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Abstract 

The aim of this study is to investigate high thermal conductive materials such as metallic alloys for latent heat energy storage in 

CSP applications. For this purposes, two ternary eutectic alloys, Mg70Zn24.9Al5.1 and Zn85.8Al8.2Mg6, have been investigated. 

The structural and thermophysical characterizations have permitted to obtain their relevant properties needed for the design of 

thermal energy storage systems such as latent heat, melting/solidification temperatures, thermal conductivity and specific heat. 

Also, the thermal stability study has been accomplished in order to analyze the thermal performance of these materials after 700 

cycles. Finally, the chemical compatibility tests between the Mg70Zn24.9Al5.1 alloy and the 304, 304L, 316 and 316L stainless 

steels have been performed. The results have confirmed the high potential of the investigated alloys for thermal energy storage 

application.  
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1. Introduction 

In the last years, the development of thermal energy storage (TES) systems has become an interesting way to 

upgrade the concentrated solar power (CSP) technologies. TES systems help to extend the power generation during 

low irradiance periods or at night allowing the decoupling of the solar radiation and electricity production times 

[1,2]. 

Current heat storage technologies are mainly based on sensible heat storage in the double molten salt tank 

concept.  However, latent heat storage (LHS) has become one of the most interesting alternatives due to the high 

storage energy density and the quasi-constant operation temperature associated with the phase transition. Several 

types of materials (so called phase change materials - PCM) have been studied for latent heat storage [3]. However, 

the major drawback of these materials is their low thermal conductivity which implies low heat transfer rates.  In the 

last years, a very important research effort is being done in order to solve this limitation [4-6].  

An alternative to increase the thermal transport behavior of the TES system is the use of metal and metal alloys 

as PCMs [7-9]. They usually present high density and thermal conductivity values around two or three order of 

magnitude higher than the materials currently used for heat storage. A TES system based on these materials can 

provide a fast thermal response and high operation power which might represent a breakthrough concept regarding 

current storage technologies. This innovative storage concept could contribute to optimize the thermal management 

and power generation of current CSP plants in different aspects. For example minimizing the impact of; (i) solar 

radiation fluctuations, which lead to a neat decrease of the generated electricity, (ii) decreasing the operation cost 

due to a faster and more efficient start-up of the plant and (iii) decreasing the maintenance cost due to an improved 

protection against thermal shocks of some plant components.  

The aim of this study is to investigate eutectic metal alloys as high thermal conductive PCM´s for thermal energy 

storage.  Taking into account the operation temperature range in current CSP plants using oil (from 563 K to 660 K) 

and molten salts (from 563 K to 838 K) as heat transfer fluid (HTF), eutectic alloys with melting and solidification 

points in the common temperature range have been chosen. For this purpose, the Mg70Zn24.9Al5.1 and 

Zn85.8Al8.2Mg6 ternary eutectic alloys, with theoretical melting points of 611 K and 618 K, respectively, have been 

identified. After their synthesis, a complete structural and thermo-physical characterization has been performed in 

order to determine their suitability as storage materials for this kind of applications. Together with appropriate 

thermo-physical properties, the thermal stability of the selected PCM is also an essential aspect to ensure the long 

life-time of the storage system [10]. As a consequence, in this work, short and long-term thermal stability 

experiments have been performed. In addition, the chemical compatibility between the PCM and the containment 

materials is also a critical issue in order to guarantee the viability of this storage system [11]. For this reason, the 

chemical compatibility and corrosion tests between the Mg70Zn24.9Al5.1 alloy and common stainless steels used as 

containment materials have been carried out. 

2. Materials and methods 

2.1. Material synthesis 

Mg70Zn24.9Al5.1 and Zn85.8Mg8.2Al6 eutectic alloys were synthetized from Mg, Zn and Al ingots with a purity of 

99.94 %, 99.995 % and 99.7 % (mass %), respectively. The stoichiometric proportions of the primary metals in the 

respective alloys were used to prepare pre-alloys with a weight of 60 g of each one. The pre-alloys, previously 

placed in alumina crucibles, were hermetically closed inside stainless steel reactors under inert argon atmosphere in 

order to avoid the oxygen presence during the alloying process. The reactors were placed in an electrical muffle 

furnace and were maintained at 723 K for 10 hours. During the melting process, in order to guarantee the 

homogeneity of the alloys, an external mechanical movement was applied each 30 minutes. After cooling down at 

10 K/min rate, the alloy samples were turned around and the synthesis process was repeated three times. The 

homogeneity of the prepared materials was confirmed by inductively coupled plasma (ICP - Ultima 2 Horiba) 

spectrometry.  
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2.2. Characterization methods 

In order to perform a structural characterization of the obtained alloys X-ray powder diffraction (XRPD) 

(BrukerD8 Advance Diffractometer), scanning electron microscopy (SEM) (Quanta FEG 250) and energy-

dispersive X-ray spectrometry (EDX) techniques were used.  

Regarding thermophysical properties, the density ( ) of the alloys was measured at room temperature by helium 

pycnometry (AccuPyc-II 1340 from Micrometrics). The coefficient of thermal expansion (CTE) in the solid phase 

was obtained by dilatometry (DIL 402C, Netsch), where, cylindrical samples of 10 mm of diameter and 10-25 mm 

of length were cycled two times from 298 to 589 K under argon atmosphere. The transition temperatures, latent heat 

( H) and specific heat (Cp) were obtained by differential scanning calorimetry (DSC) measurements working under 

argon atmosphere. For the calorimetric analysis three cycles between 473 and 773 K with heating/cooling rates of 10 

K/min were carried out. The Cp was obtained by means of the modulated quasi-isothermal DSC technique using 

alumina crucibles from room temperature up to 723 K. The thermal diffusivity was determined by Laser Flash 

Apparatus (LFA) in the temperature range from 323 to 723 K and under argon atmosphere. The thermal 

conductivity was indirectly calculated from density, specific heat and thermal diffusivity measurements by means of 

the following equation, = Cp . 

The thermal stability test was performed by means of short and long term experiments. In the first one, 100 

cycles between 553 and 673 K were performed by DSC with heating/cooling rates of 10 K/min and under argon 

atmosphere. During the cycling the transition temperatures and enthalpies were measured in order to evaluate any 

possible evolution of the thermal properties of the alloys. The long-term experiment has been carried out in an 

electrical muffle furnace with the previous experimental conditions and up to 700 cycles. After each 100 cycles a 

small piece of the sample was analyzed by DSC in order to check any possible variation on the transition enthalpy 

and temperature. 

The compatibility experiments were performed between the Mg70Zn24.9Al5.1 eutectic  alloy and different type of 

containments materials. The tested materials were the common stainless steels (SS) used in the construction of the 

storage tank unit commercially called 304, 304L, 316 and 316L. The stainless steel samples were vertically placed 

inside of melted alloy contained in alumina crucibles. The samples (alloy + SS) were hermetically closed inside the 

reactors under argon atmosphere and were heated at 673 K during 672 hours in an electrical muffle furnace. Finally, 

the samples were polished and analyzed by SEM and EDX techniques. 

3. Results and discussion 

3.1. Structural analysis 

The X-ray diffractograms of the Mg70Zn24.9Al5.1 and Zn85.8Al8.2Mg6 eutectic  alloys are shown in Figure 1. In 

order to determine the phase compositions of each material the refinements of the diffractograms were performed 

using the FullProf package [12]. The Mg70Zn24.9Al5.1 alloy pattern shows the presence of two phases: the first one is 

isostructural to the trigonal Mg21Zn25 intermetallic phase [13], and the second one is isostructural to the hexagonal 

Mg phase [14]. According to the isothermal section of the Mg-Zn-Al phase diagram at room temperature [15], the 

cubic Mg32(Al,Zn)49 intermetallic phase [16] should be present in equilibrium with the observed Mg21Zn25 and Mg  

phases but it was not obtained in our experimental data. However, further investigations are required in order to 

clarify the effect of the preparation conditions on the stabilization of this phase at room temperature.  

The Zn85.8Al8.2Mg6 alloy pattern shows the presence of three phases, the first one is isostructural to the cubic Al 

phase [17], the second one is isostructural to the hexagonal Zn phase [18] and the last one is isostructural to the 

cubic Mg2Zn11 intermetallic phase [19]. In this case, the identified phases are in agreement with the Mg-Zn-Al 

phase diagram at room temperature [15]. 
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Fig. 1. Experimental (red cricles, oo) and calculated (black line, --) X-ray diffraction patterns for the refinements of  (a) the Mg70Zn24.9Al5.1 and 

(b) the Zn85.8Al8.2Mg6  alloys. The bars in the lower part of the graphics represent the Bragg peak positions that correspond to the identified 

phases. 

 

Fig. 2. SEM images of Mg70Zn24.9Al5.1 (a,b) and Zn85.8Al8.2Mg6 (c,d) eutectic alloys. 

Figure 2 shows the microstructures of the Mg70Zn24.9Al5.1 (a) and Zn85.8Al8.2Mg6 (b) eutectic  alloys obtained by 

SEM analysis. The Mg70Zn24.9Al5.1 alloy image (a) provided an experimental confirmation of the presence of 

Mg21Zn25 and Mg phases. Although an exhaustive microstructural inspection was performed the cubic 

Mg32(Al,Zn)49 intermetallic phase was not found. The image shows in black colour the isostructural Mg phase and 

in white colour the isostructural Mg21Zn25 intermetallic phase with no-faceted /no-faceted (nf /nf) binary eutectic 

structure. The Zn85.8Mg8.2Al6 alloy image (b) shows nf /nf /nf (Al)-(Zn)-Mg2Zn11 ternary eutectic structure: in 

black colour Al isostructural phase, in white colour Zn isostructural phase and in grey colour Mg2Zn11 isostructural 
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intermetallic phase. The scanning electron microscopy (SEM) analyses confirm the results obtained by XRPD 

measurements. 

3.2. Thermophysical characterization 

Table 1 shows a summary of the experimental values of thermophysical properties obtained for Mg70Zn24.9Al5.1 

and Zn85.8Al8.2Mg6 eutectic  alloys. As can be observed both materials present very close melting temperatures: the 

first one melts at 613 K and the second one at 617 K. Higher differences are observed in their enthalpy values ( Hm) 

and densities, showing that the Mg70Zn24.9Al5.1 alloy has the highest latent heat value and the lowest density due to 

the high magnesium content. The calculated energy density shows that Zn85.8Al8.2Mg6 alloy presents a value 

(64.376·10
7
 J/m

3
) than the Mg70Zn24.9Al5.1 alloy (44.274·10

7
 J/m

3
). 

 
Table 1: The experimental values of thermophysical properties obtained for Mg70Zn24.9Al5.1 and Zn85.8Mg8.2Al6 eutectic alloys. 

  Tm  Hm    CTEaverage  Cp      

  (K) (103 J/kg) (kg/m3) (10-6 K-1) (J/kg·K) (10-6 m2/s) (W/m·K) 

T(K)     298 373-523 298 573 323 573 673 323 573 673 

Mg70Zn24.9Al5.1  613 157 2820 24 690 830 23 26 16 47 59 38 

Zn85.8Al8.2Mg6  617 104 6190 34 410 530 25 21 9 59 55 31 

 

The linear coefficients of thermal expansion (CTE) in solid phase showed values approximately constant for both 

alloys in all measured interval. The Zn85.8Al8.2Mg6 eutectic alloy shows a higher linear coefficient value due to its 

high Zn content. The obtained values are in concordance with the linear thermal expansion coefficients of the pure 

metals: 39.7·10
-6

, 23.6·10
-6

 and 25.2·10
-6

 K
-1

 for Zn, Al and Mg, respectively. Both alloys present CTE slight higher 

than those of the commonly used stainless steels in the storage unit construction (around 17·10
-6

 K
-1

).  

The obtained specific heats (Cp) for both eutectic  alloys are noticeably different. Taking into account the Cp 

values of the Zn, Al and Mg pure metals (390, 900 and 1020 J/kg·K at RT, respectively) the Mg70Zn24.9Al5.1 alloy 

presents the highest value due to its higher Mg content and the Zn85.8Al8.2Mg6 alloy the lowest value due to its 

higher Zn content. The obtained results are in a good agreement with the obtained from the calculation performed in 

[9]. This model gives values close to the experimental ones, showing around 720 and 810 J/kg·K for the 

Mg70Zn24.9Al5.1 and around 430 and 480 J/kg·K for Zn85.8Al8.2Mg6 alloys at 298 and 573 K, respectively.  

The thermal diffusivity ( ) and the thermal conductivity ( ) are the most important parameters in the metallic 

material heat transport properties definition which are related by the equation = / Cp. Table 1 shows the 

experimental values of thermal diffusivities and the calculated thermal conductivities at 323 K, 573 K (in solid 

phase) and 673 K (in the liquid phase). - The obtained values for both properties are almost constant in the solid 

phase and decrease around to the half value in the liquid phase. In any case, the obtained values in solid and liquid 

phases are still very high around two orders of magnitude higher than those of the inorganic PCMs.  

3.3. Long-term thermal stability (cyclability) 

Figures 3 (a) and (b) show the results of the short-term thermal stability experiments (100 cycles) performed by 

DSC technique for both eutectic alloys. Each 10 cycles the corresponding curves are plotted to demonstrate the 

repeatability of the results. Although small changes on the peak shapes are found the melting temperature and 

enthalpy remain constant. Finally, Figure 3 (c) shows the results of the long-term thermal stability experiment (700 

cycles) performed by means of an electrical furnace for the Mg70Zn24.9Al5.1 alloy. The heating latent heat and 

melting temperatures at before and after 50, 100, 200, 300, 500 and 700 cycles are indicated with lines with circles 

and triangles, respectively. As it is shown in the graph (c), both values are constants up to 700 cycles. Thus, cycling 



 E. Risueño et al.  /  Energy Procedia   69  ( 2015 )  1006 – 1013 1011

stability in term of melting and solidification has been demonstrated for at least 700 cycles in the case of 

Mg70Zn24.9Al5.1 alloy and at least 100 cycles in the case of e Zn85.8Al8.2Mg6 alloy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Short and long-term thermal stability experiment results for the Mg70Zn24.9Al5.1 and Zn85.8Al8.2Mg6 eutectic alloys. Several DSC curves 

after every 10 cycles of the short-term thermal stability experiment for the Mg70Zn24.9Al5.1 eutectic alloy (a), and for the Zn85.8Al8.2Mg6 eutectic 

alloy (b) and (c) the heating latent heat (circles) and the melting temperatures (triangles) before and after 50, 100, 200, 300, 500 and 700 cycles of 

the long-term thermal stability experiment for the the Mg70Zn24.9Al5.1 eutectic alloy. 

3.4. Compatibility between the eutectic alloys and containments materials 

The results of the compatibility analysis performed between the SS304L containment material and the 

Mg70Zn24.9Al5.1 eutectic alloy are shown in Figure 4. The SEM image shows a clear division between both surfaces 

of the materials, where the Mg70Zn24.9Al5.1 surface is on the left and the 304L stainless steel surface is on the right. 

In the corresponding EDX maps the most representative elements of each material have been selected: the Mg and 

Zn from the Mg70Zn24.9Al5.1 alloy and Cr and Fe from 304L stainless steel. By the displayed EDX maps, no 

migration of the Mg and Zn elements in right direction and no migration of the Fe and Cr elements in left direction 
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are observed. The same results are obtained with the other selected stainless steels and no chemical corrosion has 

happened and demonstrates that the investigated metal alloy is fully compatible with the four common stainless 

steels (SS304, SS304L, SS316 and SS316L).  

 

 
 

Fig. 4. The SEM images and corresponding EDX maps of the compatibility experiments between the Mg70Zn24.9Al5.1 eutectic alloy and the 304L 

stainless steel containment material. 

4. Conclusions 

In general, this investigation has shown the high potential of Mg-Zn-Al ternary system in the thermal energy 

storage frame. The structural characterization and thermophysical determination of the selected ternary eutectic 

alloys confirm that both compositions are suitable to be used as high thermal conductive phase change materials. 

Among measured thermal properties, the remarkable high density of the Zn85.8Al8.2Mg6 eutectic alloy leads to 

higher energy storage capacity, in addition to the high thermal conductivities of both alloys, can provide a new 

concept of high power TES system.  

The performed thermal stability experiments have shown promising results in order to ensure the long-term 

thermal performance of PCM in TES system, where, a good thermal stability was observed for at least 100 cycles 

for the Zn85.8Al8.2Mg6 eutectic alloy and for at least 700 cycles for the Mg70Zn24.9Al5.1 eutectic alloy.  

Finally, the corrosion tests demonstrate the full chemical compatibility of the Mg70Zn24.9Al5.1 eutectic alloy with 

some of the most common stainless steels used in the construction of the TES tanks. 
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