—3F—2)j—(1+F)}

!
6
I
T(y(j—1)+6)’

Writing j° = j(j— 1)(j —2) +3j(j— 1)+ jand j2 = j(j — 1) + j, we have

; (G—3F—2)j+(1+F)}

\Pz =

21+ 3 UGB
=2

1
6 Fa(j -1 +p)

JG = DI(B)
L(a(j = 1) +p)

+ (9G —2F + 7)2
=2
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SEPA) )
" (6G—5F+1)]Z:2:r(a(j_1)+ﬁ)_(1+F);F(a(j—l)+,6’)

©\ iG= D= 2T©) © - DIG)
* Z(HG)Z ToG-1+0) +(3G+2F+5)Zr<y<j—1>+6>

T©) re)
- (1+F)ZF( G-D+o) " )Zr(yu—ma)

Now by using (2.1)—(2.4), we get

¥, = é {2(1 +G)E (1) +(9G = 2F + )& 4(1) + (6G — SF + D&, 4(1) — 1]
= (14 F)[&p(1) = 11+ 2(1 + G)E5(1) + (3G + 2F + 5)&]/5(1)
- (1+ P& (1) - 1]+ (1 + F)IE,5(1) - 1]}
_ ! {2(1 + G)EL(1) + (9G = 2F + N 4(1) + (6G — 5F + 1)E, 4(1)
- (1 + F)Eap(1) + 6(F — G) + 2(1 + G)ET(1) + (3G + 2F + 5)E7 5(1)
= (L+ F)E (1) + (1 + )&, s(1)}.
But ¥, confined above by G — F, if and only if (2.6) holds. O

Theorem 2.3. Let o,,v,0, (a,B,v,0 ¢ {0,—1,-2,...}) are real. If for some -G < F < G < 1 and
-G < F < G < 1 the inequality

(G-F) {[aa,ﬁ(l) —1] - &L (fol 20 gy - 1)
+8,5(1) + L ( N 8%5(z)dz)} <G-F, 2.7)

is satisfied then A (RT u(G,F)) C S;,(F,G).

Proof. Let f € RT y(G,F) be as assumed in (1.3). By virtue of Lemma 3, it is enough to show that
Y; < G - F, where

O |a)|
[(a(j -1 +p)
oo B
IFy(j—1)+06)

INgE

¥; = /A +G) -1+ F)]

Jj=2

+ Z J1+G)+ (1 +F)]
j=
By Remark 3, we have

¥; <(G-F)

i(l_l+F) r'(B)
G-F)I'(a(j-1+p)

=2

- 1+F [(5)
+Z(1+G—F)r<y(j—1>+6>}

J=1
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= (G-F)

i I'(B) _1+F i I'(B)

—(e(j-D+p) G-F L jla(j-1)+p)

Z I'(5) 1+FZ I'(6)
I'(y(j—1) +9) "G-F kL(y(j— 1) +06)

= (G-F) [{a(w(l) 1) - éti {fo %(I)dr— 1}

1+F !
+8&,5(1) + o F { fo 8%5(t)dt}l,

and W3 is bounded above by G — F, if and only if (2.7) holds. O

In next theorem, we establish association between A(Sj(F, G)) and S};(F, G).

Theorem 2.4. Let a,8,y,9, (a,B,y,0 ¢ {0,—-1,-2,...}) are real. If for some -G < F < G <1 the
inequality
Sop(1) +8E,5(1) <2 (2.8)

is satisfied, then A (S(F.G)) € Sy(F.G).

Proof. In sight of Lemma 3,it is profuse to show that

\P4 =

r
[j(1+G)—(1+F)] ®) A

. A
[(a(j = 1) + )

(s
[J(1+G)+(1+F)]F(( (1))+5)| i< (2.9)

N 1

.
1l
—_

By Remark 2, it follows that

- [(5)
T“S(G_F)Zrmu—mﬁ) 2. (y(j—1)+5>}

o > I)
=@ F)ZF(a(J—IHﬁ) Z;J [(yj+9)

= (G = F)[Eap(1) = 1+ E,5(1)].
But ¥, is bounded above by G — F, if and only if (2.8) holds. O
Now we attain a depiction for A which maps S7 y(F, G) on to itself.
Theorem 2.5. Let a,f,7v,06, (a,B,y,0 ¢ {0,-1,-2,...})are real and -G < F < G < 1. Then
A (ST (F,G)) c ST 1(F,G),

if and only if,
Eop(l) +8E,5(1) < 2.

Proof. The proof follows in lines similar to the proof of Theorem 2.4, so we overlook the details. O

AIMS Mathematics Volume 6, Issue 12, 13235-13246.
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3. Conclusions

In this investigation we obtained sufficient conditions and inclusion results for functions f € A to
be in the classes S};(F, G) and information regarding the images of functions by applying convolution
operator with Mittag-Lefller function. By specializing the parameter G =l and F =20-1(0<p < 1)
we can easily derive the inclusion results and mapping properties for the function classes f € Sy(0)
and f € Ry(o) in association with Mittag-Lefller function. By using the Alexander theorem f € Ky <
zf’ € Sy we can define Ku(F, G) whose members are given by (1.2), satisfying the condition

Dz f(2) . 1+ Fz}
Duf(2) 1+Gz|°

(KH(F,G):{f:h+§€H: (3.1)

By using the result given in Lemma 5,0ne can easily discuss the above results for f € Ky(F,G) on
lines similar to above theorems, we left this as exercise for interested readers.
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