organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 1-methyl-1H-1,2,3-triazole-4carboxylate

F. Nawaz Khan,^a K. Prabakaran,^a S. Mohana Roopan,^a Venkatesha R. Hathwar^b and Mehmet Akkurt^c*

^aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, ^bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and CDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey Correspondence e-mail: akkurt@erciyes.edu.tr

Received 18 May 2010; accepted 21 May 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.064; wR factor = 0.173; data-to-parameter ratio = 11.9.

The title molecule, C5H7N3O2, has an almost planar conformation, with a maximum deviation of 0.043 (3) Å, except for the methyl H atoms. In the crystal structure, intermolecular $C-H\cdots O$ hydrogen bonds link the molecules into layers parallel to the bc plane. Intermolecular $\pi - \pi$ stacking interactions [centroid–centroid distances = 3.685(2)] and 3.697 (2) Å] are observed between the parallel triazole rings.

Related literature

For related structures, see: Prabakaran *et al.* (2009a,b); Beitelman et al. (2007); Jabli et al. (2010). For the properties and applications of related compounds, see: Dehne (1994); Fan & Katritzky (1996); Genin et al. (2000); Velazquez et al. (1998).

Experimental

Crystal data

C₅H₇N₃O₂ $M_r = 141.14$ Triclinic, P1 a = 5.697 (1) Åb = 7.1314 (11) Å c = 8.6825 (16) Å $\alpha = 71.053 \ (16)^{\circ}$ $\beta = 86.865 \ (15)^{\circ}$

$\gamma = 76.528 \ (14)^{\circ}$
$V = 324.37 (10) \text{ Å}^3$
Z = 2
Mo $K\alpha$ radiation
$\mu = 0.11 \text{ mm}^{-1}$

 $0.15 \times 0.10 \times 0.05 \text{ mm}$

T = 293 K

Data collection

Oxford Diffraction Xcalibur Eos	1108 independent reflections
(Nova) CCD detector	800 reflections with $I > 2\sigma(I)$
diffractometer	$R_{int} = 0.049$
5915 measured reflections	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.064$	93 parameters
$wR(F^2) = 0.173$	H-atom parameters constrained
S = 1.13	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
1108 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

	• • • •	·					
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$			
$C1-H1A\cdots O1^{i}$	0.96	2.59	3.509 (5)	160			
$C5-H5B\cdots O1^{ii}$	0.96	2.39	3.277 (5)	153			
Symmetry codes: (i) $x, y, z + 1$; (ii) $x - 1, y, z$.							

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA-DST program at IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for the data collection. F·NK thanks the DST for Fast Track Proposal funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2764).

References

- Beitelman, A. D., Sieracki, N. A., Zeller, M. & Ferrence, G. M. (2007). Acta Cryst. E63, o2739-o2741.
- Dehne, H. (1994). Editor. Methoden der Organischen Chemie, 8th ed., pp. 305-405. Stuttgart: Thieme.
- Fan, W.-Q. & Katritzky, A. R. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 4, edited by A. R. Katritzky, C. W. Rees & E. F. V Scriven, pp. 1-126. Oxford: Pergamon.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Genin, M. J., Allwine, D. A., Anderson, D. J., Barbachyn, M. R., Emmert, D. E., Garmon, S. A., Graber, D. R., Grega, K. C., Hester, J. B., Hutchinson, D. K., Morris, J., Reischer, R. J., Ford, C. W., Zurenko, G. E., Hamel, J. C., Schaadt, R. D., Stapert, D. & Yagi, B. H. (2000). J. Med. Chem. 43, 953-970.
- Jabli, H., Ouazzani Chahdi, F., Saffon, N., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o231.
- Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.
- Prabakaran, K., Hathwar, V. R., Maiyalagan, T., Kirthana, M. V. & Khan, F. N. (2009a). Acta Cryst. E65, 01752.
- Prabakaran, K., Maiyalagan, T., Hathwar, V. R., Kazak, C. & Khan, F. N. (2009b). Acta Cryst. E65, o300.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Velazquez, S., Alvarez, R., Perez, C., Gago, F., De, C., Balzarini, J. & Camaraza, M. (1998). J. Antivir. Chem. Chemother. 9, 481-489.

supplementary materials

Acta Cryst. (2010). E66, o1468 [doi:10.1107/S1600536810019173]

Methyl 1-methyl-1H-1,2,3-triazole-4-carboxylate

F. N. Khan, K. Prabakaran, S. M. Roopan, V. R. Hathwar and M. Akkurt

Comment

1,2,3-Triazoles are useful synthetic targets in organic synthesis and are associated with biological properties such as antiviral, antibacterial, antiepileptic and antiallergic (Velazquez *et al.*, 1998; Genin *et al.*, 2000). They have also found applications as agrochemicals, dyes, hotographic materials, and in corrosion inhibition (Fan & Katritzky, 1996; Dehne, 1994). In continuous of our earlier reports (Prabakaran *et al.*, 2009a,b), here the crystal structure of the title compound is presented.

As shown in Fig. 1, the conformation of the title molecule is almost planar, with a maximum deviation of -0.043 (3) Å for O1, except the H atoms of two methyl groups.

In the crystal structure, molecules connect to each other, via the intermolecular C—H…O hydrogen bonds (Table 1, Fig. 2), into two-dimensional layers parallel to the *bc* plane, and intermolecular π - π stacking interactions [*Cg*1…*Cg*1(1 - *x*, -y, 2 - *z*) = 3.685 (2) Å and *Cg*1…*Cg*1(1 - *x*, 1 - *y*, 2 - *z*) = 3.697 (2) Å, where Cg1 is a centroid of the triazole ring] between the parallel triazole rings contribute to the stabilization of the structure.

Experimental

To methyl 1*H*-1,2,3-triazole-4-carboxylate (2 g) in dry DMF (15 ml) maintained at 273 K in nitrogen atmosphere, was added K_2CO_3 (1.3 g), methyliodide (0.98 ml), the mixture was then stirred at 273 K for 1 h, allowed to warm to room temperature and stirred till completion of reaction, monitored by TLC. The reaction mixture on LCMS analysis showed three isomers well separated with their significant retention time and high purity. Three fractions were identified by mass spectroscopy. The solvent was evaporated under vacuo and the residue was isolated into individual isomers by column chromatography. The single crystals of the title compound for X-ray structure analysis were obtained from ether solution by slow evaporation.

Refinement

H atoms were positioned geometrically with C—H = 0.93-0.96 Å, and were refined in riding mode with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. In the final refinement cycles, the inconsistent 33 reflections were omitted.

Figures

Fig. 1. The title molecule showing the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. View of the crystal packing of (I), viewed down the a axis. The H atoms not involved in the hydrogen bonding pattern have been omitted for clarity.

Methyl 1-methyl-1H-1,2,3-triazole-4-carboxylate

Crystal data	
$C_5H_7N_3O_2$	Z = 2
$M_r = 141.14$	F(000) = 148
Triclinic, <i>P</i> T	$D_{\rm x} = 1.445 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 5.697 (1) Å	Cell parameters from 1326 reflections
b = 7.1314 (11) Å	$\theta = 2.0 - 20.7^{\circ}$
c = 8.6825 (16) Å	$\mu = 0.11 \text{ mm}^{-1}$
$\alpha = 71.053 \ (16)^{\circ}$	T = 293 K
$\beta = 86.865 \ (15)^{\circ}$	Block, colourless
$\gamma = 76.528 \ (14)^{\circ}$	$0.15 \times 0.10 \times 0.05 \text{ mm}$
$V = 324.37 (10) \text{ Å}^3$	

Data collection

Oxford Xcalibur Eos (Nova) CCD detector diffractometer	800 reflections with $I > 2\sigma(I)$
Radiation source: Enhance (Mo) X-ray Source	$R_{\rm int} = 0.049$
graphite	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
ω scans	$h = -6 \rightarrow 6$
6915 measured reflections	$k = -8 \rightarrow 8$
1108 independent reflections	$l = -10 \rightarrow 10$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.064$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.173$	H-atom parameters constrained
<i>S</i> = 1.13	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0741P)^{2} + 0.2349P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
1108 reflections	$(\Delta/\sigma)_{max} < 0.001$
93 parameters	$\Delta \rho_{max} = 0.26 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors wR and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O1	0.6694 (5)	0.2352 (5)	0.5832 (3)	0.0591 (13)
O2	0.2797 (4)	0.2639 (4)	0.6475 (3)	0.0440 (9)
N1	0.7108 (5)	0.2390 (4)	1.0644 (3)	0.0361 (10)
N2	0.4740 (5)	0.2478 (5)	1.0897 (4)	0.0430 (11)
N3	0.3757 (5)	0.2534 (5)	0.9553 (4)	0.0417 (10)
C1	0.8687 (7)	0.2325 (6)	1.1941 (5)	0.0471 (14)
C2	0.7651 (6)	0.2415 (5)	0.9131 (4)	0.0369 (11)
C3	0.5521 (6)	0.2492 (5)	0.8434 (4)	0.0342 (11)
C4	0.5106 (6)	0.2486 (5)	0.6793 (4)	0.0373 (12)
C5	0.2257 (7)	0.2676 (7)	0.4852 (5)	0.0532 (14)
H1A	0.77460	0.24230	1.28750	0.0700*
H1B	0.94680	0.34440	1.15670	0.0700*
H1C	0.98850	0.10660	1.22340	0.0700*
H2	0.91520	0.23860	0.86500	0.0440*
H5A	0.26750	0.38410	0.40620	0.0790*
H5B	0.05650	0.27540	0.47490	0.0790*
H5C	0.31730	0.14580	0.46690	0.0790*

Fractional	atomic	coordinates	and isotr	opic or	eauivalent	isotropi	c dis	placement	parameters	$(A^2$)
1		000.0000000		00000		noon opn	• ••••				/

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0354 (15)	0.103 (3)	0.0513 (18)	-0.0203 (15)	0.0119 (13)	-0.0399 (17)
O2	0.0336 (14)	0.0667 (18)	0.0370 (15)	-0.0139 (12)	-0.0013 (11)	-0.0216 (13)
N1	0.0315 (16)	0.0468 (19)	0.0314 (17)	-0.0104 (13)	0.0007 (13)	-0.0133 (13)
N2	0.0346 (17)	0.057 (2)	0.0386 (18)	-0.0098 (14)	0.0038 (14)	-0.0178 (15)
N3	0.0348 (16)	0.055 (2)	0.0354 (18)	-0.0108 (14)	0.0002 (14)	-0.0140 (14)
C1	0.045 (2)	0.062 (3)	0.036 (2)	-0.0133 (19)	-0.0046 (17)	-0.0165 (19)
C2	0.0306 (18)	0.047 (2)	0.036 (2)	-0.0126 (16)	0.0054 (15)	-0.0155 (17)
C3	0.0286 (18)	0.038 (2)	0.039 (2)	-0.0116 (15)	0.0068 (15)	-0.0144 (16)
C4	0.038 (2)	0.039 (2)	0.038 (2)	-0.0120 (16)	-0.0022 (18)	-0.0137 (17)
C5	0.046 (2)	0.082 (3)	0.040 (2)	-0.025 (2)	-0.0030 (18)	-0.023 (2)

Geometric parameters (Å, °)

O1—C4	1.205 (4)	C3—C4	1.459 (5)
O2—C4	1.331 (4)	C1—H1A	0.9600
O2—C5	1.449 (5)	C1—H1B	0.9600
N1—N2	1.345 (4)	C1—H1C	0.9600
N1C1	1.462 (5)	C2—H2	0.9300
N1—C2	1.328 (4)	С5—Н5А	0.9600
N2—N3	1.307 (5)	С5—Н5В	0.9600
N3—C3	1.361 (5)	С5—Н5С	0.9600
C2—C3	1.367 (5)		
O1···C5 ⁱ	3.277 (5)	C4…N2 ^{vii}	3.439 (5)
O2…N3	2.731 (4)	$C5 \cdots C1^{x}$	3.435 (6)
O1…H1A ⁱⁱ	2.5900	C5…O1 ^{vi}	3.277 (5)
01…H5A	2.6300	C1···H5B ^{ix}	2.8500
O1···H5B ⁱ	2.3900	C4…H5A ^{iv}	3.0300
01…H5C	2.5900	H1A…O1 ^{xi}	2.5900
O1…H1C ⁱⁱⁱ	2.8400	H1A···H5B ^{ix}	2.4500
O1···H5A ^{iv}	2.8500	H1B…N3 ^{viii}	2.9100
O1···H5C ^v	2.8700	H1C…O1 ⁱⁱⁱ	2.8400
O1…H2	2.8900	H2…O1	2.8900
O2…H2 ^{vi}	2.7300	H2···O2 ⁱ	2.7300
N2···C3 ^{vii}	3.438 (5)	H2…N3 ⁱ	2.8100
N2…C4 ^{vii}	3.439 (5)	H5A…O1	2.6300
N3…O2	2.731 (4)	H5A…O1 ^{iv}	2.8500
N3…C1 ^{viii}	3.434 (6)	H5A····C4 ^{iv}	3.0300
N3····C3 ^{vii}	3.376 (5)	H5B…O1 ^{vi}	2.3900
N3…H2 ^{vi}	2.8100	H5B····C1 ^x	2.8500
N3…H1B ^{viii}	2.9100	H5B…H1A ^x	2.4500
C1···C5 ^{ix}	3.435 (6)	H5C…O1	2.5900
C1…N3 ^{viii}	3.434 (6)	H5C···O1 ^v	2.8700
C3…N3 ^{vii}	3.376 (5)	H5C···H5C ^v	2.5200
C3…N2 ^{vii}	3.438 (5)		
C4—O2—C5	115.6 (3)	N1—C1—H1B	109.00
N2—N1—C1	120.4 (3)	N1—C1—H1C	110.00
N2—N1—C2	110.7 (3)	H1A—C1—H1B	109.00
C1—N1—C2	129.0 (3)	H1A—C1—H1C	109.00
N1—N2—N3	107.9 (3)	H1B—C1—H1C	109.00
N2—N3—C3	107.9 (3)	N1—C2—H2	128.00
N1—C2—C3	105.0 (3)	C3—C2—H2	127.00
N3—C3—C2	108.6 (3)	O2—C5—H5A	109.00
N3—C3—C4	123.5 (3)	O2—C5—H5B	109.00
C2—C3—C4	127.9 (3)	O2—C5—H5C	110.00

supplementary materials

O1—C4—O2	123.8 (3)	H5A—C5—H5B	109.00
O1—C4—C3	123.3 (3)	Н5А—С5—Н5С	109.00
O2—C4—C3	112.9 (3)	H5B—C5—H5C	109.00
N1—C1—H1A	109.00		
C5—O2—C4—O1	-1.1 (6)	N2—N3—C3—C4	178.5 (3)
C5—O2—C4—C3	179.0 (3)	N1—C2—C3—N3	0.7 (4)
C1—N1—N2—N3	179.6 (3)	N1—C2—C3—C4	-178.0 (3)
C2—N1—N2—N3	0.8 (4)	N3—C3—C4—O1	-176.4 (4)
N2—N1—C2—C3	-0.9 (4)	N3—C3—C4—O2	3.5 (5)
C1—N1—C2—C3	-179.6 (4)	C2—C3—C4—O1	2.1 (6)
N1—N2—N3—C3	-0.3 (4)	C2—C3—C4—O2	-178.0 (4)
N2—N3—C3—C2	-0.2 (4)		

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*, *y*, *z*-1; (iii) -*x*+2, -*y*, -*z*+2; (iv) -*x*+1, -*y*+1, -*z*+1; (v) -*x*+1, -*y*, -*z*+1; (vi) *x*-1, *y*, *z*; (vii) -*x*+1, -*y*, -*z*+2; (viii) -*x*+1, -*y*, -*z*+2; (viii) -*x*+1, -*y*+1, -*z*+2; (ix) *x*+1, *y*, *z*+1; (x) *x*-1, *y*, *z*-1; (xi) *x*, *y*, *z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C1—H1A····O1 ^{xi}	0.96	2.59	3.509 (5)	160
C5—H5B···O1 ^{vi}	0.96	2.39	3.277 (5)	153
$\mathbf{C}_{\mathbf{r}}$				

Symmetry codes: (xi) x, y, z+1; (vi) x-1, y, z.

Fig. 1

Fig. 2

Copyright of Acta Crystallographica: Section E (International Union of Crystallography - IUCr) is the property of International Union of Crystallography - IUCr and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.