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Abstract: In this article, the combined magnetohydrody-

namic heat, momentum and mass (species) transfer in

external boundary layer flow of Casson nanofluid from

an isothermal sphere surface with convective condition

under an applied magnetic field is studied theoretically.

The effects of Brownian motion and thermophoresis are

incorporated in the model in the presence of both heat

and nanoparticlemass transfer convective conditions. The

governing partial differential equations (PDEs) are trans-

formed into highly nonlinear, coupled, multi-degree non-

similar partial differential equations consisting of the mo-

mentum, energy and concentration equations via appro-

priate non-similarity transformations. These transformed

conservation equations are solved subject to appropri-

ate boundary conditions with a second order accurate

finite difference method of the implicit type. The influ-

ences of the emerging parameters i.e. magnetic parame-

ter (M), Buoyancy ratio parameter (N), Casson fluid pa-

rameter (β), Brownian motion parameter (Nb) and ther-

mophoresis parameter (Nt), Lewis number (Le), Prandtl

number (Pr) and thermal slip (ST) on velocity, tempera-

ture and nano-particle concentration distributions is illus-

trated graphically and interpreted at length.

Increasing viscoplastic (Casson) parameter decelerates

the flow and also decreases thermal and nano-particle

concentration. Increasing Brownian motion accelerates

the flow and enhances temperatures whereas it re-

duces nanoparticle concentration boundary layer thick-

ness. Increasing thermophoretic parameter increasing

momentum (hydrodynamic) boundary layer thickness and

nanoparticle boundary layer thickness whereas it re-

duces thermal boundary layer thickness. Increasing mag-

netohydrodynamic body force parameter decelerates the

flow whereas it enhances temperature and nano-particle

(species) concentrations. The study is relevant to enrobing

processes for electric-conductive nano-materials, of po-

tential use in aerospace and other industries.

Keywords: Magnetic nanofluid; Species diffusion; Steady

flow; Nanoparticles; Casson viscoplastic model; Keller-

box numerical method; Heat transfer

1 Introduction

The word “nanotechnology” was probably used for the

first time by the Japanese scientist Norio Taniguchi in 1974.

K. Eric Drexler is credited with initial theoretical work in

the field of nanotechnology. The termnanotechnologywas

used by Drexler in his 1986 book “Engines of creation: The

coming era of nanotechnology”. Drexler’s idea of nanotech-

nology is referred to as molecular nanotechnology [1]. Ear-

lier the great theoretical physicist Richard Feynman pre-

dictednanotechnology in 1959. In the 1980s and 1990snew

nano-materials were discovered and nanofluids emerged

as a result of the experiments intended to increase the ther-

mal conductivity of liquids. The birth of nanofluids is at-

tributed to the revolutionary idea of adding solid particles

into fluids to increase the thermal conductivity. This in-

novative idea was put forth by the Scottish physicist J.C.

Maxwell as early as 1873.

Nanofluids have evolved into a very exciting and rich

frontier in modern nano-technology. The excitement can

be attributed to the robustness of the concept of nanofluid

and the plethora of different applications of this technol-

ogy [2]. The properties of nanofluid need a lot of fine tun-

ing, many seemingly contradicting studies need clarity

and validation. Nanofluid have potential applications in

micro-electronics, fuel cells, rocket propulsion, and envi-

ronmental de-toxification, spray coating of aircraft wings,
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pharmaceutical suspensions, medical sprays etc. These

applications of nanofluid are largely attributable to the

enhanced thermal conductivity and Brownian motion dy-

namics which can be exploited to immense benefit. Nano-

material work efficiently as new energy materials since

they incorporate suspendedparticleswith size as the same

as or smaller than the size of de Broglie wave [3].

Recently, nanofluid are used in several engineering

and industrial applications, including, geothermal reser-

voir, thermal insulation, floor heating, cancer therapy, nu-

clear reactor cooling and process industries. The word

“nanofluid” was first presented by Choi and Eastman [4],

and concluded that heat transfer characteristics in com-

mon fluids can be increased via suspended nanoparticles.

Later on, Buongiorno [5] explored that out of seven slip

mechanisms, only Brownian diffusion and thermophore-

sis are important slip mechanism in nanofluid. Further,

based on his findings, he proposed a model for mass, mo-

mentum and heat transport in nanofluid, known as Buon-

giorno model. Several investigators utilized this model

whilst considered different types of base fluids. Kuznetsov

and Nield [6] studied the buoyancy effects in viscous

nanofluid induced due to vertical plate. They predicted

that heat transfer declined with increase in Brownian

motion and thermophoresis parameters. Abdul-Kahar et

al. [7] examined the effects of chemical reaction and

thermal radiation on boundary layer flow of Newtonian

nanofluid over stretching surface.

The study of MHD boundary layer flow of nanofluid

over wedge has gained considerable attention in the last

few years due to its increasing numbers of scientific, engi-

neering and industrial applications such as MHD pumps,

accelerators, generators, high temperature plasmas, cool-

ing of nuclear reactors, biological transportation and drug

delivery. The applied magnetic field is usually used in

controlling momentum and heat transfer in the boundary

layer flow of different fluids Turkyilmazoglu [8].

Due to its several practical applications, the bound-

ary layer flow of non-Newtonian fluids has gained an im-

mense interest in the recent years. It is well-known that

non-Newtonian fluids are usually effective in the manu-

facturing process of coated sheets, foods, plastic polymers

and blood Shit et al. [9]. The complexity of these fluids of-

fers a special challenge to engineers, physicist and math-

ematicians. It is also a common belief that the behavior of

theses fluids cannot be demonstrated by a single constitu-

tive relation Shehzad et al. [10]. For this purpose, several

models have been proposed of which Casson fluid model

Casson [11] is one of them. Casson fluid model is classified

as non-Newtonian fluid based on its solid and liquid in-

teraction behavior. Casson fluid possesses shear thinning

property, it behaves like solid if the applied shear stress

is lesser than yield stress, whereas if applied shear stress

exceeds from yield stress, it starts move Abdul Hakeem

et al. [12]. Moreover, Casson nanofluid has useful appli-

cations in polymer processes, manufacturing of plastic or

rubber sheets, chemical process equipment, food indus-

tries, advanced cooling systems, etc.

The analytical solution of Casson nanofluid due to

stretching surface in the presence of convective bound-

ary condition was presented by Nadeem et al. [13]. On

the other hand, (Imtiaz et al. [14] studied the mixed con-

vection flow of Casson nanofluid generated by stretching

cylinder under the influence of convective boundary con-

dition. Theynoticed thatmomentumboundary layer thick-

ness dropped with increment in Casson parameters. Iqbal

et al. [15] and Mahmood et al. [16] studied theoretically

the boundary layer flow of micro polar Casson fluid due to

stretching surface in thepresence andabsenceofmagnetic

field. The numerical solutions were obtained via Keller-

box and Runge-Kutta-Fehelberg schemes, respectively.

The above studies considered the nanofluid to be elec-

trically non-conducting. However new developments in

magnetic nanofluidhave emerged in recent yearswhich re-

quire magnetohydrodynamics to simulate the response of

nanofluid to applied magnetic fields. Representative sys-

tems in which such fluids arise include energy devices [17]

andmedical engineering [18, 19]. A number of researchers

have simulated various types of multi-physical hydrody-

namics problems of magnetic nanofluid in different con-

figurations, using a diverse range of numerical methods.

Qing et al. [20] studied entropy generation in magnetized

reactive radiative Casson nanofluid over a porous stretch-

ing/shrinking surface with successive linearization and

Chebyshev spectral collocation methods.The fuselages of

aircrafts andhulls of underwater vehicles can also bemod-

eled as cylindrical shells, and the control of vibrations and

sound radiation is important. In the low frequency region,

active control shows promise for the reduction of vibra-

tions and radiated sound. Very recently Janicki et al. [21]

studied that realization of the system for the active con-

trol of boundary conditions during the dynamic thermal

characterization of electronic components. Gao et al. [22]

were the first authors to introduce passive control of an

impinging jet for heat transfer enhancement. The authors

found that the addition of triangular tabs at the pipe exit

leads to a heat transfer enhancement with an excess of 25

%. Popiel and Boguslawski [23] confirmed that the con-

figuration of the nozzle exit is the most important factor

affecting the heat and mass transfer which occur in the

neighborhoodof the stagnationpoint. In spite of these first

very significant observations, there are only a few stud-
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ies dedicated to heat and mass transfer enhancement us-

ing jet passive control. Passive control techniques [24, 25],

which are commonly used to improve jet self-induction

andmixing processes. Soomro et al. [26] demonstrate Pas-

sive control of nanoparticle due to convective heat trans-

fer over a stretching surface. This recent studies (passive

boundary condition) provides one of the motivations for

the present research. Nadeemet al. [27, 28] presentedOpti-

mal Homotopy analysis solutions of micropolar flow in ro-

tating parallel plates. Nadeem et al. [29] explored the con-

vective heating effects of MHD oblique flow of a Walter’s

B fluid model. Rana et al. studied heat transference in vis-

coplastic boundary layer flow over a stretching sheet with

convective conditions [30, 31]. Mehmood et al. [32] investi-

gated the problem of oblique stagnation point flow using

Jeffery nanofluid as a rheological fluidmodel. Mehmood et

al. [33] utilized hematite as a heat enhancing agent to in-

vestigate the non-aligned stagnation flow and heat trans-

fer of an Ethylene-Glycol and water based nanofluid to-

wards an extending surface. They observed that Ethylene-

based nanofluids have higher local heat flux as compared

with water-based nanofluids. Mehmood et al. [34] studied

mixed convection and thermal radiation on non-aligned

Casson fluid over a stretching surface. Governing equa-

tions of the problem were solved by shooting method cou-

pled with Runge-Kutta- Fehlberg integration technique.

Nadeem et al. [35] deliberated steady stagnation point flow

of Jeffery fluid towards a stretching surface. Tabassum

et al. [36] explored the influence of temperature depen-

dent viscosity on Oblique flow of micro polar nanofluid.

Mahmood et al. [37] analyzed the micro rotation effects

on mixed convection flow induced by a stretching sheet.

They carried out numerical investigation by employing

Runge-Kutta Fehlberg scheme coupledwith shooting tech-

nique. M.R. Eid and K.L. Mahny [57], study the heat trans-

fer effects in Sisko nanofluid in the presence of porous

medium over a nonlinearly stretching sheet with heat gen-

eration/absorption effects. Eid, M.R. and S.R. Mishra [58],

analyzed the non-Newtonian fluid flow over a permeable

non-linear stretching vertical surface with heat and mass

fluxes. A.M. Rashad [59] studied the Impact of thermal

radiation on MHD slip flow of a Ferro fluid over a non-

isothermal wedge.

The above studies were generally confined to internal

transport. However external boundary layer convection

flows also find applications inmany technological systems

including enrobing polymer coating processes, heat ex-

changer design, solar collector architecture etc. Prasad et

al. [38] studied two-dimensional nanofluid boundary layer

flow from a spherical geometry embedded in porous me-

dia with a finite difference scheme. Subba Rao et al. [39]

investigated computationally the heat transfer in magne-

tized non-Newtonian fluid boundary layer flow from an

isothermal sphere with Soret and Dufour effects. Makanda

et al. [40] analyzed the radiative heat flux effect on hydro-

magnetic dissipative Casson slip fluid flow from a horizon-

tal circular cylinder in porous media. Beg et al. [41] de-

rived both homotopy andAdomian decomposition numer-

ical solutions for transient stagnation-point heat andmass

transfer from a rotating sphere.

The present work, motivated by applications in en-

robing dynamics of magnetic nanomaterial’s [42], exam-

ines theoretically and computationally the steady-state

transport phenomena in magnetohydrodynamic Casson

nanofluid flow from an isothermal sphere with ther-

mal slip. Mathematical modelling is developed to de-

rive the equations of continuity, momentum, energy and

species conservation, based on the Buongiorno nanofluid

model [6]. The partial differential boundary layer equa-

tions are then transformed into a system of dimension-

less non-linear coupled differential boundary layer equa-

tions, which is solved with the robust second order ac-

curate Keller box implicit finite difference method. The

present work extends significantly earlier simulations of

Hussain et al. [43] (who consider an exponentially stretch-

ing surface) to the case of a horizontal circular cylinder

with thermal slip condition. An extensive parametric anal-

ysis of the influence of a number of parameters (Brownian

motion, thermophoresis, Casson non-Newtonian, thermal

slip, stream wise coordinate) on thermo-diffusive charac-

teristics is conducted. The simulations are also relevant to

calendaring in pseudo-plastic materials fabrication [44].

2 Magnetohydrodynamic Nanofluid

Slip Model

We examine magneto-hydrodynamic (MHD) steady

buoyancy-driven convection heat transfer flow of Casson

nanofluid from an isothermal sphere in the presence of

thermal slip. Figure 1 shows the flow model and associ-

ated coordinate system. The nanofluid fluid is taken to

be incompressible and a homogenous dilute solution.

Magnetic field of strength, Bo, is applied normally to the

flow.

The x-coordinate ismeasured along the circumference

of the isothermal sphere from the lowest point and the

y-coordinate is measured normal to the surface, and r is

the radial distance from symmetric axis to the surface r =

a sin
(

x
a

)

and ‘a’ denoting the radius of the sphere. The

gravitational acceleration, g acts downwards. Both the
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Fig. 1: Physical model and coordinate system

isothermal sphere and the fluid are maintained initially at

the same temperature. Instantaneously they are raised to

a temperature Tw > T∞ i.e. the ambient temperature of the

fluidwhich remains unchanged. The appropriate constitu-

tive equations for the Casson non-Newtonian model are:

τij =







2

(

µB +
py√
2π

)

eij , π ≥ πc

2

(

µB +
py√
2πc

)

eij , π < πc
(1)

in which π = eijeij and eij is the (i,j)
th component of de-

formation rate, π denotes the product of the component of

deformation rate with itself, πc shows a critical value of

this product based on the non-Newtonian model, µB the

plastic dynamic viscosity of non-Newtonian fluid and py
the yield stress of fluid. The Casson model, although rela-

tively simple, is a robust viscoplastic model and describes

accurately the shear stress-strain behavior of certain in-

dustrial polymers in which flow is not possible prior to the

attainment of a critical shear stress. Unlike the Bingham

viscoplastic model which has a linear shear rate, the Cas-

son model has a non-linear shear rate. Casson fluid the-

ory was originally propounded to simulate shear thinning

(viscosity is reduced with greater shear rates) liquids con-

taining rod-like solids and is equally popular in analysing

inks, emulsions, food stuffs (chocolate melts), certain gels

and paints [45]. More recently it has been embraced in

advanced polymeric flow processing [46]. Incorporating

the Casson terms and applying the Buongiorno nanofluid

model, the governing conservation equations, in primitive

form, for the regime under investigation i.e. mass continu-

ity, momentum, energy and species, can be written as fol-

lows:
∂u
∂x

+
∂v
∂y

= 0 (2)

u
∂u
∂x

+ v
∂u
∂y

= ν

(

1 +
1

β

)

∂2u

∂y2
+ gΩ(T − T∞) sin

( x
a

)

+ gΩ*(C − C∞) sin
( x
a

)

−
σB0

2

ρ
u (3)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T

∂y2
+ τ

(

DB
∂C
∂y

∂T
∂y

+
DT
T∞

(

∂T
∂y

)2
)

(4)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C

∂y2
+
DT
T∞

∂2T

∂y2
(5)

The boundary conditions imposed at the sphere sur-

face and in the free stream are:

At y = 0, u = 0, v = 0, −k ∂T∂y = h1(Tf − T), C = Cw

As y → ∞, u → 0, v → 0, T → T∞ , C → C∞ (6)

Here u and v are the velocity components in the x-

and y- directions respectively, ν - the kinematic viscos-

ity of the electrically-conducting nanofluid, β - is the

non-Newtonian Casson parameter respectively, ρf is the

density of fluid, σ is the electrical conductivity of the

nanofluid, α- the thermal diffusivity of the nanofluid, T-

the temperature, respectively. Furthermore τ =
(ρc)p
(ρc)f

is the

ratio of nanoparticle heat capacity and the base fluid heat

capacity,DB is theBrowniandiffusion coefficient;DT is the

thermophoretic diffusion coefficient; k is the thermal con-

ductivity of nanofluid; Tw and C∞ are the ambient fluid

temperature and concentration, Cp is the specific heat ca-

pacity;Ω and Ω* are the coefficients of thermal expansion

and concentration expansion, respectively.

The stream function ψ is defined by the Cauchy-

Riemann equations, u =
∂ψ
∂y and v = −

∂ψ
∂x , and there-

fore, the continuity equation is automatically satisfied. In

order to write the governing equations and the bound-

ary conditions in dimensionless form, the following non-

dimensional quantities are introduced [39].

ξ =
x
a
, η = y

aGr
1/4, f (ξ , η) =

ψ

νξGr1/4
,

θ(ξ , η) =
T − T∞
Tw − T∞

, ϕ(ξ , η) =
C − C∞
Cw − C∞

(7)

The transformed boundary layer equations for mo-

mentum, energy and concentration emerge as:

(

1 + 1
β

)

f ′′′ + ff ′′ − f ′
2

+
sin ξ
ξ (θ + Nϕ) −Mf ′

= ξ
(

f ′ ∂f
′

∂ξ − f ′′ ∂f∂ξ

) (8)

θ′′

Pr
+ fθ′ + Nbϕ

′θ′ + Ntθ
′2 = ξ

(

f ′
∂θ
∂ξ

− θ′
∂f
∂ξ

)

(9)

ϕ′′

Le
+ fϕ′ +

1

Le
Nb
Nt
θ′′ = ξ

(

f ′
∂ϕ
∂ξ

− ϕ′ ∂f
∂ξ

)

(10)
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The corresponding transformed dimensionless

boundary conditions are:

At η = 0, f = 0, f ′ = 1, θ′ = −ST(1−θ(0)), ϕ = 1

As η → ∞, f ′ → 0, θ → 0, ϕ → 0 (11)

where Pr = γ/α is Prandtl number; M =
σB20a

2

γρGr1/2
is the mag-

netic parameter; Gr is a Grashof buoyancy number; Le =
γ
DB

is the Lewis number; Nt =
(ρc)pDT (Tw−T∞)

(ρc)f γ T∞
is the ther-

mophoresis parameter; Nb =
(ρc)pDB(Cw−C∞)

(ρc)f γ
is the Brown-

ian parameter; N = Ω*(Cw−C∞)
Ω(Tw−T∞)

is the concentration to ther-

mal buoyancy ratio parameter, ST =
(

h1
k

)

aGr−1/4 is the

thermal slip parameter. All other parameters are defined

in the nomenclature. The skin-friction coefficient (sphere

surface shear stress function), the local Nusselt number

(heat transfer rate) and Sherwood number (mass transfer

rate) can be defined using the transformations described

above with the following expressions:

1

2
Gr
−3

/4Cf =

(

1 +
1

β

)

ξf ′′(ξ , 0) (12)

Gr
−1

/4Nu = −θ′(ξ , 0) (13)

Gr
−1

/4Sh = −ϕ′(ξ , 0) (14)

3 Numerical Solution With Keller

Box Implict Method

The strongly coupled, nonlinear conservation equations

do not admit analytical (closed-form) solutions. An el-

egant, implicit difference finite difference numerical

method developed by Keller [47] is therefore adopted to

solve the general flow model defined by eqns. (8)–(10)

with boundary conditions (11). This method is especially

appropriate for boundary layer flow equations which are

parabolic in nature. It remains one of the most widely ap-

plied computational methods in viscous fluid dynamics.

Recent problemswhich have used Keller’smethod include

radiative magnetic forced convection flow [48], stretch-

ing sheet hydromagnetic flow [49],magnetohydrodynamic

Falkner-Skan “wedge” flows [50], magneto-rheological

flow from an extending cylinder [51], Hall magneto-gas dy-

namic generator slip flows [52] and radiative-convective

Casson slip boundary layer flows [53]. Keller’smethod pro-

vides unconditional stability and rapid convergence for

strongly non-linear flows. It involves four key stages, sum-

marized below.

1) Reduction of the Nth order partial differential equa-

tion system to N first order equations

2) Finite difference discretization of reduced equations

3) Quasilinearization of non-linear Keller algebraic

equations

4) Block-tridiagonal elimination of linearized Keller al-

gebraic equations

Stage 1: Reduction of the Nthorder partial differential

equation system to N first order equations

Equations (8)–(10) and (11) subject to the boundary

conditions are first written as a system of first-order equa-

tions. For this purpose, we reset eqns. (6)–(7) as a set of

simultaneous equations by introducing the new variables.

f ′ = u (15)

u′ = v (16)

θ = s (17)

s′ = t (18)

g′ = p (19)

(

1 +
1

β

)

v′ + (1 + ξ cot ξ )fv − u2 +
sin ξ
ξ

(s + Ng) −Mf ′

= ξ

(

u
∂u
∂ξ

− v
∂f
∂ξ

)

(20)

t′

Pr
+ (1 + ξ cot ξ )� + Nbϕ

′t + Nt t
2

= ξ

(

u
∂s
∂ξ

− t
∂f
∂ξ

)

(21)

p′

Le
+ (1 + ξ cot ξ )fp +

1

Le
Nb
Nt
t′ = ξ

(

u
∂g
∂ξ

− p
∂f
∂ξ

)

(22)

Where primes denote differentiation with respect to η.

In termsof thedependent variables, theboundary con-

ditions become

At η = 0 : u = 0, f = 0, s = 1, g = 1

At η → ∞ : u → 0, v → 0, s → 0, g → 0 (23)

Stage 2: Finite difference discretization of reduced

boundary layer equations
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Fig. 2: Keller Box element and boundary layer mesh

A two-dimensional computational grid (mesh) is im-

posed on the ξ-η plane as sketched in Fig. 2. The stepping

process is defined by:

η0 = 0, η j = η j−1 + hj ,

j = 1, 2, ..., J, ηJ ≡ η∞
(24)

ξ0 = 0, ξ n = ξ n−1 + kn , n = 1, 2, ..., N (25)

Where kn and hj denote the step distances in the ξ

(stream wise) and η (span wise) directions respectively.

If gnj denotes the value of any variable at
(

ηj , ξ
n
)

,

then the variables and derivatives of eqns. (15)–(22) at
(

ηj−1/2, ξ
n−1/2

)

are replaced by:

gn−1/2
j−1/2

=
1

4

(

gnj + g
n
j−1 + g

n−1
j + gn−1j−1

)

, (26)

(

∂g
∂η

)n−1/2

j−1/2

=
1

2hj

(

gnj − g
n
j−1 + g

n−1
j − gn−1j−1

)

, (27)

(

∂g
∂ξ

)n−1/2

j−1/2

=
1

2kn

(

gnj − g
n
j−1 + g

n−1
j − gn−1j−1

)

, (28)

The finite-difference approximation of eqns. (15)–(22)

for the mid-point
(

ηj−1/2, ξ
n
)

, below:

h−1j
(

f nj − f
n
j−1

)

= unj−1/2, (29)

h−1j
(

unj − u
n
j−1

)

= vnj−1/2, (30)

h−1j
(

gnj − g
n
j−1

)

= pnj−1/2, (31)

h−1j
(

θnj − θ
n
j−1

)

= tnj−1/2, (32)

(

1 +
1

β

)

(

vj − vj−1
)

+
(1 + α + ξ cot ξ ) hj

4

[(

fj + fj−1
) (

vj + vj−1
)]

−
(1 + α) hj

4

(

uj + uj−1
)2

+
Ahj
2

(

sj + sj−1 + N(gj + gj−1)
)

−
Mhj
2

(

uj + uj−1
)

−
αhj
2
f n−1j−1/2

(

vj + vj−1
)

+
αhj
2
vn−1j−1/2

(

fj + fj−1
)

= [R1]
n−1
j−1/2 (33)

1

Pr

(

tj − tj−1
)

+
(1 + α + ξ cot ξ ) hj

4

[(

fj + fj−1
) (

tj + tj−1
)]

−
αhj
4

[(

uj + uj−1
) (

sj + sj−1
)]

+ Nb
hj
4

[(

tj + tj−1
) (

pj + pj−1
)]

+ Nt
hj
4

(

tj + tj−1
)2

+
αhj
2
sn−1j−1/2

(

uj + uj−1
)

−
αhj
2
un−1j−1/2

(

sj + sj−1
)

−
αhj
2
f n−1j−1/2

(

tj + tj−1
)

+
αhj
2
tn−1j−1/2

(

fj + fj−1
)

= [R2]
n−1
j−1/2

(34)

1

Le

(

pj − pj−1
)

+
(1 + α + ξ cot ξ ) hj

4

[(

fj + fj−1
) (

pj + pj−1
)]

+
B
Le

(

tj − tj−1
)

−
αhj
4

[(

uj + uj−1
) (

gj + gj−1
)]

+
αhj
2
sn−1j−1/2

(

uj + uj−1
)

−
αhj
2
un−1j−1/2

(

gj + gj−1
)

−
αhj
2
f n−1j−1/2

(

pj + pj−1
)

+
αhj
2
pn−1j−1/2

(

fj + fj−1
)

= [R2]
n−1
j−1/2

(35)

Where the following notation applies:

α =
ξ n−1/2

kn
, A =

sin
(

ξ n−1/2
)

ξ n−1/2
, B =

Nt
Nb

(36)

[R1]
n−1
j−1/2 = −hj











(

1 + 1
β

)(

vj−vj−1
hj

)

+ (1 − α)
(

uj−1/2
)2

+ (1 − α + ξ cot ξ )
(

fj−1/2vj−1/2

)

+A
(

sj−1/2 + Ngj−1/2

)

−M
(

uj−1/2
)











(37)

[R2]
n−1
j−1/2

= −hj











1
Pr

(

tj−tj−1
hj

)

+ (1 − α + ξ cot ξ )
(

fj−1/2tj−1/2

)

+α
(

uj−1/2sj−1/2

)

− Nb
(

pj−1/2tj−1/2

)

−Nt
(

tj−1/2

)2











(38)
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[R3]
n−1
j−1/2

= −hj





1
Le

(

pj−pj−1
hj

)

+ (1 − α + ξ cot ξ )
(

fj−1/2pj−1/2

)

+ B
Le

(

tj−tj−1
hj

)

+ α
(

uj−1/2gj−1/2

)





(39)

The boundary conditions are

f n0 = un0 = 0, θn0 = 1, unJ = 0, vnJ = 0,

θnJ = 0, φn0 = 1, φnJ = 0
(40)

Stage 3: Quasilinearization of non-linear Keller alge-

braic equations

If we assume f n−1j−1 , un−1j−1 , v
n−1
j−1 , p

n−1
j−1 , s

n−1
j−1 , t

n−1
j−1 , to

be known for

Equations (30) – (36) comprise a system of

6J+6 equations for the solution of 6J+6 unknowns

f nj , u
n
j , v

n
j , p

n
j , s

n
j , t

n
j ,, j = 0, 1, 2 . . . , J. This non-linear

system of algebraic equations is linearized by means of

Newton’s method as elaborated by Keller [47] and recently

this method is used by Subba Rao et al., [54, 55].

Stage 4: Block-tridiagonal elimination of linear Keller

algebraic equations

The linearized version of eqns. (30) – (36) can now be

solved by the block-eliminationmethod, since they possess

a block-tridiagonal structure since it consists of block ma-

trices. The complete linearized system is formulated as a

block matrix system, where each element in the coefficient

matrix is a matrix itself. Then, this system is solved using

the efficient Keller-box method. The numerical results are

affected by the number of mesh points in both directions.

After some trials in the η-direction (radial coordinate) a

larger number of mesh points are selected whereas in the

ξ direction (tangential coordinate) significantly less mesh

points are utilized. ηmax has been set at 12 and this defines

an adequately large value at which the prescribed bound-

ary conditions are satisfied. ξmax is set at 1.0 for this flow

domain. Mesh independence testing is also performed to

ensure that the converged solutions are correct. The com-

puter program of the algorithm is executed in MATLAB

running on a PC.

4 Keller Box Method (KBM)

Numerical Results and Discussion

Comprehensive solutions have been obtained with KBM

and are presented in Figs. 3 to 11. The numerical problem

comprises three dependent thermo-fluid dynamic vari-

ables (f , θ, ϕ) and seven multi-physical control parame-

ters, Pr, Le, β, M, Nb, Nt, ST ,. The influence of stream wise

space variable ξ is also investigated. In the present com-

putations, the following default parameters are prescribed

(unless otherwise stated): Pr= 7.0, Le= 5.0, β = 1.5,M=0.01,

Nb = 0.02 = Nt, ST = 1.0, ξ = 1.0.

Figs. 3(a–c) illustrate the effect of the Casson vis-

coplastic parameter, β on velocity
(

f ′
)

, temperature (θ)

and concentration (ϕ) profiles. With increasing, β values,

initially close to the sphere surface, Fig. 3(a) shows that

the flow is strongly decelerated. However, further from the

surface, the converse response is induced in the flow. This

may be related to the necessity for a yield stress to be at-

tained prior to viscous flow initiation in viscoplastic shear-

thinning nanofluids. Within a short distance of the sphere

surface, however a strong acceleration is generated with

greater Casson parameter. This serves to decreasemomen-

tum boundary layer thickness effectively. The viscoplas-

tic parameter modifies the shear term f /// in the momen-

tum boundary layer equation (8) with an inverse factor,

1/β, and effectively assists momentum diffusion for β >1.

This leads to a thinning in the hydrodynamic boundary

layer and associated deceleration. The case β = 0 which

corresponds to a Newtonian fluid is not considered. An in-

crease in viscoplastic parameter however decreases both

temperature and nano-particle concentration magnitudes

throughout the boundary layer, although the reduction is

relatively weak. Thermal and nanoparticle concentration

boundary layer thickness are both suppressedwith greater

viscoplasticity of the nanofluid.

Figs. 4(a–c) depicts the effect of Prandtl number (Pr)

on the velocity
(

f ′
)

, temperature (θ) and nanoparticle

concentration(ϕ)distributions with transverse coordinate

(η). Fig. 4(a) shows that with increasing Prandtl number

there is a strong deceleration in the flow. The Prandtl num-

ber expresses the ratio ofmomentumdiffusion rate to ther-

mal diffusion rate. When Pr is unity both momentum and

heat diffuse at the same rate and the velocity and ther-

mal boundary layer thicknesses are the same. With Pr >

1 there is a progressive decrease in thermal diffusivity rel-

ative to momentum diffusivity and this serves to retard the

boundary layer flow.Momentumboundary layer thickness

therefore grows with Prandtl number on the surface of

the isothermal sphere. It is also noteworthy that the peak

velocity which is achieved close to the sphere surface is

systematically displaced closer to the surface with greater

Prandtl number. The asymptotically smooth profiles of ve-

locity which decays to zero in the free stream, also con-

firm the imposition of an adequately large infinity bound-

ary condition. Fig. 4(b) indicates that increasing Prandtl

number also suppresses temperatures in the boundary

layer and therefore reduces thermal boundary layer thick-

ness. Prandtl number is inversely proportional to thermal
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(a)

(b)

(c)

Fig. 3: Effect of β on (a) velocity profiles, (b) temperature profiles, (c)

concentration profiles

(a)

(b)

(c)

Fig. 4: Effect of Pr on (a) velocity profiles, (b) temperature profiles,

(c) concentration profiles
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(a)

(b)

(c)

Fig. 5: Effect of Le on (a) velocity profiles, (b) temperature profiles,

(c) concentration profiles

(a)

(b)

(c)

Fig. 6: Effect of M on (a) velocity profiles, (b) temperature profiles,

(c) concentration profiles
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conductivity of the viscoplastic nanofluid. Higher thermal

conductivity implies lower Prandtl number and vice versa.

With greater Prandtl number, thermal conductivity is re-

duces and this inhibits thermal conduction heat transfer

which cools the boundary layer.

The monotonic decays in Fig. 4(b) are also char-

acteristic of the temperature distribution in curved sur-

face boundary layer flows. Inspection of Fig. 4(c) re-

veals that increasing Prandtl number strongly elevates

the nano-particle concentration magnitudes. Infact a con-

centration overshoot is induced near the sphere sur-

face. Therefore while thermal transport is reduced with

greater Prandtl number, species diffusion is encouraged

andnano-particle concentration boundary layer thickness

grows.

Figs. 5(a–c) illustrate the evolution of velocity, tem-

perature and concentration functions with a variation in

the Lewis number, is depicted. Lewis number is the ratio

of thermal diffusivity to mass (nano-particle) species dif-

fusivity. Le = 1 which physically implies that thermal diffu-

sivity of the nanofluid and species diffusivity of the nano-

particles are the same and both boundary layer thick-

nesses are equivalent. For Le < 1, mass diffusivity exceeds

thermal diffusivity and vice versa for Le > 1. Both cases are

examined in Figs. 5(a–c). In Fig. 5(a), a consistently weak

decrease in velocity accompanies an increase in Lewis

number. Momentum boundary layer thickness is therefore

increased with greater Lewis number. This is sustained

throughout the boundary layer. Fig. 5(b) shows that in-

creasing Lewis number also depresses the temperature

magnitudes and therefore reduces thermal boundary layer

thickness. Therefore judicious selection of nano-particles

during doping of polymers has a pronounced influence on

velocity (momentum) and thermal characteristics in en-

robing flow, since mass diffusivity is dependent on the na-

ture of nano-particle species in the base fluid. Fig. 5(c)

demonstrates that a more dramatic depression in nano-

particle concentration results from an increase in Lewis

number over the same range as Figs. 5(a, b). The concen-

tration profile evolves from approximately linear decay to

strongly parabolic decay with increment in Lewis number.

Figs. 6(a–c) exhibit the profiles for velocity, tempera-

ture and concentration, respectively with increasing mag-

netic body force parameter,M. M =
σB20a

2

γρGr1/2
defines the rel-

ative influence of magnetic Lorentzian drag force to vis-

cous hydrodynamic force in the flow. With M < 1 viscous

force dominates the magnetic force and the magnetohy-

drodynamic effect is weak. However Fig. 6(a) shows that

even a weak increase inM induces a marked deceleration

in the boundary layer flow and simultaneously thickens

(a)

(b)

(c)

Fig. 7: Effect of Nb on (a) velocity profiles, (b) temperature profiles,

(c) concentration profiles
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(a)

(b)

(c)

Fig. 8: Effect of Nt on (a) velocity profiles, (b) temperature profiles,

(c) concentration profiles

(a)

(b)

(c)

Fig. 9: Effect of ST on (a) velocity profiles, (b) temperature profiles,

(c) concentration profiles
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themomentumboundary layer. Reverse flowor separation

is never induced as testified to by the consistently posi-

tive values of velocity everywhere transverse to the sphere

surface. This concurs with many other studies of magne-

tized nanofluid convection since the radial magnetic field

acts to generate a perpendicular drag force which acts

to decelerate the flow. Figs. 6(b) and 6(c) indicate that

the dominant effect of greater magnetic parameter is to

elevate both temperatures and nano-particle concentra-

tions. The supplementary work expended in dragging the

viscoplastic nanofluid against the action of the magnetic

field manifests in kinetic energy dissipation. This ener-

gizes the boundary layer since the kinetic energy is dis-

sipated as thermal energy, and this further serves to agi-

tate improved species diffusion. As a result both thermal

and nano-particle (species) concentration boundary layer

thicknesses are increased.

Figs. 7(a–c) depict the response in velocity
(

f ′
)

, tem-

perature (θ) and concentration (ϕ) functions to a variation

in the Brownian motion parameter (Nb). Increasing Brow-

nian motion parameter physically correlates with smaller

nanoparticle diameters. Smaller values of Nb correspond-

ing to larger nanoparticles, and imply that surface area

is reduced which in turn decreases thermal conduction

heat transfer to the sphere surface. This coupled with en-

hanced macro-convection within the nanofluid energizes

the boundary layer and accelerates the flow as observed

in Fig. 7(a). Similarly the energization of the boundary

layer elevates thermal energy which increases tempera-

ture in the viscoplastic nanofluid. Fig. 7(c) however indi-

cates that the contrary response is computed in the nano-

particle concentrationfield.WithgreaterBrownianmotion

number species diffusion is suppressed. Effectively there-

fore momentum and nanoparticle concentration bound-

ary layer thickness is decreased whereas thermal bound-

ary layer thickness is increased with higher Brownian mo-

tion parameter values.

Figs. 8(a–c) illustrates the effect of the thermophore-

sis parameter (Nt) on the velocity
(

f ′
)

, temperature (θ)

and concentration (ϕ) distributions, respectively. Ther-

mophoretic migration of nano-particles results in exac-

erbated transfer of heat from the nanofluid regime to

the sphere surface. This de-energizes the boundary layer

and inhibits simultaneously the diffusion of momentum,

manifesting in a reduction in velocity i.e. retardation in

the boundary layer flow and increasing momentum (hy-

drodynamic) boundary layer thickness, as computed in

Fig. 8(a). Temperature is similarly decreased with greater

thermophoresis parameter (Fig. 8(b)). Conversely there is

a substantial enhancement in nano-particle concentration

(and species boundary layer thickness)with greaterNt val-

(a)

(b)

(c)

Fig. 10: Effect of N on (a) velocity profiles, (b) temperature profiles,

(c) concentration profiles
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(a)

(b)

(c)

Fig. 11: Effect of ξ on (a) velocity profiles, (b) temperature profiles,

(c) concentration profiles

ues. Similar observations have been made by Kunetsov

and Nield [14] and Ferdows et al. [19] for respectively, both

non-conducting Newtonian and electrically-conducting

Newtonian flows.

Figs. 9(a–c) illustrate the variation of velocity, tem-

perature and nano-particle concentration with transverse

coordinate (η), for different values of thermal slip pa-

rameter (ST). Thermal slip is imposed in the augmented

wall boundary condition in eqn. (11). With increasing ther-

mal slip less heat is transmitted to the fluid and this de-

energizes the boundary layer. This also leads to a gen-

eral deceleration as observed in Fig. 9(a) and also to a

more pronounced depletion in temperatures in Fig. 9(b),

in particular near the wall. The effect of thermal slip is

progressively reduced with further distance from the wall

(curved surface) into the boundary layer and vanishes

some distance before the free stream. It is also appar-

ent from Fig. 9(c) that nanoparticle concentration is re-

duced with greater thermal slip effect. Momentum bound-

ary layer thickness is therefore increased whereas thermal

and species boundary layer thickness are depressed. Evi-

dently the non-trivial responses computed in figs. 9a-c fur-

ther emphasize the need to incorporate thermal slip effects

in realistic nanofluid enrobing flows.

Figs. 10(a–c) present the effects of the buoyancy ratio

N on the velocity, temperature and nano-particle concen-

tration profiles. In general, increases in the value of N have

the prevalent to cause more induced flow along the cone

surface. This behavior in the flow velocity increases in the

fluid temperature and volume fraction species as well as

slight decreased in the thermal and species boundary lay-

ers thickness as N increases.

Figs. 11(a–c) present the distributions for velocity,

temperature and concentration fields with streamwise co-

ordinate ξ , for the viscoplastic nanofluid flow. Increasing

ξ values correspond to progression around the periphery

of the sphere, from the leading edge (ξ =0). As ξ increases,

there is a weak deceleration in the flow (Fig. 11(a)),which is

strongest nearer the sphere surface and decays with dis-

tance into the free stream. Conversely there is a weak ele-

vation in temperatures (Fig. 11(b)) and nano-particle con-

centration magnitudes (Fig. 11(c)) with increasing stream

wise coordinate.
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5 Conclusions

A theoretical study has been conducted to simulate the

magnetohydrodynamics viscoplastic nanofluid boundary

layer flow in enrobingprocesses froman isothermal sphere

with thermal slip using the Buongiorno formulation. The

transformedmomentum, heat and species boundary layer

equations have been solved computationally with Keller’s

finite difference method. The present study has shown

that:

1. Increasing viscoplastic (Casson) parameter deceler-

ates the flow and also decreases thermal and nano-

particle concentration boundary layer thickness.

2. Increasing Prandtl number retards the flow and also

decreases temperatures and nano-particle concen-

tration values.

3. Increasing stream wise coordinate decelerates the

flow whereas it enhances temperatures and species

(nano-particle) concentrations.

4. Increasing thermal slip strongly reduces velocities,

temperatures and nano-particle concentrations.

5. Increasing Brownian motion accelerates the flow

and enhances temperatures whereas it reduces

nanoparticle concentration boundary layer thick-

ness.

6. Increasing thermophoretic parameter increasing

momentum (hydrodynamic) boundary layer thick-

ness and nanoparticle boundary layer thickness

whereas it reduces thermal boundary layer thick-

ness.

7. Increasing magnetohydrodynamic body force pa-

rameter decelerates the flow whereas it enhances

temperature and nano-particle (species) concentra-

tions.

The current study has explored an interesting viscoplas-

tic model for electro-conductive nano materials which are

currently of interest in aerospace coating applications.

Time-dependent effects have been neglected. Future stud-

ies will therefore address transient enrobing viscoplas-

tic nanofluid transport phenomena for alternative geome-

tries (wedges, cones, Cylinder, Plates), also of interest in

aerospacematerials fabrication andwill be communicated

imminently.

Nomenclature

a Radius of the sphere (m)

B0 constant magnetic field (Tesla)

cp specific heat at constant pressure (J/kg K)

C dimensional concentration

Cf skin friction coefficient

DB Brownian diffusion coefficient (m2/s)

DT thermophoretic diffusion coefficient (m2/s)

f non-dimensional stream function

g acceleration due to gravity

Le Lewis number (m2/s)

M magnetic field parameter

Nb Brownian motion parameter

Nt thermophoresis parameter

Nu ocal Nusselt number

Sh Sherwood number

Pr Prandtl number

ST thermal slip (jump) parameter

T temperature

u, v non-dimensional velocity components along the x-

and y-directions, respectively

x stream wise coordinate

y transverse coordinate

Greek symbols

α thermal diffusivity

β non-Newtonian Casson parameter

η dimensionless transverse coordinate

ν kinematic viscosity (m2/s)

θ non-dimensional temperature

ρ density of nanofluid (kg/m3)

σ electrical conductivity of nanofluid (Siemens/meter)

ξ dimensionless steam wise coordinate

ψ dimensionless stream function

Subscripts

w conditions on the wall

∞ free stream conditions
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