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ABTRACT 

This article aims to examine the MHD unsteady flow of Williamson nanofluid in a vertical channel filled with a porous material and oscillating wall 

temperature.  The modeling of this problem is transformed to ordinary differential equations by collecting the non-periodic and periodic terms and 

then series solutions are obtained by using a powerful method known as the homotopy analysis method (HAM).  The influence of involved 

parameters on heat and mass transfer characteristics of the fluid flow is computed and presented graphically. Further, variations on volume flow rate, 

coefficient of skin friction, heat transfer rate and mass transfer rate are also discussed through tables. The study reveals that with increasing 

thermophoresis parameter, the fluid velocity decrease significantly however an enhancement in temperature distribution is noticed. With an increase 

in Prandtl number lead to enhance fluid temperature whereas it lead to decrease the fluid concentration considerably. 
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1. INTRODUCTION 

Nanofluid is a fluid containing small particles, called nanoparticles. 

These fluids are engineered colloidal suspensions of nanoparticles in a 

base fluid.  Previous studies indicate that an enormous enhancement in 

the emission intensity, quantum yield, and lifetime of the molecular 

rectangles has been observed when the solvent medium is changed from 

organic to aqueous (Manimaran et al., 2002; Manimaran et al., 2003). 

In particular, Alkoxy-bridged rhenium (I) rectangles 

3 2 3 2[{(CO) Re( OR) Re(CO) }µ −  
2( bpy) ]µ −  (1,R =

4 9C H ; 2, R 

=
8 17C H ; 3, R =

12 25C H ; bpy=4, 4' -bipyridine) comprising long alkyl 

chains form optically transparent aggregates and exhibit luminescence 

enhancement in the presence of water. Addition of water favors the 

aggregation of Re(I) molecular rectangle resulting in the luminescence 

enhancement, and this phenomenon has been traced out using light 

scattering techniques. Generally, the nanoparticles used in nanofluids 

are typically made of metals, oxides, carbides, or carbon nanotubes and 

the base fluids used are usually water, ethylene glycol and oil.     

Moreover, the study of nanofluid is of growing interest for the 

observation of enhanced thermal conductivity which may throw light on 

the urgent cooling problems in engineering, for instance, the cooling of 

integrated circuits and micro-electromechanical systems (See Lee et al., 

1999, Manimaran et al., 2002; Manimaran et al., 2003; Xuan and Li, 

2003; Buongiorno, 2006; Thanasekaran, et al., 2007, Marga et al., 2005; 

Kakac, Pramuanjaroenkij, 2009). Vajravelu et al. (2011) presented the 

detailed analysis of convective heat transfer in the flow of viscous Ag–

water and Cu–water nanofluids over a stretching surface.  In reality 

most liquids are non-newtonian in nature, which are abundantly used in 

many industrial and engineering applications. In view of this, Niu et al. 

(2012) have theoretically investigated the slip-flow and heat transfer of 

a non-newtonian nanofluid in a microtube in which the power-law 

rheology is adopted to describe the non-newtonian characteristics of the 

flow.  Xu et al. (2013) have analyzed the mixed convection flow of a 

nanofluid in a vertical channel with the Buongiorno mathematical 

model.  Noreen et al. (2013) have discussed the mixed convection flow 

of nanofluid in the presence of an inclined magnetic field.  Akbar et al. 

(2013) have examined the numerical study of Williamson nanofluid 

flow in an asymmetric channel. Hina et al. (2014) have studied the 

peristaltic transport of nanofluids in a curved channel with the effects of 

Brownian motion and thermophoretic diffusion of nanoparticles using 

long wavelength and low Reynolds number assumptions.  Srinivas et al. 

(2014)  have presented the flow and thermal analysis of nanofluid in the 

wavy channel using CFD package assuming single phase approach.  

The theoretical investigation of MHD Williamson nanofluid in a 

tapered asymmetric channel under the action of a thermal radiation 

parameter with peristalsis was studied by Kothandapani and Prakash 

(2015)  and the authors have indicated that such analysis may serve for 

the intrauterine fluid motion in a sagittal cross-section of the uterus 

under cancer therapy and drug analysis.  More recently, Shehzad et al. 

(2015) have investigated the two-dimensional magnetohydrodynamic 

(MHD) boundary layer flow of nanofluid in the presence of an applied 

magnetic field with Brownian motion and thermophoresis effects.     

Mixed convection flow through a channel has be en extensively studied 
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because of its occurrence in many practical applications such as the 

cooling of modern electronic systems, heat exchangers, solar energy 

collection, chemical processing equipments, transport of heated or 

cooled fluids, etc.  The analysis of heat and mass transfer in porous 

media has been the important subject due to its practical applications 

such as packed-bed catalytic reactor, geothermal reservoirs, solid-

matrix heat exchangers, chemical catalytic reactors, high performance 

insulation for buildings, drying of porous solids, thermal insulation, and 

petroleum resources etc (Cimpean et al., 2009; Srinivas and 

Muthuraj,2010; Abdul Hakeem et al., 2014; Freidoonimehr et al., 2015; 

Srinivasacharya and Swamy Reddy, 2015).  Most of the previous 

studies discussed the mixed convection problems in porous media based 

on the model of Darcy's law that neglects important effects such as 

boundary and inertia effects. The pioneering work on the boundary and 

inertia effects of porous media on convective flow and heat transfer was 

analyzed by Vafai and Tien (1981). These models have been applied for 

simulating more generalized situations such as flow through packed and 

fluidized beds and liquid metal flow through dendritic structures in 

alloy casting(Vafai and Tien, 1981; Kou and Lu, 1993, Nithiarasu et al., 

1997; Cimpean et al., 2009; Srinivas and Muthuraj,2010; Abdul 

Hakeem et al., 2014; Freidoonimehr et al., 2015; Srinivasacharya and 

Swamy Reddy, 2015). Cimpean et al. (2009) examined a fully 

developed mixed convection flow between inclined parallel flat plates 

filled with a porous medium with constant flow rate and uniform heat 

flux.   Further, convective flows with applying uniform magnetic field 

have received new attention because of its diverse applications in the 

fields such as nuclear reactors, geothermal engineering, liquid metals 

and plasma flows, petroleum industries, the boundary layer control in 

aerodynamics and crystal growth.  In view of these applications, 

Srinivas and Muthuraj (2010) have examined the problem of MHD 

flow in a vertical wavy porous space in the presence of a temperature-

dependent heat source with slip-flow boundary condition.  The effect of 

partial slip on MHD flow over a porous stretching sheet with the effects 

of non-uniform heat source/sink, thermal radiation and wall mass 

transfer was investigated by Abdul Hakeem (2014).    More recently, 

Freidoonimehr et al.(2015)] have investigated unsteady MHD free 

convective flow past a permeable stretching vertical surface in a Nano-

fluid.  Mixed convection heat and mass transfer flow over a vertical 

plate in power-law fluid saturated porous medium with chemical 

reaction and radiation effects was examined by Srinivasacharya and 

Swamy Reddy (2015). 

Radiation with heat transfer effects on convection flow is very 

important in space technology and high temperature process. The 

inclusion of radiation effects in the energy equation had lead to a highly 

nonlinear partial differential equation. A few authors have developed 

theoretical models to describe the effects of radiation on 

Newtonian/non-Newtonian flows in different geometries (Cogley et al., 

1968; Chamkha et al., 2002; Hakim and Rashad, 2007; Rashad, 2008, 

Chamkha and Ben, 2008, Srinivas and Muthuraj, 2010; Singh, 2011; 

Hady et al., 2012; Muthuraj et al., 2013; Hayat et al., 2013; raju et al., 

2014; Abdul Hakeem et al., 2015). Singh et al. (2011) have examined 

the effect of surface mass transfer on MHD mixed convection flow past 

a heated vertical flat permeable surface in the presence of 

thermophoresis, radiative heat flux and heat source/sink using similarity 

transformation.  Hady et al. (2012) have studied the flow and heat 

transfer characteristics of a viscous nanofluid over a nonlinearly 

stretching sheet in the presence of thermal radiation, included in the 

energy equation, and variable wall temperature using shooting 

technique with a fourth-order Runge-Kutta scheme. Heat and mass 

transfer effects on MHD fully developed flow of couple stress fluid in a 

vertical channel with viscous dissipation and oscillating wall 

temperature Muthuraj et al. (2013).  The radiation effect on the three-

dimensional magneto-hydrodynamic (MHD) flow of an Eyring Powell 

fluid was discussed by Hayat et al. (2013).  MHD free convective, 

dissipative boundary layer flow past a vertical porous surface in the 

presence of thermal radiation, chemical reaction and constant suction, 

under the influence of uniform magnetic by regular perturbation 

technique was examined by Raju et al. (2014).  More recently, Hakeem 

et al. (2015) have discussed MHD second order slip flow of nanofluid 

over a stretching/shrinking sheet with thermal radiation effect 

     To the best of authors’ knowledge no investigation has been made 

yet to analyze the oscillatory unsteady MHD flow of a Williamson 

nanofluid in a vertical channel with thermal radiation in the presence of 

chemical reaction. Therefore, our aim is to analyze the combined 

effects of radiative heat flux on fully developed oscillatory flow of 

Williamson nanofluid in a vertical porous space using HAM, which is a 

powerful and proven tool for solving highly non-linear differential 

equations(Liao, 2003, 2010, Raftari and Vajravelu,2012, Rashidi et al., 

2012, Liao, 2012, Asgari, 2013, Muthuraj et al., 2014; Shukla et al., 

2014; Srinivas et al., 2015, Immaculate et al., 2015, Jamalabadi, 2015) 

and the effects of involved parameters on the flow, heat and mass 

transfer characteristics are examined in detail.  This type of 

investigation bears potential applications which are highly affected with 

heat enhancement concept (e.g., cooling of electronic devices, cooling 

problems in engineering).  The organization of the paper is as follows.  

The problem is formulated in Section 2.  Section 3 comprises the 

solution of the problem.   The graphical results are presented and 

discussed in Section 4. Section 5 contains the concluding remarks. 

2. FORMULATION OF THE PROBLEM 

We consider unsteady, two-dimensional, fully developed, 

magnetohydrodynamic, Williamson nanofluid flow in a porous space 

bounded by two vertical walls and the distance between the channel 

walls is 2L. The walls are kept at different temperatures and 

concentrations but the temperature at the right wall is oscillating with 

time. The channel walls are at the positions y=-L and y=L as shown in 

Fig.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Flow geometry of the problem 

 

 A constant magnetic field of strength B0 is applied perpendicular to the 

channel walls.  The fluids in the region of the parallel-plate channel are 

incompressible, and their transport properties are assumed to be 

constant.  A coordinate system is chosen such that the x-axis is parallel 

to the flow direction and y- axis is orthogonal to the channel walls. 

Under the usual Boussinesq approximation, the fluid flow governed by 

the following equations 

u v
0

x y

∂ ∂
+ =

∂ ∂
                                                                                       (1) 

u u u
u vf

t x y

 ∂ ∂ ∂
 ρ + +
 ∂ ∂ ∂ 

 

xyxx
f t 0 0

p
g (1 C )(T T )

x x y

∂τ∂ ∂τ
= − + ρ β − −

∂ ∂ ∂
+ +  
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( )p2 2f
c p f 0 0

C
g ( )(C C ) B u u u

k k

ρµϕ
+ β ρ − ρ − − σ − −              (2)                         

xy yy
f

v v v p
u v

y x yt x y

  ∂τ ∂τ∂ ∂ ∂ ∂
 ρ + + = −
  ∂ ∂ ∂∂ ∂ ∂ 

+ +                                     (3) 

( ) 2
T T T

C u v K Tp f t x y

 ∂ ∂ ∂
 ρ + + = ∇
 ∂ ∂ ∂ 

q

y

∂
−

∂
 

( )
22

T

B

C T C T D T T
C Dp p x x y y x yT

     ∂ ∂ ∂ ∂ ∂ ∂   + ρ + + +      ∂ ∂ ∂ ∂ ∂ ∂       

              (4) 

2 2 2 2

T T
B 2 2 2 2

C C C C C D k T T
u v D

t x y x y x yT

   ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = + + +   

∂ ∂ ∂ ∂ ∂ ∂ ∂   
.             (5)  

The boundary conditions of the problem are
 

u 0= , 
1T T= , 

1C C=   at  y L= −                                                       (6)
 

u 0= , '
2T T= , '

2C C=      at      y L= .                                              (7) 

Where,
.

xx 0

u
2 (1 )

x

∂
τ = µ + Γ γ

∂
; 

.

xy 0

u v
(1 )

y x

 ∂ ∂
τ = µ + Γ γ + 

∂ ∂ 
; 

.

yy 0

v
2 (1 )

y

∂
τ = µ + Γ γ

∂
,

2 22
. u u v v

2 2
x y x y

   ∂ ∂ ∂ ∂ 
γ = + + +    

∂ ∂ ∂ ∂     
, 

' i t
2 2 2T T (T T)e ω= + ε − , ' i t

2 2 2C C (C C)e ω= + ε − , 1T  and 2T  are the 

initial wall temperatures, 1C  and 2C  are the wall concentrations, T is 

the mean value of 1T  and 2T , C is the mean value of 1C  and 2C , 0T  

is the inlet temperature and 
0U  is the entrance velocity, 0C is the initial 

concentration, 0B  is the transverse magnetic field, 
BD  is the Brownian 

diffusion coefficient, 
TD  is the thermophoresis diffusion coefficient, g 

is the acceleration due to gravity, p is the pressure, T is the temperature, 

f p,ρ ρ densities of the base fluid and nanoparticle, respectively, 

p f( C )ρ is the heat capacity of the fluid,  p p( C )ρ gives the effective heat 

capacity of the nanoparticle material, ν  is the kinematic viscosity, ϕ  is 

the porosity of the medium, Γ is the time constant, k is the permeability 

of the medium, K is the thermal conductivity of the fluid, pC is specific 

heat, µ  is the dynamic viscosity, σ is the coefficient of electric 

conductivity, tβ  is the  coefficient of thermal expansion, cβ  is the  

coefficient of expansion with concentration, Tk  is the thermal 

diffusion ratio, 
2

0

q
4α (T T)

y

∂
= −

∂
 is the radiative heat flux (See 

Srinivasacharya and Swamy Reddy, 2015; Hady et al., 2012) and 

several references therein), 
2α  is the mean absorption coefficient, ω  is 

the frequency, 1ε << is the oscillating parameter. 

x
x*

L
= ; 

y
y*

L
= ;  

0

u
u*

U
= ;   

2
f 0

p
p*

U
=

ρ
; 

2

T T

T T

−
θ =

−
;  

2

C C

C C

−
φ =

−
;  0tU

t*
L

=                                                                         (8) 

Invoking the above non-dimensional variables, the basic field equations 

(1)-(5) and boundary conditions (6)-(7) can be expressed in the 

following non- dimensional form (after dropping *) 

e r

2
c 1

u u
1 W Huu p 1

y y y
t x Re

G Iu K

G
   ∂ ∂ ∂

+ − θ  ∂ ∂  
− ∂ ∂ ∂    ∂ ∂  

+ φ − + 

+
= +                      (9)                         

p
0

y

∂
= −

∂
                                                                                             (10) 

22
*

1 b t2
r

1
Re N N N K

t P y y yy

   ∂θ ∂ θ ∂φ ∂θ ∂θ
+ θ + + +    ∂ ∂ ∂ ∂∂   

=                    (11) 

2 2

2 2

t

e b

N1
Re

t L N yy

 ∂φ φ ∂ θ
 

∂ ∂  

∂= +
∂

                                                          (12)  

The corresponding boundary conditions are:  

u 0=     1θ = −           1φ = −           at   y 1= −                                   (13) 

u 0=    
i t

1 e
ωθ = + ε   

i t
1 e

ωφ = + ε   at   y 1=                                     (14) 

Where,
a

1
H M

D
= + ,

p p*

p f

( C )

( C )

ρ
τ =

ρ
,

* 0
0

2

T T

T T

−
ϑ =

−
,

* 0
0

2

C C

C C

−
ϕ =

−
, 

* *
1 r 0 c 0K G G= ϑ + ϕ , * 2 *

1 0K N= ϑ . 

The above system of equations (9)-(14) are coupled whose exact 

solution is not easy to obtain.  Therefore, we assume the solution in the 

form of [See Refs. Cogley et al.(1968) and Muthuraj et al. (2013)] 
i t

0 1u u (y) e u (y)ω= + ε ; i t
0 1(y) e (y)ωθ = θ + ε θ ; 

i t
0 1(y) e (y)ωφ = φ + ε φ ; i t

0 1p p (x) e p (x)ω= + ε                                  (15) 

Using (15) in to the equations (9) - (14) yield the following system of 

equations with the corresponding boundary conditions.  

 

2.1 Zeroth order equations: 

 
2

0 0
e 0 r 0 c 0

2
0 1

du dud
W Hu G G

dy dy dy

dp0Iu K Re
dx

  
 + − θ + φ 
   

− + =

+
                    (16)                 

22
*0 0 0 0

1 0 b r t r r2

d d d d
N N P N P K P 0

dy dy dydy

 θ φ θ θ
+ θ + + + = 

 
                (17) 

2 2
t 0

2 2
b

d N d0 0
Ndy dy

φ θ
=+                                                                         (18) 

The corresponding boundary conditions are:  

0u 0=    0 1θ = −          0 1φ = −           at   y 1= −                              (19) 

0u 0=     0 1θ =            0 1φ =             at     y 1= .                              (20) 

2.2 First order equations: 

01 1
e 1 1

dud du du
2W Hu i Re u

dy dy dy dy

 
+ − − ω 

 
       

                    0 1 1 1

dp12Iu u G G Rer c
dx

− θ + φ+ =                             (21) 

2
0 01 1 1

1 r 1 b r2

01
t r

d dd d d
(N i ReP ) N P

dy dy dy dydy

dd
2N P 0

dy dy

 θ φθ φ θ
+ − ω θ + + 

 
θθ

+ =

                (22) 

e 1

2 2
d dNt1 1i ReL 0

2 2Ndy dyb

φ θ
− ω φ =+                                                     (23)  

With the boundary conditions,  

1u 0=     1 0θ =          1 0φ =            at     y 1= −                                (24) 

1u 0=      1 1θ =          1 1φ =             at     y 1=                                  (25) 

3. SOLUTION OF THE PROBLEM 
 

In this section, we develop analytical solutions to the system of 

nonlinear differential equations (16)-(18) and (21)-(23) by using HAM. 
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For complete description of HAM, we choose the initial guesses and the 

auxiliary linear operators for the problem stated above in the following 

forms: 

0,0 0,0 0,0u (y) 0; (y) y; (y) y= θ = φ =                                              (26) 

1,0 1,0 1,0

1 y 1 y
u (y) 0; (y) ; (y)

2 2

+ +
= θ = φ =                                   (27) 

''

3

'' ''

1 0 0 2 0 0 0 0
L (u ) u L ( ) L ( )= θ = θ φ = φ                                            (28) 

''

4 6

'' ''

1 1 5 1 1 1 1
L (u ) u L ( ) L ( )= θ = θ φ = φ                                            (29) 

with
1 1 2L (c y c ) 0+ = ,

2 3 4L (c y c ) 0+ = ,
3 5 6L (c y c ) 0+ =

4 7 8L (c y c ) 0+ = ,  
5 9 10L (c y c ) 0+ =  &  

6 11 12L (c y c ) 0+ = , where 

ic (i 1...to 12)=   are constants and prime denotes the derivative with 

respect to y. 

 

3.1 Zeroth-order deformation equations: 
Let [0,1]℘∈  be an embedding parameter and ℏ  be the auxiliary non-

zero parameter. We construct the following zeroth-order deformation 

equations. 

 1 0 0,0 1 0 0 0

0 0

ˆ ˆˆ ˆ(1 )L [u (y, ) u (y)] [u (y, ), (y, ), (y, )],

ˆ ˆu ( 1, ) 0,u (1, ) 0

−℘ ℘ − =℘ ℘ θ ℘ φ ℘

− ℘ = ℘ =

Nℏ
   (30) 

                                                                                                    

2 0 0,0 2 0 0

0 0

ˆ ˆ ˆ(1 )L [ (y, ) (y)] [ (y, ), (y, )]

ˆ ˆ( 1, ) 1, (1, ) 1

−℘ θ ℘ − θ =℘ θ ℘ φ ℘

θ − ℘ = − θ ℘ =

Nℏ
                   (31) 

                                                                                                      

3 30 0,0 0 0

0 0

ˆ ˆ ˆ(1 )L [ (y, ) (y)] [ (y, ), (y, )]

ˆ ˆ( 1, ) 1, (1, ) 1

−℘ φ ℘ − φ =℘ θ ℘ φ ℘

φ − ℘ = − φ ℘ =

Nℏ
                    (32) 

                                                                                                            

1 1,0 1 14 4 1

1 1

ˆ ˆˆ ˆ(1 )L [u (y, ) u (y)] [u (y, ), (y, ), (y, )]

ˆ ˆu ( 1, ) 0,u (1, ) 0

−℘ ℘ − =℘ ℘ θ ℘ φ ℘

− ℘ = ℘ =

Nℏ
      (33) 

                                                                                               

5 51 1,0 1 1

1 1

ˆ ˆ ˆ(1 )L [ (y, ) (y)] [ (y, ), (y, )]

ˆ ˆ( 1, ) 0, (1, ) 1

−℘ θ ℘ − θ =℘ θ ℘ φ ℘

θ − ℘ = θ ℘ =

Nℏ
                     (34) 

 

       
6 61 1,0 1 1

1 1

ˆ ˆ ˆ(1 )L [ (y, ) (y)] [ (y, ), (y, )]

ˆ ˆ( 1, ) 0, (1, ) 1

−℘ φ ℘ − φ =℘ θ ℘ φ ℘

φ − ℘ = φ ℘ =

Nℏ
              (35) 

                                                                                                                                                           

where, 

  

2

0 0
e

2

0 r 0 c

1 0 0

0 0 1

0

ˆ ˆu u
W

y y y

p
0ˆ ˆˆ ˆHu G Iu K

ˆ ˆˆ[u (y, ), (y, ), (y, )]

Re
x

G

  ∂ ∂ ∂
 +  

∂ ∂ ∂   

℘ θ ℘ φ ℘ =

∂
− θ + φ − +

∂
+ −

N

          (36)      

                    

 
2

0
2

0
0 0

0
1 0 b r2

ˆ ˆ ˆ
ˆN N P

y
ˆ ˆ[ (y, ), (y, )]

y y

∂ θ ∂φ ∂θ
+ θ +

∂ ∂
θ ℘ φ ℘ =

∂
N        

                             

2

*0
t r r

ˆ
N P K P

y

 ∂θ
+ + 

 ∂ 
                                           (37) 

 
03 0

ˆ ˆ[ (y, ), (y,

2 2ˆ ˆN0 t 0
2 2Ny b

]
y

)θ ℘ φ ℘ =
∂ φ ∂ θ

+
∂ ∂

N                                       (38)                                                       

1 0 1
1 1 14 e

1 1 0 1 1 c 1

ˆ ˆ ˆu u u
2W

y y y y

p
1ˆ ˆˆ ˆ ˆ ˆHu i Re u 2Iu u G G R

ˆ ˆˆ[u (y, ), (y

er

, ), (y, )]

x

 ∂ ∂ ∂ ∂
+ 

∂ ∂ ∂ ∂ 

∂
−

℘

− ω − θ + φ
∂

θ ℘ φ ℘ =

+ −

N

            (39)  

                               
2

21
5 1 r 12

1 0 0 1 1 0
b r t r

1 1

ˆ
ˆ(N i ReP )

y

ˆ ˆ ˆ ˆ ˆ ˆ
N P

ˆ ˆ[ (y,

2N P
y y y y y y

), (y, )]
∂ θ

+ − ω θ
∂

 ∂φ ∂θ ∂φ ∂θ ∂φ ∂θ
+ + + 

 ∂

θ ℘ φ ℘

∂ ∂ ∂

=

∂ ∂

N

                       (40) 

t
1 16 e 1

b

2 2ˆ ˆ
N1 1ˆi ReL

2 2Ny

ˆ ˆ[ (y, ), (y ]
y

, )θ ℘
∂ φ ∂ θ

− ω φ
∂

φ ℘ =
∂

+N                       (41)                 

 

For 0 and 1℘= ℘= , we have  

0 0,0 0 0
ˆ ˆu (y,0) u (y) u (y,1) u (y)= =                                                     (42)                 

0 0,0 0 0
ˆ ˆ(y,0) (y) (y,1) (y)θ = θ θ = θ                                                      (43) 

0 0,0 0 0
ˆ ˆ(y,0) (y) (y,1) (y)φ = φ φ = φ                                                      (44)    

 1 1,0 1 1
ˆ ˆu (y,0) u (y) u (y,1) u (y)= =                                                     (45)                  

1 1,0 1 1
ˆ ˆ(y,0) (y) (y,1) (y)θ = θ θ = θ                                                       (46) 

1 1,0 1 1
ˆ ˆ(y,0) (y) (y,1) (y)φ = φ φ = φ                                                       (47)    

when ℘  increases from 0 to 1, then 
0

û (y, ),℘
0 0

ˆ ˆ(y, ), (y, )θ ℘ φ ℘ , 

1
û (y, ),℘

1 1
ˆ ˆ(y, ), (y, )θ ℘ φ ℘  vary from initial guess  0,0 0,0u (y), (y),θ  

0,0 (y)φ , 1,0 1,0 1,0u (y), (y), (y)θ φ  to the approximate analytical solution 

0 0 0u (y), (y), (y)θ φ ,
1 1 1u (y), (y), (y)θ φ . 

 

By expanding
0 0 0

ˆ ˆû (y, ), (y, ), (y, )℘ θ ℘ φ ℘ , 
1 1 1

ˆ ˆû (y, ), (y, ), (y, )℘ θ ℘ φ ℘  in 

Taylor series with respect to ℘ one gets, 

                 
m

m

0 0,0 0,m 0,m m
m 1 0

ˆ1 u(y, )
û (y, ) u (y) u (y) , u (y)

m!

∞

= ℘=

∂ ℘
℘ = + ℘ =

∂℘
∑      (48)                 

                 

m
m

0 0,0 0,m 0,m m
m 1

0

ˆ1 (y, )ˆ (y, ) (y) (y) , (y)
m!

∞

=
℘=

∂ θ ℘
θ ℘ = θ + θ ℘ θ =

∂℘
∑        (49)                 

m
m

0 0,0 0,m 0,m m
m 1

0

ˆ1 (y, )ˆ (y, ) (y) (y) , (y)
m!

∞

=
℘=

∂ φ ℘
φ ℘ = φ + φ ℘ φ =

∂℘
∑       (50)                  

                
m

m

1 1,0 1,m 1,m m
m 1 0

ˆ1 u(y, )
û (y, ) u (y) u (y) , u (y)

m!

∞

= ℘=

∂ ℘
℘ = + ℘ =

∂℘
∑       (51)                 

m
m

1 1,0 1,m 1,m m
m 1

0

ˆ1 (y, )ˆ (y, ) (y) (y) , (y)
m!

∞

=
℘=

∂ θ ℘
θ ℘ = θ + θ ℘ θ =

∂℘
∑          (52)                 

     

m
m

1 1,0 1,m 1,m m
m 1

0

ˆ1 (y, )ˆ (y, ) (y) (y) , (y)
m!

∞

=
℘=

∂ φ ℘
φ ℘ = φ + φ ℘ φ =

∂℘
∑          (53)                 

 In which ℏ  is chosen in such a way that these series are convergent at 

1℘ = , therefore we have the solution as follows:  

 

0 0,0 0,m

m 1

u (y) u (y) u (y),
∞

=

= +∑  
0 0,0 0,m

m 1

(y) (y) (y),
∞

=

θ = θ + θ∑   
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0 0,0 0,m

m 1

(y) (y) (y)
∞

=

φ = φ + φ∑                                                                 (54) 

1 1,0 1,m 1 1,0 1,m

m 1 m 1

u (y) u (y) u (y), (y) (y) (y),
∞ ∞

= =

= + θ = θ + θ∑ ∑

1 1,0 1,m

m 1

(y) (y) (y)
∞

=

φ = φ + φ∑                                                                  (55) 

 

3.2 The m-th order deformation equations: 
 

By differentiating the zeroth-order deformation equations (30)-(35) m-

times with respect to ℘  and then dividing them by m! and finally 

setting 0℘ = , we obtain the following m-th order deformation 

equations: 

0u

1 0,m m 0,m 1 mL [u (y) u (y)] R (y)−− χ = ℏ                                                 (56)             

0

0,m m 0,m 1 m2L [ (y) (y)] R (y)θ
−θ − χ θ = ℏ                                                 (57)       

0

0,m m 0,m 1 m3L [ (y) (y)] R (y)φ
−φ − χ φ = ℏ                                                 (58)                   

1u

1,m m 1,m 14 mL [u (y) u (y)] R (y)−− χ = ℏ                                                 (59)                            

1

1,m m 1,m 1 m5L [ (y) (y)] R (y)θ
−θ − χ θ = ℏ                                                  (60)                                                

1

1,m m 1,m 1 m6L [ (y) (y)] R (y)φ
−φ − χ φ = ℏ                                                  (61)                                                     

 

together with conditions 

 

0,m 0,mu ( 1) 0 u (1) 0− = =                                                                  (62)                                                             

0,m 0,m( 1) 0 (1) 0θ − = θ =                                                                   (63)                      

0,m 0,m( 1) 0 (1) 0φ − = φ =                                                                   (64)                                                  

1,m 1,mu ( 1) 0 u (1) 0− = =                                                                    (65)           

1,m 1,m( 1) 0 (1) 0θ − = θ =                                                                    (66)                                  

1,m 1,m( 1) 0 (1) 0φ − = φ =                                                                    (67)       

 

where, 

0

m 1
u '' ' ''

m 0,m 1 e 0,m 1 0,m 1

k 0

0
r 0,m 1 c 0,m 1

m 1

0,m 1 0,m 1 k 0,k

k

m

0

1

R (y) u 2W u u I

dp

Hu u u

G G K Re (1 )
dx

−

− −

−

− − −
=

−

−

−

=

= + −

 
+ θ + φ − − χ 

 

−

+

∑ ∑
                              

0

m 1 m 1
' ' ' '

1 0,m 1 b r 0,m 1 k 0,k t r 0,m 1 k 0,k

k

m 0,m 1

0 k 0

*

r m

N N P N P

K P (1

R (y)

)

θ ′′
−

− −

− − − − −
= =

+ θ + φ θ θ= θ + θ

+ − χ

∑ ∑
              

0 " ''t
m 0,m 1 0,m 1

b

N
R (y)

N

φ
− −= φ + θ          

1 '' ' '' '

0,m 1 k 1,k 1,m 1 k 0k 1,m 1

m 1
u ''

m 1m 1 e

k 0

1
r 1,m 1 c 1,m

1,m 1

m 1

0,m 1 k 1,k

k 0

1 m

R (y) u 2W (

dp
2

u u u u ) Hu

I

i Re

G G Re

u

u (u 1 )
dx

−

−
=

−

− − −

−

− − −

−

− −
=

= +

− + θ + φ −

+ − − ω

− χ

∑

∑
                              

1 '' ' ' ' '

1 r 1,m 1 b r 1,m 1 k 0,k 0,m 1 k 1,k

m 1
' '

t r 0,m 1 k 1,

m 1

m 1,m 1

k 0

k

k 0

(N i RePR ( ) N P )(

N P

y)

2

−
θ

− − −−
=

− −

−

− −
=

+ − ω θ + φ θ + φ θ

θ φ

= θ

+

∑

∑

1 " ''t
m 1,m 1 e 1,m 1 1,m 1

b

N
R (y) i ReL

N

φ
− − −= φ − ω φ + θ         

and, 

  

                                    m

0; for m 1

1; for m 1 

=
χ = 

≠
                                   (68) 

The dimensionless volume flow rate Q  is given by 

 
1

1
Q udy

−
= ∫                                                                                          (69) 

                                                      

The physical quantities of interest in this problem are the skin friction 

coefficient, Nusselt number and Sherwood number are defined as 

 w
f 2

0

τ
C

u
=

ρ
; w

2 1

h L
Nu

K(T T )
=

−
; w

B 2 1

L
Sh

D (C C )

φ
=

−
                            (70)         

Where the skin friction wτ , the convective heat flux coefficient and 

mass flux coefficient at the walls are given by (See Ref. Nadeem et al., 

2013) 

   

2

w 0

y L

u u
τ

y y
=±

    ∂ ∂
 = µ + Γ   

∂ ∂     

; 
w

y L

T
h K

y
=±

∂
= −

∂
; 

                                                     
w B

y L

C
D

y
=±

∂
φ = −

∂
                         (71)   

The dimensionless skin friction coefficient, Nusselt number and 

Sherwood number are written as,  

y 1 y 1

2

f e

y 1

1 u u
C W ; Nu ; Sh

Re y y y y
=± =±=±

  ∂ ∂ ∂θ ∂φ = + = − = −  ∂ ∂ ∂ ∂  

           (72)                 

                                                                    

4. CONVERGENCE AND THE RESIDUAL ERROR 
The system of six coupled nonlinear ordinary differential 

equations (16)-(18) and (21)-(23) with corresponding boundary 

conditions (19, 20, 24 and 25) is solved by HAM. The analytic 

expressions given in equations (54) and (55) contain the auxiliary 

parameters ℏ . The convergence and the rate of approximation for the 

HAM solution depend on ‘ ℏ ’ (Liao, [2003, 2010, 2012]).  We obtain 

the optimal values of the auxiliary parameters ‘ ℏ ’ by minimizing the 

average square residual error for the above system of six equations. 

Computation of the square residual error is similar to Refs. (Liao, 2010, 

2012; Muthuraj et al., 2014; Shukla et al., 2014; Srinivas et al., 2015, 

Immaculate et al., 2015, Jamalabadi, 2015).  In addition to the 

convergence, the accuracy of HAM solutions is also calculated through 

the average residual error. We define the residual error for equations 

(16) to (18) and (21) to (23) as: 

2

0 0
1 e 0 r 0

2
c 0 0 1

du dud
E W Hu

dy dy dy

dp0G Iu K Re
dx

G
  
 = + − θ 
   

+ φ − +

+

−

                                   (73)                 

22
*0 0 0 0

2 1 0 b r t r r2

d d d d
E N N P N P K P

dy dy dydy

 θ φ θ θ
= + θ + + + 

 
              (74) 

2 2
d dN0 t 0E3 2 2Ndy dyb

φ θ
= +                                                                   (75)  

01 1
4 e 1 1 0 1

1
1 1

dud du du
E 2W Hu i Re u 2Iu u

dy dy dy dy

dp
G G Rer c

dx

 
= + − − ω − 

 

θ + φ −+
                (76)                 
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2
0 01 1 1

5 1 r 0 b r2

01
t r

d dd d d
E (N i ReP ) N P

dy dy dy dydy

dd
2N P

dy dy

 θ φθ φ θ
= + − ω θ + + 

 
θφ

+

           (77) 

1 1
1

2 2Nd dtE i ReLe6 2 2Ndy dyb

φ θ
= − ω φ +                                                (78)  

 where 
1 2E , E , 

3E , 
4 5E ,E  and 

6E  are the residual error at mth order 

of HAM approximation for 
0 0u ,θ , 

0φ , 
1 1u , θ  and 

1φ , respectively.   

The absolute average square residual error is given by: 

 

                     

y 16
2

m i

i 1 y 1

1
E dy

6

=

= =−

∆ = ∑ ∫                                                (79)   

                                                           
 

 

 
Fig. 2 Comparison of HAM solution  versus Numerical solution 

(
rG =3, 

cG =2, 
eR 1= , I=0, 

eW =0, 
tN =0.2, 

bN =0.3,  

1N 0.5= , 
eL =5,   M = 2, 

rP =0, 
aD 2= , 1ω = , t / 2= π , 

0.01ε = ) ___ HAM Solution   - - - - Numerical Solution)     

 

Table 1. The absolute average square residual error for the optimal h at 

different order of HAM approximations for fixed values of 
rG =4, 

cG =2, 
eR 1= , I=1, 

eW =0.01, 
tN =0.1, 

bN =0.1, 
1N =0.5, 

eL =5, , M 

= 2, 
rP =2, 

aD 2= , 1ω = , t / 2= π , 0.01ε = . 

Optimal 

h 

 
m∆  

5th order 8thorder 12thorder 15thorder 

-0.167 M=2 1.344180 0.700396 0.4978340 0.00398268 

-0.171 
tN = 

0.07 

1.188230 0.440001 0.3295150 0.02973850 

-0.169 
rG =0 0.827061 0.564984 0.5029050 0.00531007 

-0.164 
rP =2.2 1.580340 0.915354 0.5772370 0.06576910 

-0.325 
eL =3 0.469983 0.125152 0.0589619 0.00296850 

 

Further, we have tabulated the minimum absolute average square 

residual errors for 5th, 8th, 12th, 15th order of HAM approximation for 

different sets of parameter values with optimal ‘ ℏ ’ in Table 1.  

Convergence of HAM solutions is noticed from Table 1. It is also clear 

from Table 1 that as the number of HAM approximation increases the 

corresponding minimum absolute square residual error decreases and 

hence it leads to more accurate solutions. From Table 2, we observe 

that the accuracy of HAM solutions is controlled by the auxiliary 

parameter’ ℏ ’ and the validity for the choice of the optimal value of 

‘ ℏ ’ is justified because there is a good agreement between the HAM 

solution and the numerical solution as shown in Figure.2 (Numerical 

solution is obtained by NDSolve scheme of Mathematica).  

 

Table 2. The absolute average square residual error for first order 

solution versus various values of auxiliary parameter h of 15th order of 

approximation for 
rG =3, 

cG =2, 
eR 1= , I=1, 

eW =0.01, 
tN =0.1, 

bN =0.1, 
1N =0.5, 

eL =5, , M = 2, 
rP =2, 

aD 2= , 1ω = , t / 2= π , 

0.01ε = .   

h 
m∆  

-0.160 0.09104030 

-0.161 0.07765390 

-0.162 0.06439320 

-0.163 0.05127270 

-0.164 0.03831280 

-0.165 0.02555410 

-0.166 0.01315420 

-0.167 0.00398268 

-0.168 0.01298730 

-0.169 0.02485870 

-0.170 0.03673680 

-0.171 0.04846570 

 

5. RESULTS AND DISCUSSIONS 

 
In order to have a clear physical insight of the problem, the influence of 

pertinent parameters, such as Hartmann number (M), permeability 

parameter (
aD ), Inertia coefficient (I), thermophoresis parameter (

tN ), 

Brownian motion parameter (
bN ), local temperature Grashof number 

(
rG ), radiation parameter (

1N ), Prandtl number (
rP ),  and Lewis 

number (
eL ),  on velocity, temperature and concentration field with 

fixed values of 
rG =3, 

cG =2, 
eR 1= , I=1, 

eW =0.01, 
tN =0.1, 

bN =0.1,  
1N 0.5= , eL =5,   M = 2, 

rP =2, 
aD 2= , 1ω = , t / 2= π  

and 0.01ε = are discussed with the help of graphs. Further, variations on 

Volume flow rate, coefficient of skin friction, Nusselt number, 

Sherwood Number for different values of local nano-particle Grashof 

number, Thermophoresis parameter, Inertia coefficient, Radiation 

parameter, Weissenberg number and Prandtl number are also discussed 

through tables.  

 

Effects of the parameters of M, 
aD ,I,

tN , 
bN ,

rG , 
1N  and 

eL on velocity distribution:    Figs. 3(a)–4(h) have been plotted in 
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order to see the effects of M, 
aD ,I,

tN , 
bN ,

rG , 
1N  and 

eW on the 

dimensionless velocity distribution.     

 
 

 

 
Fig. 3 Velocity distribution  

 

Fig. 3a is prepared to show the influences with different values of the 

Hartmann number ‘M’ on velocity with fixed values of all other 

parameters. It shows that M is lead to decelerate the velocity of the flow 

field to an appreciable amount, due to the fact that the magnetic pull of 

the Lorentz force acting on the flow field (as noted in Singh et al., 

2011). The effect of permeability parameter 
aD  on the velocity is 

displayed in Fig. 3b. It depicts that the effect of increasing the value of 

aD is to increase the velocity.  Physically means that the drag force is 

reduced by increasing the value of the porous permeability on the fluid 

flow, which results in an increased velocity (See Ref. Muthuraj et al., 

2013).  Fig. 3c illustrates the effect of different values of coefficient of 

inertia on velocity.  It is evident that increasing inertia coefficient lead 

to decrease the magnitude of velocity in the right half of the channel.  

Physically, it means that, in the presence of porous medium increases 

the flow resistance and the inertial effect enhance this resistance, which 

further reduces the flow velocity in the channel whereas it is not much 

influencing in the left half of the channel.  Fig. 3d describes the 

influence of thermophoresis parameter 
tN  on velocity. It shows that an 

increasing 
tN tends to decrease in the fluid velocity in the channel.   

 

 

 
 

 
Fig. 4 Temperature distribution 

Fig. 3e is displayed to see the effect of the Brownian number 
bN  on the 

velocity. The result indicates that velocity of the fluid increases with 

increasing
bN . The quite similar effect can be seen in Fig.3f when 

bN is replaced by Grashof number.  Physically, it is true due to the fact 

that increasing Groshof number means an increase of the buoyancy 

force, which supports the motion.Fig.3g elucidates the influence of 

radiation parameter 
tN  on ‘u’.  It is evident that increasing radiation 

parameter tends to enhance fluid velocity. The effect of the Lewis 

number 
eL  on the dimensionless velocity is displayed in Fig. 3h.  It is 

observed that 
eL  is lead to increase the fluid velocity in the right of the 

channel. However, this trend is reversed near the walls. 

 

Effects of the parameters 
1 b t rN , N , N and P on temperature 

distribution: Fig.3 illustrates the influences of 
1 b t r eN , N , N ,P and L  

on the dimensionless temperature field. Fig. 4a depicts the effect of 

radiation parameter on temperature distribution.  It is seen that, as 

expected, temperature field is an increasing function in view of the 

radiation parameter. Fig. 4b illustrates that temperature profiles shows 

the same behavior against increasing the value of Brownian number 

bN .  Fig. 4c is displayed to see the effects of thermophoresis parameter 

on temperature distribution.  It is evident that increasing 
tN  is to 

increase the fluid temperature slightly.  Fig.4d describes temperature 

profiles for different values of the Prandtl number.   From this figure, it 

is observed that temperature field is an increasing function with 

increasing
rP .  As a matter of fact, in this case, increasing  

rP  is 
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equivalent to increasing momentum diffusivity, which leads to enhance 

the fluid temperature. Also, Fig. 4e describes that 
eL is not shown much 

influence on temperature distribution.   Finally, it is important to note 

that 
rP  shows the significant influence on temperature distribution than 

the other thermal parameters.   

 

 

 

 
Fig. 5 Concentration distribution   

 

Effects of the parameters 
t b 1 r eN , N , N , P and L on 

concentration distribution: Fig. 5 depicts the behavior of the 

concentration distribution for various values of the 

parameters
t b 1 r eN , N , N , P and L .  Fig. 5a shows the variation in 

concentration field with different values of thermophoresis 

parameter
tN .  It depicts that increasing 

tN  lead to decrease species 

concentration considerably.  The quite opposite trend can be seen in 

concentration profiles if 
tN  is replaced by Brownian number 

bN  (See 

Fig.5b).  Fig. 5c is graphed to discuss the effect of radiation parameter 

1N on φ .  It is observed that increasing 
1N  is lead to suppress the 

concentration gradually. Fig. 5d shows the effect of 
rP  on 

concentration distribution.  It reveals that concentration profiles get 

sharp decrease in centre of the channel with increasing
rP .  Further, it is 

noted that when increasing 
rP  from 0 to 1 there is nearly 40% decrease 

in concentration whereas increasing 
rP  from 1 to 0.5 there is only 20% 

(approx) decrease in the same.  It means that low values of 
rP  gives 

more influence than higher values of 
rP . Fig. 5e evident that increasing 

Lewis number is tends to enhance fluid concentration gradually.    

 

Effects of the parameters 
c 1 tG , I, N , N  and 

rP on Volume flow 

rate, skin friction, Nusselt number and Sherwood number:  

The values of the Volume flow rate (Q), skin friction ( τ ), wall heat 

transfer rate (Nu) and wall mass transfer rate (Sh) with various values 

of local nano-particle Grashof number 
cG , thermophoresis parameter 

(
tN ), Radiation parameter 

1N  and Prandtl number (
rP ) for fixed 

values of 
rG =3, 

cG =2, 
eR 1= , I=1, 

eW =0.01, 
tN =0.1, 

bN =0.1, 

1N =0.5, 
eL =5, , M = 2, 

rP =2, 
aD 2= , 1ω = , t / 2= π , 0.01ε =  are 

listed in Tables 3–10 respectively.  Table 3 illustrate the variation in 

volume flow rate for different values of 
cG and

tN .  It depicts that 

increasing 
cG  and 

tN  is lead to enhance the flow rate gradually.  From 

Table 4 displays the influence of I and 
1N  on flow rate distribution, 

which indicates that radiation parameter is lead to enhance flow rate 

whereas the opposite behavior can be noticed with an increase of Inertia 

coefficient.  Table 5 demonstrates the influences of 
eW and 

1N  on skin 

friction distribution at the wall y=-1.  It is observed that an increase of 

1N and 
eW  lead to increase the skin friction.  Further, from the Table. 6 

we noticed that an increase of 
1N lead to decrease the skin friction 

whereas opposite effect can be seen with increasing
eW .  Influence of 

rP and 
1N  on Nusselt number distribution at both the walls is displayed 

in Tables 7 and 8.  It illustrates that increasing 
1N  promotes the rate of 

heat transfer while the reverse trend can be seen with increasing 
rP  at 

both the walls.  Increasing 
rP and 

1N  shows the quite opposite effect on 

local mass transfer rate distribution, which is displayed in Tables 9 and 

10. 

 

 
Fig. 6 Velocity distribution- Comparsion of HAM solution   

(
rG =1, 

eR 1= , 
eW =0.1, M = 2) 

 

6. CONCLUSIONS 
 

In this paper, we have presented a detailed analysis for unsteady 

oscillatory MHD flow of Williamson nanofluid in a vertical channel 

embedded in a porous medium.  The modeling of this problem is 

transformed to ordinary differential equations by collecting the non-

periodic and periodic terms. The reduced equations for momentum, 

energy and concentration are solved by HAM.  This work helps in 

analyzing the effects of thermophoresis parameter, Brownian motion 

parameter, Prandtl number, local nanoparticle Grashof number, local 

temperature Grashof number and Weissenberg number on unsteady 

MHD oscillatory flow of Williamson nanofluid in a vertical porous 

space.  The main findings are as follows:  The Hartmann number is 

found to decelerate the velocity of the flow field to an appreciable 

amount. The effect of increasing the value of 
aD is to enhance the 

velocity. Increasing thermophoresis parameter tends to decrease in the 

fluid velocity in the channel but the opposite trend is observed with 
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increasing Grashof number, Brownian motion parameter and radiation 

parameter.  Dimensionless temperature field is an increasing function 

with increasing thermal parameters
1 b t rN , N , N and P .  The increasing 

values of 
t 1 rN , N and P  lead to suppress the species concentration 

significantly where as the reverse effect can be noticed by increasing 

thermophoresis parameter
b eN and L .  Radiation parameter lead to 

enhance the skin friction at the wall y=-1 whereas opposite effect 

noticed at the other wall.  Further,  
eW  lead to decrease the skin friction 

at both the walls.  Radiation parameter lead to enhance rate of heat 

transfer at both the walls whereas 
rP  tends to suppress the same at both 

the walls.  The quite opposite effect can be observed in Sherwood 

distribution with increasing 
rP  and 

1N . The results of Siva Shankara 

Rao and Siva Prasad (2014) can be recovered as a limiting case of our 

analysis by taking 
t b 1 e rI, N , N , N , L , P , 0ε →  and 

aD → ∞ . Further, 

proper choice of the parameters and making the boundary conditions 

similar to present problem for velocity distribution, we note that HAM 

solutions show very good agreement with the result of Siva Shankara 

Rao and Siva Prasad (2014) , which is presented in Fig. 6. 

 

Table 3. Effects of Nt
and 

cG  on Volume flow rate (Q). 

 

       Nt
 

cG  
0 0.02 0.04 0.06 0.08 0.1 

0  0.804336 0.822243 0.840199 0.858200 0.876242 0.894321 

2  0.804913 0.784763 0.763116 0.739962 0.715297 0.689111 

4  0.824651 0.765926 0.704131 0.639255 0.571284 0.500210 

6  0.829880 0.731221 0.627854 0.519764 0.406934 0.289350 

Table 4. Effects of 
1N  and I  on volume flow rate (Q) 

        
1N  

 I 
0 0.2 0.4 0.6 0.8 1 

0  0.458147 0.46474 0.485337 0.522583 0.581578 0.67115 

2  0.456262 0.46284 0.483389 0.520549 0.579407 0.668771 

3  0.452586 0.459265 0.480152 0.518008 0.578172 0.669944 

4  0.450830 0.457528 0.478481 0.516477 0.576913 0.669209 

 

Table 5. Variation on coefficient of Skin friction (
fC ) for 

1N and 
eW  at the wall y=-1. 

 

       
1N  

eW  
0 0.2 0.4 0.6 0.8 1 

 0 -0.777670 -0.770202 -0.746781 -0.704114 -0.635834 -0.530861 

 0.05 -0.75678 -0.74964 -0.727218 -0.686242 -0.620309 -0.518057 

 0.07 -0.749104 -0.742088 -0.720034 -0.679657 -0.614485 -0.512929 

 0.1 -0.737907 -0.731077 -0.709572 -0.670065 -0.605938 -0.505149 

 

Table 6. Variation on coefficient of Skin friction (
fC ) for 

1N and 
eW  at the wall y=1. 

 

       
1N  

 
eW  

0 0.2 0.4 0.6 0.8 1 

 0 -1.92938 -1.93824 -1.96584 -2.01552 -2.0937 -2.21149 

 0.05 -1.81642 -1.82387 -1.847 -1.88838 -1.95287 -2.04861 

 0.07 -1.76303 -1.76983 -1.79092 -1.82852 -1.88682 -1.97264 

 0.1 -1.67275 -1.67846 -1.69612 -1.72738 -1.77528 -1.84448 

 

Table 7. Influence of 
rP and 

1N on Nusselt number distribution at the wall y=-1 

       
rP  

 
1N  

0 0.4 0.8 1.2 1.6 2.2 

 0 -1.000000 -1.46193 -1.95095 -2.47196 -3.32595 -3.95333 

 0.5 -0.920998 -1.41647 -1.94151 -2.50177 -3.42263 -4.10143 

 0.7 -0.842922 -1.37542 -1.94020 -2.54380 -3.53858 -4.27433 

 1 -0.669275 -1.29995 -1.97006 -2.68855 -3.87963 -4.76700 
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Table 8. Influence of 
rP and 

1N on Nusselt number distribution at the wall y=1 

       
rP  

1N  
0 0.4 0.8 1.2 1.6 2.2 

 0 -1.000000 -0.5595390 -0.1371920 0.2705980 0.862254 1.24803 

 0.5 -0.920998 -0.4486880  0.00438378 0.4423450 1.079420 1.49640 

 1 -0.842922 -0.3354290  0.15165100 0.6230990 1.310820 1.76278 

 1.5 -0.669275 -0.0683145  0.50940100 1.0704900 1.894760 2.44182 

 

Table 9. Variation on Sherwood number distribution for 
rP and 

1N at the wall y=-1. 

       
rP  

1N  
0 0.4 0.8 1.2 1.6 2.2 

0 -0.999612 -0.636981 -0.256859  0.143627 0.789558 1.25558 

0.5 -1.061720 -0.677128 -0.273779  0.151552 0.838634 1.33532 

0.7 -1.123100 -0.714859 -0.28649  0.165608 0.897065 1.42687 

1 -1.259420
 

-0.791318
 

-0.299683
 

 0.220101 1.063850 1.67755 

 

Table10. Variation on Sherwood number distribution for 
rP and 

1N at the wall y=1. 

     
rP  

 
1N  

0 0.4 0.8 1.2 1.6 2.2 

 0 -0.985989 -1.33435 -1.67015 -1.99564 -2.46921 -2.77814 

 0.5 -1.048900 -1.41829 -1.77442 -2.11983 -2.62308 -2.95206 

 0.7 -1.111180 -1.50323 -1.88131 -2.24824 -2.78365 -3.13441 

 1 -1.249910 -1.69939 -2.13316 -2.55487 -3.17247 -3.57921 

 

 

NOMENCLATURE 

0B  - transverse magnetic field 

1C , 2C - wall concentrations 

C - the mean value of 1C  and 2C  

0C - initial concentration 

pC - specific heat 

a 2

k
D

L
=

ϕ
 - permeability  parameter 

BD  - Brownian diffusion coefficient 

TD  - thermophoresis diffusion coefficient 

2
0 f t 2

0 0

(1 C ) g (T T)L
Gr

U

− ρ β −

µ
=  -local temperature Grashof number  

2
p f c 2

c
0 0

( )g (C C)L
G

U

ρ − ρ β −

µ
=  - local nano-particle mass Grashof 

number 

g - acceleration due to gravity 

( ) 2

p 0f

0

C U L
I

ρ
=

µ
 - dimensionless inertia coefficient 

k - permeability of the medium 

K - thermal conductivity of the fluid 

Tk  is the thermal diffusion ratio 

f
e

f B

μ
L

ρ D
=  - Lewis number 

2 2
σB L0M =

µ
 - Hartmann number 

*

B 2
b

D (C C)
N

τ −
=

ν
- Brownian number, 

*

T 2
t

D (T T)
N

T

τ −
=

ν
 - thermophoresis parameter 

2 2

1

4 L
N

K

α
= - radiation parameter 

 p – pressure 

( )μCp fPr
K

=  - Prandtl number 

f 0

0

U L
Re

ρ
=

µ
-Reynolds number 

T – dimensional temperature 

1T , 2T - wall temperatures 

T - mean value of 1T  and 2T  

0T - inlet temperature  

u,v- velocity components 

0U  - entrance velocity 

0
e

U
W

L

Γ
=  -Weissenberg number 

 

GREEK SYMBOLS 
2α  - mean absorption coefficient 

tβ -coefficient of thermal expansion 

cβ  -  coefficient of expansion with concentration 

ν  - kinematic viscosity 
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µ  - dynamic viscosity 

σ - coefficient of electric conductivity 

1ε << - oscillating parameter 

θ -dimensionless temperature 

φ -dimensionless concentration 

f p,ρ ρ -densities of the base fluid and nanoparticle 

p f( C )ρ - heat capacity of the fluid 

p p( C )ρ - effective heat capacity of the nanoparticle material 

ϕ  - porosity of the medium 

 Γ - time constant 

q

y

∂

∂
 - radiative heat flux  

ω  - frequency 

 

APPENDIX 

 
From Section 2, the non-dimensional system of equations is 

e r

2
c 1

u u
1 W Hu Gu p 1

y y y
t x Re

G Iu K

   ∂ ∂ ∂
+ − θ  ∂ ∂  

− ∂ ∂ ∂    ∂ ∂  
+ φ − + 

+
= +                     (9)                                                                                                                          

p
0

y

∂
= −

∂
                                                                                            (10)                         

22
*

1 b t2
r

1
Re N N N K

t P y y yy

   ∂θ ∂ θ ∂φ ∂θ ∂θ
+ θ + + +    ∂ ∂ ∂ ∂∂   

=                   (11) 

                                                                                                                                    

2 2

2 2

t

e b

N1
Re

t L N yy

 ∂φ ∂ φ ∂ θ
 

∂ ∂ ∂  
= +                                                          (12)                                                                                                                                               

The corresponding boundary conditions are: 

u 0=     1θ = −           1φ = −           at   y 1= −                                 (13)                                                                                                                                            

u 0=    
i t

1 e
ωθ = + ε   

i t
1 e

ωφ = + ε   at   y 1=                                   (14)    

                                                                                                                                   

The above system of equations (9)-(14) are coupled whose exact 

solution is not easy to obtain.  Therefore, we assume the solution in the 

form of [See Refs. Cogley et al.(1968) and Muthuraj et al. (2013)] 

 
i t

0 1u u (y) e u (y)ω= + ε ; i t
0 1(y) e (y)ωθ = θ + ε θ ; 

i t
0 1(y) e (y)ωφ = φ + ε φ ; i t

0 1p p (x) e p (x)ω= + ε                                (15)                                                                      

Substituting equation (15) in to the equations (9) - (14) we get,  
i t

0 1

i t
0 1

e

0
i t

0 1

[u (y) e u (y)]

t

[u (y) e u (y)]
1 W

yp 1
H[u (y)

x Re y [u (y) e u (y)]

y

ω

ω

ω

∂ + ε

∂
  ∂ + ε
 + 
 ∂∂ ∂   − − ∂ ∂ ∂ + ε 
 ∂ 

=

+

i t i t
1 r 0 1 c 0

i t i t 2
1 0 1 1

e u (y)] G [ (y) e (y)] G [ (y)1

Re e (y)] I[u (y) e u (y)] K

ω ω

ω ω

 ε θ + ε θ + φ 
+  

+ε φ − + ε +  

+
 

i t i t
1 r 0 1 c 0

i t i t 2
1 0 1 1

e u (y)] G [ (y) e (y)] G [ (y)1

Re e (y)] I[u (y) e u (y)] K

ω ω

ω ω

 ε θ + ε θ + φ 
+  

+ε φ − + ε +  

+
 

2 i t
0 1i t

0 1 2

r i t
1 0 1

[ (y) e (y)]
[ (y) e (y)] 1

Re y
t P

N [ (y) e (y)]

ω
ω

ω

 ∂ θ + ε θ
 ∂ θ + ε θ

∂ 
∂  

+ θ + ε θ 

=

i t i t
0 1 0 1

b

[ (y) e (y)] [ (y) e (y)]
N

y y

ω ω∂ φ + ε φ ∂ θ + ε θ
+

∂ ∂

2
i t

*0 1
t

[ (y) e (y)]
N K

y

ω ∂ θ + ε θ
+ + 

 ∂ 
 

2

2

i t i t
0 1 0 1

e

[ (y) e (y)] [ (y) e (y)]1
Re

t L y

ω ω∂ φ + ε φ ∂ φ + ε φ

∂ ∂
=

2

2

i t
t 0 1

e b

N [ (y) e (y)]1

L N y

ω∂ θ + ε θ

∂
+  

i t
0 1u (y) e u (y) 0ω+ ε =     i t

0 1(y) e (y) 1ωθ + ε θ = −       

i t
0 1(y) e (y) 1ωφ + ε φ = −           at   y 1= −                                    

i t
0 1u (y) e u (y) 0ω+ ε =    i t i t

0 1(y) e (y) 1 eω ωθ + ε θ = + ε   

i t i t
0 1(y) e (y) 1 eω ωφ + ε φ = + ε   at   y 1=    

 

The  above set of equation gives,  

i t
0 1

e
i t

1
i t

0 1

i t i t
0 1 r 0 1

i t i t 2
c 0 1 0 1 1

[u (y) e u (y)]
1 W

yp 1
i e u (y)

x Re y [u (y) e u (y)]

y

H[u (y) e u (y)] G [ (y) e (y)]1

Re G [ (y) e (y)] I[u (y) e u (y)] K

ω

ω

ω

ω ω

ω ω

  ∂ + ε
 + 
 ∂∂ ∂   ε ω −  ∂ ∂ ∂ + ε 
 ∂ 

 − + ε θ + ε θ 
+  

+ φ + ε φ − + ε +  

= +

+

 

2 i t
0 1

i t 2
1

r i t
1 0 1

[ (y) e (y)]
1

i Ree (y) y
P

N [ (y) e (y)]

ω

ω

ω

 ∂ θ + ε θ
 

ε ω θ ∂ 
 

+ θ + ε θ 

=  

            
i t i t

0 1 0 1
b

[ (y) e (y)] [ (y) e (y)]
N

y y

ω ω∂ φ + ε φ ∂ θ + ε θ
+

∂ ∂
 

2
i t

*0 1
t

[ (y) e (y)]
N K

y

ω ∂ θ + ε θ
+ + 

 ∂ 
 

2

2

2

2

i t
0 1

i t
1 i t

e t 0 1

b

[ (y) e (y)]

1
i Ree (y)

L N [ (y) e (y)]

N y

y

ω

ω

ω

 ∂ φ + ε φ
 
 

ε ω φ  
∂ θ + ε θ 

 ∂ 

∂
=

+

 

i t
0 1u (y) e u (y) 0ω+ ε =     i t

0 1(y) e (y) 1ωθ + ε θ = −            

i t
0 1(y) e (y) 1ωφ + ε φ = −           at   y 1= −                

i t
0 1u (y) e u (y) 0ω+ ε =    i t i t

0 1(y) e (y) 1 eω ωθ + ε θ = + ε   

 i t i t
0 1(y) e (y) 1 eω ωφ + ε φ = + ε   at   y 1=                                      

 

Collection of 0 termsε one gets, 

2

0 0
e 0 r 0 c 0

2
0 1

du dud
W Hu G G

dy dy dy

dp0Iu K Re
dx

  
 + − θ + φ 
   

− + =

+
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22
*0 0 0 0

1 0 b r t r r2

d d d d
N N P N P K P 0

dy dy dydy

 θ φ θ θ
+ θ + + + = 

 
 

2 2
t 0

2 2
b

d N d0 0
Ndy dy

φ θ
=+  

The corresponding boundary conditions are:  

0u 0=    0 1θ = −          0 1φ = −           at   y 1= −                               

0u 0=     0 1θ =            0 1φ =             at     y 1=         

Collection of 1 termsε one gets, 

01 1
e 1 1

dud du du
2W Hu i Re u

dy dy dy dy

 
+ − − ω 

 
      

0 1 1 1

dp12Iu u G G Rer c
dx

− θ + φ+ =       

 
2

0 01 1 1
1 r 1 b r2

01
t r

d dd d d
(N i ReP ) N P

dy dy dy dydy

dd
2N P 0

dy dy

 θ φθ φ θ
+ − ω θ + + 

 
θθ

+ =

       

e 1

2 2
d dNt1 1i ReL 0

2 2Ndy dyb

φ θ
− ω φ =+        

with the boundary conditions,  

 

1u 0=     1 0θ =          1 0φ =            at     y 1= −                                 

1u 0=      1 1θ =          1 1φ =             at     y 1=  
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