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Abstract. The influence of elastic wall properties on the peristaltic transport of a conducting 
hyperbolic tangent fluid in a non-uniform channel is investigated with heat and mass transfer. 
The flow is examined in a fixed frame of reference under the assumptions of long wavelength 
and low Reynolds number. The velocity slip, temperature and concentration jump boundary 
conditions are considered at the walls. The perturbation method of solution for stream function, 
velocity, temperature, concentration and the coefficient of heat transfer are obtained in terms of 
small Weissenberg number. The influence of several pertinent parameters on the flow are 
discussed by plotting graphs. The trapping phenomenon is also analysed. It is noticed that the 
size of the trapping bolus increases with increasing the power law index of hyperbolic tangent 
fluid.  

Nomenclature 

a  wave amplitude (m)   u , v  Distribution of velocity in flow 
direction and perpendicular 
directions respectively (m/s) 

0B  magnetic field strength (T) We  Weissenberg number 

C  Dimensional concentration (kg/m3) ,x y  Rectangular coordinates (m) 
C  Coefficient of viscous damping 

forces (Pa s/m) 
Greek symbols 

c  constant wave speed (m/s)  �  Density of the fluid (kg/m3) 
D  coefficient of mass diffusion (m2/s) �  Specific heat at constant volume 

(J/kg K) 
d  half mean width of the symmetric 

channel (m) 
�  Wavelength (m)  

1E  membrane tension parameter �  Electrical conductivity of the fluid 
(A/V) 

2E  mass characterizing parameter �  Amplitude ratio 

3E  viscous damping parameter �  Wave number 

Ec  Eckert number �  Thermal conductivity (W/m K) 

http://creativecommons.org/licenses/by/3.0
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M  Hartmann number  	  Stream function (m2/s) 
m
  non-uniformity of the channel �  Dimensionless temperature 

1m  mass per unit area (kg/m2) �  Dimensionless concentration 
n  Power law index of hyperbolic 

tangent fluid.    
1  Velocity slip parameter 

p  Pressure (Pa) 
2  temperature slip parameter 

Pr  Prandtl number 
3  Species slip parameter 

R  Reynolds number �  elastic tension in the membrane (Pa 
m) 

Sc  Schmidt number 
xx� , xy� ,

yy�  

extra stress tensor (Pa) 

Sr  Soret number ��  infinite shear rate viscosity (Pa s) 

t  Time (s)  
0�  zero shear rate viscosity (Pa s) 

T  Dimensional Temperature (K) �  Time constant (s) 

1.  Introduction 
The term peristalsis means clasping and compressing. The peristaltic action occurs in the form of 
successive waves of involuntary muscular contractions passing along the walls and forcing the 
contents onward. In physiological situations, the mechanism is found in esophagus, stomach, 
intestines, small blood vessels, fallopian tube, ureter and gut. The peristaltic mechanism has been 
attracting the attention of bioengineers because of its importance in living body system and in the 
design of biomedical instruments such as dialysis machines, open-heart bypass pump machines, 
artificial lungs and tissues. 

Several attempts have been made by considering physiological fluids as Newtonian. A few 
investigations pertaining to peristaltic flow of Newtonian fluids have been reported in [1-5]. Further, 
some interesting results has been put forward in rheological complex physiological fluids such as 
blood (Power-law model, Casson model and Herschel - Bulkley model), chyme (Williamson model), 
bread and white eggs through esophagus (Maxwell model)and urine infection (couple-stress model) to 
be non-Newtonian during pumping for details, see [6-11]. Among non-Newtonian fluids, hyperbolic 
tangent fluid model characterize the flow behaviour of shear thinning fluids. Nadeem and Akram [12] 
addressed the peristaltic pumping of a hyperbolic tangent fluid through an asymmetric channel. 
Nadeem and Maraj [13] studied mathematically the peristaltic motion of a hyperbolic tangent fluid in 
a curved channel with the help of Homotopic perturbation method. Ali Abbas et al. [14] reported the 
3D peristaltic pumping of hyperbolic tangent fluid with flexible walls. 

Peristaltic flow with temperature and mass transfer effects has been exploited by many authors in 
order to conduct diverse investigations in biomedical and biomechanical sciences. The Biological heat 
transfer in a living system include thermal conduction in tissue, metabolic heat generation, burn 
injuries, fever, perfusion of blood flow and hyperthermia. The biological mass transfer process include 
glucose diffusion into the cell, absorption of proteins and peptides, liquid diffusion in tissues, drug 
delivery across absorption barriers. Saravanaet al. [15] analysed mathematically the peristaltic 
transport of a third grade fluid through an inclined asymmetric channel by taking temperature and 
concentration effects into account. A few investigations on peristalsis with temperature and 
concentration effects have been reported in [16-18]. 

The influence of magnetic field may be useful to slow down the blood flow in human arterial 
system, controls the blood flow velocities in surgical procedures. The slip condition proposed by 
Navier [19] has importance in studying the flow at the fluid-wall interface and it may be more realistic 
model observed in gastrointestinal tract and in the flow of polymer solutions. Akram and Nadeem [20] 
addressed the slip effects on peristaltic motion of a hyperbolic tangent fluid model through an 



3

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 062006 doi:10.1088/1757-899X/263/6/062006

 

 

 

 

 

 

asymmetric channel. Due to complex and elastic nature of physiological systems, it becomes 
necessary to consider the non-uniformity of the channel with wall properties. Abbas et al. [21] 
presented the wall properties and entropy generation for the peristaltic transport of a nanofluid in a 
non-uniform channel. They observed the importance of considering elastic wall parameters on the 
blood flow in small blood vessels. Recently, investigations are made by considering the wall 
properties [22-26]. 

In view of above, an attempt is framed to analyse the behaviour of wall properties on the peristaltic 
flow of a hyperbolic tangent fluid in a non-uniform channel subjected to external magnetic field, 
velocity and thermal slip effects.  The flow is investigated in the fixed reference frame under the 
consideration of long wave length and low Reynolds number. Regular perturbation method has 
employed in the study. The influence of sundry parameters on the stream function, velocity, 
temperature and concentration are discussed in detail through plots.   

2.  Mathematical formulation of the problem 
We consider the motion of an incompressible hyperbolic tangent fluid progressed by sinusoidal waves 
with constant wave speed ‘ c ’. The non-uniform channel walls are assumed to be flexible and are 
taken as a stretched membrane. A uniform external magnetic field 0B  is applied along the y -axis. 
The induced magnetic field is ignored under the assumption of small magnetic Reynolds number. The 
thermal and the mass concentration at the lower and upper walls of channel are 0T and 0C ; 1T  and 1C , 
respectively and the flow geometry is illustrated in figure 1. 

 
Figure 1. Physical model 

The geometry of wall surface is represented by 

� � � �2
, ( ) siny x t d x a x ct

��
�

� �� � � � � �� �
� �

      (1) 

where � �( ) , 1 ,d x d m x m
 
� � �� a indicates amplitude, � indicates wavelength, d is the mean 

width of the channel, m
 indicates the dimensional channel non-uniformity and t indicates time. 
 
The extra stress tensor in hyperbolic tangent fluid is given by 

0( ) tanh( )n� � � �   � �! "� � � �# $� �        (2) 

and 

1/2 1/2
1 1

2 2ij ji
i j

   
� � � �� � %� � � �

� �� �
&&� � � ,          (3) 

where%  is the second invariant strain tensor.  
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For 0�� � and 1 � �� , equation (2) can be written as 

� �0

n� �   � � � � ' (0 (1 1)
n�   � �� �� � � �0 1 1n�   � ! � � � "# $� �      (4) 

The governing equations for 2D flows under the influence of magnetic field are given by 

0
u v

x y

) )
� �

) )
         (5) 

2
0

xyxxu u u p
u v B u

t x y x x y

��
� �

)� � )) ) ) )
� � � � � � �� �) ) ) ) ) )� �

     (6) 

xy yyv v v p
u v

t x y y x y

� �
�

) )� �) ) ) )
� � � � � �� �) ) ) ) ) )� �

      (7) 

2 2

2 2 xx yy xy

T T T T T u v v u
u v

t x y x y x y x y
�� � � � �

� �� � � �) ) ) ) ) ) ) ) )
� � � � � � � �� �� � � �) ) ) ) ) ) ) ) )� � � �� �

   (8) 

2 2 2 2

2 2 2 2
T

m

DKC C C C C T T
u v D

t x y x y T x y

� � � �� �) ) ) ) ) ) )
� � � � � �� � � �� �) ) ) ) ) ) )� � � � � �

    (9) 

where TK  and mT indicates the thermal diffusion ratio and the mean temperature. 

The equation governing the flexible wall motion is expressed as � �*
0L p p� � �   (10) 

where *L  is an operator such that 
2 2

*
12 2

L m C
x t t

� ) ) )
� � � �

) ) )
    (11) 

Here 0p is the outside surface pressure on the wall due to the tension and we choose that 0 0p � . 
The fluid-wall interface boundary conditions with velocity slip, thermal and concentration jump 
conditions are given by 

1 1
1 2 3

0 0

0, ,
T CT C

u T Cxy T Cy y
 �  

) )
� � � � � �

) )

! " ! "
* + * +# $ # $

at y ���                    (12) 

and the wall flexibility dynamic boundary are 

� � 2
0

xyxxp u u u
L B u u v

x x x y t x y

��
� � �, ) � �)) ) ) ) )

� � � � � � �� �) ) ) ) ) ) )� �
    (13) 

The stream function � �, ,x y t	 such that  

,u v
y x

	 	) )
� � �

) )
.        (14) 

The dimensionless quantities are given below:  

,
x

x
�


 � ,
y

y
d


 � ,
cd

		 
 � ,
ct

t
�


 �
2

0

,
d

p p
c��
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d
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 �
�
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d

��
 �
0

,xx xxc

�� �
�


 �
0
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 �
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�
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�
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 � 3
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 � 0 ,Sc

D

�
�

�
� �

� �
1 0

0 1 0

,T

m

DK T T
Sr

T C C

�
�

�
�

�
3

1 3
0

,
d

E
c

�
� �
�

�
3

1
2 3

0

,
m cd

E
� �

�
3

3 2
0

Cd
E

� �
�           (15) 

With the above dimensionless quantities, equations (5)-(9) and boundary conditions (12) and (13) 
along with the long wavelength and low Reynolds numberassumptions, (after dropping the primes) 
become  

2xyp
M

x y y

� 	)) )
� �

) ) )
        (16) 

0
p

y

)
�

)
          (17) 

2 2

2 2
0xyBr

y y

� 	�
� �) )

� �� �) )� �
        (18) 

2 2

2 2

1
0Sr

Sc y y

�� � � �) � )
� �� � � �) )� � � �

        (19) 

1 2 3

1 1
0, ,

0 0xyy y y

	 � � �  
! " ! ") ) )�

� � � � � � �* + * +) ) )# $ # $
at y ���     (20)

 

� �
3 3 2

2
1 2 33 2

xy M E E E
y y x x t x t

� 	 �
) ! ") ) ) )

� � � �* +) ) ) ) ) ) )# $
     (21) 

where � �
22 2

2 2
1xy n nWe

y y

	 	�
� �) )

� � � � �) )� �
and .PrBr Ec� (Brinkman number). 

Equation (17) indicates that � �p p y- . 

Eliminating p  from equations (16) and (17), we get 

� �

22 2 2 2 2

2 2 2 2
0

(1 ) 1

n M
We

y y n y n y

	 	 	! "� �) ) ) )
* +� � �� �) ) � ) � )* +� �# $

     (22) 

3.  Solution of the problem 
The equation (16) is not a linear and its exact solution is not possible. Hence we utilise the 
perturbation technique with small Weissenberg number in the form of 

� �
� �
� �
� �

2
0 1

2
0 1

2
0 1

2
0 1

We O We

We O We

Z Z We Z O We

We O We

	 	 	

� � �

.� � �
/
/� � � /
0

� � � /
/

� � � � � � /1

        (23)
 

By using equation (23) the Perturbation solution satisfying the fluid-wall boundary conditions are 
given by 
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0 2
1 1 2 1 3 4

2sinh 1 coshcosh 1sinh
,

6 1 1 1 cosh 3

r ry SA n ryry
A y We

rS n S S n r S ry S

�
	



� �� ��! "
� �� � �* + � �� � � � � �# $ � �

     (24) 

� �
� �

� � � �

2
30

0 2
1 1 2 1 3 4

2sinh 2coshsinhcosh
1 ,

6 1 1 3 2 cosh

r ry SA nr ryry
u A We

S n S S n r S ry S

�



� ��! "
� � � � �* + � �� � � � �# $ � �

                    (25) 

� � � �� � � �

� � � � � �� �

� �� �� �

2
0 2 2 2

22
1 2

3
0

5 2 7 1 8 2 93
1 2 2

3
0

63
1 2

3 2
0 1

1 1
cosh 2 cosh 2 2 ( ) 2 sinh 2 2 1

8 2

6 1 12
432

2 sinh
4 7 5cosh 2 sinh 9 cosh
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2 ( 1) sinh

432

Br n A y
r ry r y r r r

S

A rBr n
S r S n r S r S y

S S

A rBr n ry
We ry r S ry

S S

A Br n n r ry

S

� � �  � �
� 

  
� 

�



� ��
� � � � � � � �� �� ��� �

� � � �
�

� � � �
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1 2

cosh 54 18 10cosh 2 14ry S S ry
S

� �
� �
� �
� �
� �
� �
� �

� �� �� � �� �� �� �� �

   (26) 
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� �
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� �
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          (28)

� �
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3
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2
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36 8 28cosh 4 12 66 sinh 4
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� � � �
�

 � � �� 

! "�
� � �* +

�* +# $
� � � � �� �

� � �� �� � � � �� � �

     (29) 

where 

2
2

1

M
r

n
�

�
;

� � � � � � � �
3

3
0 1 22

8
sin 2 cos2

1 2

E
A x t E E x t

r n

�� � �
�

! "� � � � �* +� # $
;

 

� �1 1cosh 1 sinhS r n r r�  �� � � ; � �2 1sinh 1 coshS r n r r�  �� � � ; 3 2coshS r�� ; 4 cosh 2S r�� ; 

� � 2
5 416 8 7 sinhS S r�� � � ; 6 sinh 2S r�� ; 7 62 11sinh 4S S r�� � ; 8 626 sinh 4S S r�� � � ; 

9 4cosh 4 5S r S�� � ; 

4.  Results and Discussion  
4.1.Velocity profiles  
The velocity expression is given in the equation (25). The velocity distributions are graphically 
presented in figures (2)-(7) to analyse the effect of velocity slip parameter 1 , hyperbolic power law 
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index n , Weissenberg number We , Hartmann number M, non-uniform parameter m , membrane 
tension parameter 1E , mass characterizing parameter 2E  and the viscous damping parameter 3E  with 

0.2x �  and 0.1t � .  Figure 2 is illustrated to study the effect of 1  on the distribution of velocity u. It 
is clear that the velocity of the fluid increases with increasing the velocity slip. From figure 3, we 
observe that the velocity increases with enhancing the power law index n of a hyperbolic tangent 
fluid.  

Figure 4 shows that the velocity of the hyperbolic tangent fluid increases with increasingWe in the 
upper half of the channel butthe behaviour is opposite in the lower half of the channel. Figure 5 
depicts that the distribution of velocity decreases with an increase in M . As expected fromfigure 6, we 
find that the flow characteristics for a divergent channel � �0m 2 is high compared to uniform channel

� �0m �  and is low for a convergent channel � �0m � . In figure 7, we observe that the velocity profile 

increases with increasing 1E and 2E ; and decreases with increasing 3E . 

4.2 Temperature profiles  
The equation (26) shows the temperature expression.Temperature distributions are plotted in figures 8-
13 to study the effects of the thermal slip parameter 2 , 1 1 2, , , , ,M We n E E and 3E  with 0.2x � and

0.1t � .Figure 8 and figure 9 are drawn to study the effect of 2  and 1  on the temperature 

distribution� . We see that the temperature increases with increasing 2  and decreases with increasing

1 . From figure 10, we observe that the temperature decreases with increasing M. In figure 11, we 
find that the temperature distribution increases with increasing We in the upper half of the channel, 
whereas it has opposite behaviour in the lower half of the channel. Figure 12 shows that an increase in 
power law index n increases the temperature. Figure 13 shows that the temperature increases with 
increasing 1E and 2E ; and it decreases with increasing 3E . 
 
4.3 Concentration profiles  
The equation (27) shows for the concentration field expression.The influence of the concentration slip 
parameter 3 , Schmidt number Sc , Soret number Sr , 1  and n on the concentration profileswith 

0.2x �  and 0.1t � are shown graphically in figures 14-18. From figure 14, we notice that the 
concentrationdistribution decreases with increasing 3 . Figures 15 and 16 illustrates that the 
concertation decreases with increasing Schmidt number and Soret number. In Figure 17 and figure 18, 
we seen that the mass concentration increases by increasing 1  and the mass concentration decreases 
by increasing n .  
 
4.4 Coefficient of heat transfer profiles 
The equation (29) gives the coefficient of heat transfer expression at the wall.  Figures from (19)-(23) 
are plotted to study the variation of thermal transfer coefficient at the flexible wall. We notice that the 
nature the thermal transfer is oscillatory because of oscillatory nature of the wall. From the figures 19, 
20, 21 and 23, the magnitude of thermal transfer coefficient decreases by increasing 1,n , M and 3E ; 

and from figures 22 and 23, it increases by increasing Br , 1E and 2E .  
 
4.5. Stream line patterns 
From equation (24) we have calculated the stream function in terms of y and figure 24 shows the 
stream line behaviour of power law index of hyperbolic tangent fluid. We found that the volume of 
trapping bolus increases with an increase of n . From figures 25 and 26, it is found that the size of the 
trapping bolus increases with increasing 1 and We . Figure 27 depicts that the size of the trapped bolus 
decreases by increasing M. 
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Figure 2. Distribution of u with y for different 

values of 1  with 1 0.6E � , 2 0.6E � , 3 0.4E � , 

0.1ε � , 2M � , 0.1m� , 0.01We � , 0.02n � . 

Figure 3. Distribution of u with y for different 

values of n  with 1 0.8E � , 2 0.8E � , 3 0.4E � , 

0.1ε � , 1 0.02 � , 0.1m� , 2M � , 0.04We� . 

  
Figure 4. Distribution of u with y for different 

values of We  with 1 1E � , 2 0.8E � , 3 0.4E � , 

0.1ε � , 1 0.04 � , 0.1m� , 2M � , 0.04n � . 

Figure 5. Distribution of u with y for different 

values of M with 1 1E � , 2 0.8E � , 3 0.4E � , 

0.1ε � , 1 0.02 � , 0.1m� , 0.01We � , 0.04n � . 

  
Figure 6. Distribution of u with y  for different 

values of m with 1 0.6E � , 2 0.6E � , 3 0.4E � , 

0.1ε � , 2M � , 1 0.02 � , 0.04We� , 0.02n � . 

Figure 7. Distribution of u with y  for different 

values of 1 2 3, ,E E E with 0.1ε � , 1 0.02 � , 

0.1m� , 0.04n � , 2M � , 0.01We � . 
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Figure 8. Temperature profiles for 2 with

1 0.6E � , 2 0.6E � , 3 0.4E � , 0.1ε � , 1 0.02 � ,

0.02n � , 2M � , 0.1m� , 0.01We � , 1Br � . 

Figure 9. Temperature profiles for 1  with 

1 0.6E � , 2 0.6E � , 3 0.4E � , 0.1ε � , 2M � , 

2 0.02 � , 0.01We � , 0.02n � , 0.1m� , 2Br �  

  
Figure 10. Temperature profiles for M with

1 0.6E � , 2 0.6E � , 3 0.4E � , 0.1ε � , 1 0.02 � ,

2 0.02 � , 0.06We� , 0.02n � , 0.1m� , 2Br � . 

Figure 11. Temperature profiles for We  with

1 0.6E � , 2 0.6E � , 3 0.4E � , 0.1ε � , 1 0.02 � , 

2 0.02 � , 2M � , 0.02n � , 0.1m� , 2Br � . 

  
Figure 12. Temperature profiles for n  with 

1 0.6E � , 2 0.6E � , 3 0.4E � , 0.1ε � , 1 0.02 �

, 2 0.02 � , 2M � , 0.01We � , 0.1m� , 2Br � . 

Figure 13. Temperature profiles for 1E , 2E and

3E  with 0.1ε � , 1 0.02 � , 2 0.02 � , 0.06We�
, 2M � , 0.02n � , 0.1m� , 2Br � . 
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Figure 14. Concentration profiles for 3 with 

1 0.6E � , 2 0.6E � , 3 0.4E � , 0.1ε � , 1 0.02 � ,

0.01We � , 0.1m� , 2M � , 0.04n � , 1.2Br � , 
0.2Sc � , 1Sr � . 

Figure 15. Concentration profiles for Sc  with 

1 0.6E � , 2 0.6E � , 3 0.4E � , 0.1ε � , 1 0.01 � ,

3 0.02 � , 0.01We � , 0.1m� , 2M � , 

0.02n � , 2Br � , 2Sr � . 

  
Figure 16. Concentration profiles for Sr  with 

1 0.6E � , 2 0.6E � , 3 0.4E � , 0.1ε � , 1 0.01 � ,

3 0.02 � , 0.01We � , 0.1m� , 2M � , 0.02n �
, 2Br � , 0.2Sc � . 

Figure 17. Concentration profiles for 1  with 

1 0.6E � , 2 0.6E � , 3 0.4E � , 0.1ε � , 3 0.02 � ,

0.01We � , 0.1m� , 2M � , 0.04n � , 1.2Br �
, 0.2Sc � , 2Sr � . 

 
Figure 18. Concentration profiles for n  with 1 0.6E � , 2 0.6E � , 3 0.4E � , 0.1ε � , 1 0.01 � ,

3 0.02 � , 0.02We� , 0.1m� , 2M � , 2Br � , 1Sc � , 2Sr � . 
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Figure 19. Distribution of Z with x for different 
values of 1  with 1 1E � , 2 0.6E � , 3 0.4E � , 

0.1ε � , 0.1m� , 0.04We� , 2Br � , 2 0.02 � ,

3M � , 0.02n � , 0.1t � . 

Figure 20. Distribution of Z with x for different 
values of n  with 1 1E � , 2 0.6E � , 3 0.4E � , 

0.1ε � , 0.1m� , 0.04We� , 2Br � , 2 0.02 � ,

3M � , 1 0.02 � , 0.1t � . 

  
Figure 21. Distribution of Z with x for different 
values of We  with 1 1E � , 2 0.6E � , 3 0.4E � , 

0.1ε � , 0.1m� , 1 0.02 � , 2Br � , 2 0.02 � , 

3M � , 0.2n� , 0.1t � . 

Figure 22. Distribution of Z with x for different 
values of Br  with 1 1E � , 2 0.6E � , 3 0.4E � , 

0.1ε � , 0.1m� , 0.04We� , 1 0.02 � , 

2 0.02 � , 3M � , 0.2n� , 0.1t � . 

 
Figure 23. Distribution of Z with x for different values of 1E , 2E and 3E  with  0.1ε � , 0.1m� , 

0.04We� 1 0.02 � , 2 0.02 � , 3M � , 0.2n� , 2Br � , 0.1t � . 
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(a) 

 
(b) 

 
(c) 

Figure 24. Streamlines for (a) 0.00n �  (b) 0.01n �  (c) 0.02n �  with  1 0.6E � , 2 0.6E � , 

3 0.4E � , 1 0.03 � , 0.04We� , 0.1ε � , 0.1m� , 3M � , 0.1t �  

 

 
(a) 

 
(b) 
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(c) 

Figure 25. Streamlines for (a) 1 0.00 � (b) 1 0.03 �  (c) 1 0.06 �  with 1 0.6E � , 2 0.6E � , 

3 0.4E � , 0.1ε � , 0.1m� , 0.04We� , 3M � , 0.02n � , 0.1t � . 
 

 
(a) 

 
(b) 

 
(c) 

Figure 26. Streamlines for (a) 0.00We�  (b) 0.02We�  (c) 0.04We�  with 1 0.6E � , 2 0.6E � , 

3 0.4E � , 1 0.02 � , 0.1ε � , 0.1m� , 3M � , 0.02n � , 0.1t � . 
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(a) 

 
(b) 

 
(c) 

Figure 27. Streamlines for (a) 2.4M � , (b) 2.6M �  (c) 2.8M �  with 1 0.6E � , 2 0.6E � , 

3 0.4E � , 1 0.02 � , 0.1ε � , 0.1m� , 0.02We� , 0.02n � , 0.1t � . 
 

5.  Conclusions  
In this paper, we study the combined effects of velocity slip conditions, temperature, concentration 
jump boundary conditions and wall properties on MHD peristaltic transport of a hyperbolic tangent 
fluid in a non-uniform channel under the assumptions of long wavelength and low Reynolds number. 
The perturbation solutions in terms of small Weissenberg number are obtained for the stream function, 
velocity, temperature, concentration and the coefficient of heat transfer. The effect of various 
parameters on the flow characteristics are presented graphically and discussed. The main observations 
of this study are as follows: 
3 The velocity increases with the increasing the velocity slip parameter.  
3 The velocity and temperature increases with increasing the power law index of a hyperbolic tangent 

fluid whereas the concentration decreases with increasing n . 
3 The velocity profile increases with an increasing the Weissenberg number in the upper half of the 

channel whereas it decreases in the lower half of the channel. 
3 The heat transfer coefficient is oscillatory in nature. 
3 The size of trapped bolus increases with the increase of power law index n . 
3 The results of no slip conditions can be deduced from the analysis when 1 20, 0 � � and 3 0 � . 
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