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ABSTRACT 

In this article, we investigate the nonlinear steady boundary layer flow and heat transfer of an incompressible 

Tangent Hyperbolicnon-Newtonian fluid from a vertical porous plate.  The transformed conservation 

equations are solved numerically subject to physically appropriate boundary conditions using a second-order 

accurate implicit finite-difference Keller Box technique.  The numerical code is validated with previous 

studies.  The influence of a number of emerging non-dimensional parameters, namely the Weissenberg 

number (We), the power law index (n), Prandtl number (Pr), Biot number (), and dimensionless local suction 

parameter()on velocity and temperature evolution in the boundary layer regime are examined in detail. 

Furthermore the effects of these parameters on surface heat transfer rate and local skin friction are also 

investigated.  Validation with earlier Newtonian studies is presented and excellent correlation achieved.  It is 

found that velocity, Skin friction and Nusselt number (heat transfer rate) are reduced with increasing 

Weissenberg number (We), whereas, temperature is enhanced. Increasing power law index (n) enhances 

velocity and Nusselt number (heat transfer rate) but temperature and Skin friction decrease.  An increase in 

the Biot number () is observed to enhance velocity, temperature, local skin friction and Nusselt number. An 

increasing Prandtl number, Pr, is found to decrease both velocity, temperature and skin friction but elevates 

heat transfer rate (Nusselt number). The study is relevant to chemical materials processing applications. 

Keywords: Non-newtonian fluid; Tangent hyperbolic fluid; Boundary layers; Skin friction; Nusselt number; 

Weissenberg number; The power law index; Biot number. 

NOMENCLATURE 

B0 constant Magnetic Field Intensity 

Cf skin friction coefficient 

f non-dimensional stream function 

Gr Grashof number 

g acceleration due to gravity 

k thermal conductivity of fluid 

n power law index 

Nu local Nusselt number 

Pr Prandtl number 

T temperature of the fluid 

u, v non-dimensional velocity components 

along the x- and y- directions, 

respectively 

V velocity vector 

V0 transpiration velocity 

We Weissenberg number 

x stream wise coordinate 

y transverse coordinate 

  thermal diffusivity 

  dimensionless radial coordinate  

  dynamic viscosity 

 kinematic viscosity

 non-dimensional temperature

  density of non-Newtonian fluid 

  local suction parameter 

  dimensionless stream function 

  Biot number 

  time dependent material constant 

  second invariant strain tensor 

Subscripts 

w surface conditions on plate (wall) 

 free stream conditions 
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1. INTRODUCTION 

The dynamics of non-Newtonian fluids has been a 

popular area of research owing to ever-increasing 

applications in chemical and process engineering.  

Examples of such fluids include coal-oil slurries, 

shampoo, paints, clay coating and suspensions, 

grease, cosmetic products, custard, physiological 

liquids (blood, bile, synovial fluid) etc. The 

classical equations employed in simulating 

Newtonian viscous flows i.e. the Navier–Stokes 

equations fail to simulate a number of critical 

characteristics of non-Newtonian fluids. Hence 

several constitutive equations of non-Newtonian 

fluids have been presented over the past decades. 

The relationship between the shear stress and rate of 

strain in such fluids are very complicated in 

comparison to viscous fluids. The viscoelastic 

features in non-Newtonian fluids add more 

complexities in the resulting equations when 

compared with Navier–Stokes equations.  

Significant attention has been directed at 

mathematical and numerical simulation of non-

Newtonian fluids. Recent investigations have 

implemented, respectively the Casson model 

(2013), second-order Reiner-Rivlin differential fluid 

models (2013), power-law nanoscale models 

(2013), Eringen micro-morphic models (2011) and 

Jefferys viscoelastic model (2013). 

Convective heat transfer has also mobilized 

substantial interest owing to its importance in 

industrial and environmental technologies 

including energy storage, gas turbines, nuclear 

plants, rocket propulsion, geothermal reservoirs, 

photovoltaic panels etc.  The convective boundary 

condition has also attracted some interest and this 

usually is simulated via a Biot number in the wall 

thermal boundary condition. Recently, Ishak 

(2010) discussed the similarity solutions for flow 

and heat transfer over a permeable surface with 

convective boundary condition. Aziz (2009) 

provided a similarity solution for laminar thermal 

boundary layer over a flat surface with a 

convective surface boundary condition. Aziz 

(2010) further studied hydrodynamic and thermal 

slip flow boundary layers with an iso-flux thermal 

boundary condition. The buoyancy effects on 

thermal boundary layer over a vertical plate 

subject a convective surface boundary condition 

was studied by Makinde and Olanrewaju (2010). 

Further recent analyses include Makinde and Aziz 

(2010). Gupta et al. (2013) used a variational 

finite element to simulate mixed convective-

radiative micropolar shrinking sheet flow with a 

convective boundary condition. Makinde et al. 

(2012) studied cross diffusion effects and Biot 

number influence on hydromagnetic Newtonian 

boundary layer flow with homogenous chemical 

reactions and MAPLE quadrature routines. Bég et 

al. (2013) analyzed Biot number and buoyancy 

effects on magnetohydrodynamic thermal slip 

flows. Subhashini et al. (2011) studied wall 

transpiration and cross diffusion effects on free 

convection boundary layers with a convective 

boundary condition.  

Convective boundary-layer flows are often 

controlled by injecting or withdrawing fluid through 

a porous bounding heat surface. This can lead to 

enhanced heating or cooling of the system and can 

help to delay the transition from laminar to 

turbulent flow.  The case of uniform suction and 

blowing through an isothermal vertical wall was 

treated first by Sparrow and Cess (1961); they 

obtained a series solution which is valid near the 

leading edge. This problem was considered in more 

detail by Merkin (1972), who obtained asymptotic 

solutions, valid at large distances from the leading 

edge, for both the suction and blowing. Using the 

method of matched asymptotic expansion, the next 

order corrections to the boundary-layer solutions for 

this problem were obtained by Clarke (1973), who 

extended the range of applicability of the analyses 

by not invoking the usual Boussinesq 

approximation. The effect of strong suction and 

blowing from general body shapes which admit a 

similarity solution has been given by Merkin 

(1975). A transformation of the equations for 

general blowing and wall temperature variations has 

been given by Vedhanayagam et al. (1980). The 

case of a heated isothermal horizontal surface with 

transpiration has been discussed in some detail first 

by Clarke and Riley (1975, 1976) and then more 

recently by Lin and Yu (1988). Hossain et al. 

(2001) studied the effect of radiation on free 

convection flow with variable viscosity from a 

vertical porous plate. 

An interesting non-Newtonian model developed for 

chemical engineering systems is the Tangent 

Hyperbolic fluid model. This rheological model has 

certain advantages over the other non-Newtonian 

formulations, including simplicity, ease of 

computation and physical robustness. Furthermore 

it is deduced from kinetic theory of liquids rather 

than the empirical relation. Several communications 

utilizing the Tangent Hyperbolic fluid model have 

been presented in the scientific literature. There is 

no single non-Newtonian model that exhibits all the 

properties of non-Newtonian fluids. Among several 

non-Newtonian fluids, hyperbolic tangent model is 

one of the non-Newtonian models presented by 

Popand Ingham (2001). Nadeem et al. (2009) made 

a detailed study on the peristaltic transport of a 

hyperbolic tangent fluidin an asymmetric channel. 

Nadeem and Akram (2011) investigated the 

peristaltic flow of a MHD hyperbolic tangent fluid 

in a vertical asymmetric channel with heat transfer. 

Akram and Nadeem (2012) analyzed the influence 

of heat and mass transfer on the peristaltic flow of a 

hyperbolic tangent fluid in an asymmetric channel.  

Very recently, Akbar et al. (2013) analyzed the 

numerical solutions of MHD boundary layer flow of 

tangent hyperbolic fluid on a stretching sheet. 

The objective of the present study is to investigate 

the laminar boundary layer flow and heat transfer 

of a Tangent Hyperbolic non-Newtonian fluid past 

a vertical porous plate. The non-dimensional 

equations with associated dimensionless boundary 

conditions constitute a highly nonlinear, coupled 

two-point boundary value problem.  Keller’s 

implicit finite difference “box” scheme is 
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, and therefore, the 

continuity equation is automatically satisfied. In 

order to render the governing equations and the 

boundary conditions in dimensionless form, the 

following non-dimensional quantities are 

introduced. 
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All terms are defined in the nomenclature.  In view 

of the transformation defined in eqn. (8), the 

boundary layer eqns. (5)-(7) are reduced to the 

following coupled, nonlinear, dimensionless partial 

differential equations for momentum and energy for 

the regime: 

     21 ''' 3 '' 2 '

'
'' ''' ' ''e

n f f f f

f f
nW f f f f



 
 

   

  
      

                (9) 

 ''
3 ' ' '

Pr

f
f f

    
 

  
      

                (10) 

The transformed dimensionless boundary 

conditions are: 

'
0, 0, ' 0, 1At f f

 


    

, ' 0, 0As f                 (11) 

Here primes denote the differentiation with respect 

to  and 1/4w
x

xh
Gr

k
   is the Biot number.  The 

wall thermal boundary condition in (11) 

corresponds to convective cooling. The skin-friction 

coefficient (shear stress at the plate surface) and 

Nusselt number (heat transfer rate) can be defined 

using the transformations described above with the 

following expressions.   

   23/41
1 ''( ,0) ''( ,0)

4 2
f e

n
Gr C n f W f      

                                             (12) 

1/4 '( ,0)Gr Nu                   (13) 

In the vicinity of the lower stagnation point,  

0and the boundary layer equations (9) – 

(10)contract to a system of ordinay differential 

equations: 

   21 ''' 3 '' 2 ' '' ''' 0en f ff f nW f f        

                (14) 

''
3 ' 0

Pr
f

                   (15) 

The general model is solved using a powerful and 

unconditionally stable finite difference technique 

introduced by Keller (1978). The Keller-box 

method has a second order accuracy with arbitrary 

spacing and attractive extrapolation features. 

4. NUMERICAL SOLUTION WITH 

KELLER BOX IMPLICT 

METHOD 

The Keller-Box implicit difference method is 

implemented to solve the nonlinear boundary value 

problem defined by eqns. (9)–(10) with boundary 

conditions (11). This technique, despite recent 

developments in other numerical methods, remains a 

powerful and very accurate approach for parabolic 

boundary layer flows. It is unconditionally stable and 

achieves exceptional accuracy (1978). Recently this 

method has been deployed in resolving many 

challenging, multi-physical fluid dynamics problems. 

These include hydromagnetic Sakiadis flow of non-

Newtonian fluids (2009), nanofluid transport from a 

stretching sheet (2011), radiative rheological magnetic 

heat transfer (2009), water hammer modelling (2005), 

porous media convection (2008) and magnetized 

viscoelastic stagnation flows (2009). The Keller-Box 

discretization is fully coupled at each step which 

reflects the physics of parabolic systems – which are 

also fully coupled. Discrete calculus associated with 

the Keller-Box scheme has also been shown to be 

fundamentally different from all other mimetic 

(physics capturing) numerical methods, as elaborated 

by Keller [31]. The Keller Box Scheme comprises four 

stages. 

1) Reduction of the Nth order partial differential 

equation system to N first order equations. 

2) Finite Difference Discretization. 

3) Quasilinearization of Non-Liner Keller Algebraic 

Equations. 

4) Block-Tridiagonal Elimination of Linear Keller 

Algebraic Equations. 

5. NUMERICAL RESULTS AND 

INTERPRETATION  

Comprehensive solutions have been obtained and 

are presented in Tables 1-4 and Figs. 2 - 7. The 

numerical problem comprises two independent 

variables (,), two dependent fluid dynamic 

variables (f,) and five thermo-physical and body 

force control parameters, namely, We, n, γ, Pr, . 

The following default parameter values i.e. We = 

0.3, n = 0.3, γ= 0.2, Pr = 0.71, = 1.0are prescribed 

(unless otherwise stated). Furthermore the influence 

of local suction parameter on heat transfer 

characteristics is also investigated. 

In Table 1, we present the influence of the 

Weissenberg number (We) on the Skin friction and 

heat transfer rate, along with a variation in  . 

Increasing We is found to reduce the Skin friction. 

For large values of We, the skin friction is negative. 

And increasing We, also reduces the heat transfer  
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Table 1 Values of Cf and Nu for different We and (Pr = 0.71, n = 0.3,  = 0.2) 

We 

 = 1.0  = 2.0  = 3.0 

Cf Nu Cf Nu Cf Nu 

0.0 1.1596 0.2846 0.8958 0.4861 0.6109 0.7205 

0.5 1.0685 0.2842 0.8380 0.4860 0.5833 0.7204 

1.0 0.9897 0.2839 0.7873 0.4657 0.5583 0.6995 

5.0 0.5871 0.2815 0.5150 0.4415 0.4107 0.6733 

10.0 0.3167 0.2804 0.3108 0.4211 0.2959 0.6523 

15.0 0.1436 0.2790 0.1333 0.3994 0.1267 0.6262 

20.0 0.0026 0.2780 -0.0084 0.3777 -0.0021 0.6051 

25.0 -0.0813 0.2771 -0.0800 0.3550 -0.1077 0.5790 

 

Table 2 Values of Cf and Nu for different n and (Pr = 0.71, We = 0.3,  = 0.2) 

n 

 = 1.0  = 2.0  = 3.0 

Cf Nu Cf Nu Cf Nu 

0.0 1.2047 0.2803 0.8979 0.4856 0.6105 0.7204 

0.1 1.1783 0.2816 0.8898 0.4857 0.6071 0.7204 

0.2 1.1454 0.2829 0.8780 0.4859 0.6006 0.7205 

0.3 1.1032 0.2844 0.8602 0.4860 0.5940 0.7205 

0.4 1.0460 0.2859 0.8328 0.4863 0.5812 0.7205 

0.5 0.9650 0.2876 0.7881 0.4865 0.5596 0.7206 

0.6 0.8433 0.2893 0.7122 0.4868 0.5209 0.7206 

0.7 0.6506 0.2912 0.5776 0.4870 0.4477 0.7207 

0.8 0.3322 0.2931 0.3311 0.4870 0.2999 0.7208 

 

 

rate. Increasing decreases the Skin friction. 

Whereas increasing
,
 increases the heat transfer 

rate. 

Table2document results for the influence of the 

power law index (n) on skin friction and heat 

transfer rate along with a variation in  . It is 

observed that the increasing n, decreases Skin 

friction but increases heat transfer rate. Whereas 

increasing , decreases the Skin friction but 

increases the Nusselt number.   

Table 3 presents the influence of the Biot number 

() on skin friction and heat transfer rate along with 

a variation in  . It is observed that the increasing 

, increases both the Skin friction and heat transfer 

rate.  And increasing , decreases Skin friction but 

increases heat transfer rate. 

Table 4 documents results for the influence of the 

Prandtl number (Pr) on skin friction and heat 

transfer rate along with a variation in  .  It is 

observed that the increasing Pr, decelerates Skin 

friction but accelerates heat transfer rate. And 

increasing , decreases the Skin friction but 

increases the heat transfer rate. 
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Table 3 Values of Cf and Nu for different  and (Pr = 0.71, n = 0.3, We = 0.3) 

 
 = 1.0  = 2.0  = 3.0 

Cf Nu Cf Nu Cf Nu 

0.2 1.1032 0.2844 0.8602 0.4860 0.5940 0.7205 

0.3 1.5940 0.4979 1.3561 0.8176 0.9738 1.2012 

0.4 1.8114 0.6090 1.5815 0.9862 1.1585 1.4412 

0.5 1.9350 0.6769 1.7106 1.0882 1.2676 1.5863 

0.6 2.0150 0.7226 1.7945 1.1565 1.3396 1.6820 

0.7 2.0710 0.7555 1.8533 1.2054 1.3905 1.7503 

0.8 2.1124 0.7802 1.8968 1.2422 1.4295 1.8020 

0.9 2.1443 0.7996 1.9315 1.2710 1.4592 1.8421 

1.0 2.1693 0.8150 1.9580 1.2939 1.4827 1.8741 

 
Table 4 Values of Cf and Nu for different Pr and (We = 0.3, n = 0.3,  = 0.2) 

Pr 

 = 1.0  = 2.0  = 3.0 

Cf Nu Cf Nu Cf Nu 

0.5 1.2598 0.2184 1.1381 0.3483 0.8359 0.5076 

0.7 1.1098 0.2810 0.8711 0.4794 0.6024 0.7103 

1.0 1.1718 0.5101 0.8242 0.9097 0.5620 1.3522 

2.0 0.7641 0.9396 0.4174 1.8147 0.2817 2.7003 

3.0 0.5353 1.3392 0.2775 2.7195 0.1895 4.0472 

5.0 0.3212 2.3163 0.1637 4.5291 0.1090 6.7423 

7.0 0.2268 3.2426 0.1139 6.3409 0.0748 9.4408 

8.0 0.1969 3.7064 0.0981 7.2470 0.0638 10.7911 

10.0 0.1543 4.6360 0.0752 9.0596 0.0478 13.4891 
 

 

Figures 2(a) – 2(b) depict the velocity  'f  and 

temperature   distributions with increasing 

Weissenberg number, We. Very little tangible effect 

is observed in fig. 2a, although there is a very slight 

decrease in velocity with increase in We. 

Conversely, there is only a very slight increase in 

temperature magnitudes in Fig. 2(b) with a rise in 

We. The mathematical model reduces to the 

Newtonian viscous flow model as We 0 and n 0.  

The momentum boundary layer equation in this 

case contracts to the familiar equation for 

Newtonian mixed convection from a plate, viz. 

  /2''' 3 '' 2

'
' ''

f f f f

f f
f f

 


 

   

  
    

.  

The thermal boundary layer equation (10) remains 

unchanged.   

Figures 3(a) - 3(b) illustrates the effect of the power 

law index, n,on the velocity  'f  and temperature

  distributions through the boundary layer 

regime. Velocity is increased with increasing n. 
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