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Abstract: DNA sequence mining is essential in the study of the structure and function of the DNA sequence. 

A few exploration works have been published in the literature concerning sequence mining in information 

mining task. Similarly, in our past paper, an effective sequence mining was performed on a DNA database 

utilizing constraint measures and group search optimization (GSO). In that study, GSO calculation was uti-

lized to optimize the sequence extraction process from a given DNA database. However, it is apparent that, 

occasionally, such an arbitrary seeking system does not accompany the optimal solution in the given time. To 

overcome the problem, we proposed in this work multiple constraints with hybrid firefly and GSO (HFGSO) 

algorithm. The complete DNA sequence mining process comprised the following three modules: (i) apply-

ing prefix span algorithm; (ii) calculating the length, width, and regular expression (RE) constraints; and 

(iii) optimal mining via HFGSO. First, we apply the concept of prefix span, which detects the frequent DNA 

sequence pattern using a prefix tree. Based on this prefix tree, length, width, and RE constraints are applied 

to handle restrictions. Finally, we adopt the HFGSO algorithm for the completeness of the mining result. 

The experimentation is carried out on the standard DNA sequence dataset, and the evaluation with DNA 

sequence dataset and the results show that our approach is better than the existing approach.

Keywords: Prefix span, constraints, regular expression, DNA sequence, mining, HFGSO, weight, length.

1  Introduction

In this digital world where a huge amount of data are available in digital form, a large amount of data contain both 

significant and non-significant patterns. Here, the main challenge is to find interesting patterns that are helpful 

to make decisions, which is very tedious and time consuming. Thus, there arises the need for an automated 

technology that does this job efficiently and effectively. The frequent pattern mining technique is rather useful 

for this purpose [1]. Various researchers have presented different frequent pattern mining algorithms. These 

algorithms are categorized into closed sequential pattern mining, constraint-based sequential pattern mining, 

biological pattern mining, etc. [38]. Sequential pattern mining is an essential task in broad applications. Their 

functions include analyzing web access patterns, customer purchase patterns, DNA sequences [39], prediction of 

diseases, etc. [12]. Moreover, sequential pattern mining [11], one of the basic subjects of information mining, is an 

extra aspect involved in association rule mining [9]. The sequential pattern mining algorithm [2] deals with the 

problem of determining the frequent sequences in a given database [25]. It also signifies the association among 

transactions, while association rules describe the intra-transaction relationships. In association rule mining, the 

mined output is termed as the items that are bought together frequently in a single transaction [36].

The most studied data mining task is classification, whose purpose is forecasting the value (class) of a 

user-specified goal attribute based on the values of other attributes, called the predictive (feature) attributes. 

With regard to DNA, clustering is broadly employed in the genome database. Though several techniques were 
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2      K. Lakshmanna and N. Khare: Mining DNA Sequence Patterns with Constraints

suggested to cluster genome sequences and DNA microarrays [19], there is very minute research in the area of 

employing DNA computation for clustering. A few plans are put forward to employ DNA computing to work 

out clustering problems [4]. In addition to this, very few decades have witnessed the individual and joint 

attempts of data mining and soft computing in the realm of bioinformatics [22]. In DNA sequence mining, 

soft computing methodologies (involving fuzzy sets, neural networks, genetic algorithms, rough sets, and 

soft sets), etc., can be broadly employed. There are numerous general classification models, such as naive 

Bayesian network [7], decision tree, neural networks, and rule learning using evolutionary algorithm, which 

are put to use here [5]. Moreover, a lot of optimization algorithms are also present to optimize the parameters, 

such as cuckoo search algorithm [33], chaotic krill herd algorithm [31], stud krill herd algorithm [29], monarch 

butterfly optimization [28], earthworm optimization algorithm [32], krill herd and cuckoo search [34], group 

search optimization (GSO) algorithm [8], and firefly algorithm (FA) [37]. In general, the goal of sequential 

pattern mining algorithms is discovering the sequential patterns from the sequential database. Recently, 

research work has proved that the frequency is not the best measure to determine the significance of a pattern 

in different applications [27]. The motive of constraint-based sequential pattern mining is to determine the 

entire set of sequential patterns that is able to satisfy a regular expression (RE) constraint.

In this paper, we explain a novel approach and efficient DNA sequence mining based on multiple constraints 

with hybridization of firefly and GSO (HFGSO) algorithm. Initially, we apply the prefix span (PS) algorithm to the 

dataset. We detect the frequent DNA sequence pattern and eliminate the infrequent pattern. Here, some of the 

patterns are eliminated, and the size of the dataset is reduced. Then, length and width constraints are applied to 

the reduced dataset. In order to achieve efficiency and for effective execution of the algorithm, the present study 

makes use of RE constraint, which saves time and memory. Here, also some of the DNA sequence are removed 

from the dataset. To improve the efficiency of the mining process, finally we apply the HFGSO algorithm to the 

mined pattern. It produces the optimal mined DNA sequence. The rest of this paper is organized as follows: 

Section 2 gives a brief description of the literature survey. Sections 3 and 4 explain the proposed DNA sequence 

mining, and Section 5 explains the results and discussion part. The conclusion is summed up in Section 6.

2   Literature Survey

For DNA sequence mining, the literature presents several theories. Now, we assess some of the works asso-

ciated with it. Mallick et  al. [20] explained the constraint-based sequential pattern mining. Here, monetary 

and compactness constraints were included. Moreover, a CFML-PS algorithm was explained by integrating 

these constraints with the original PS algorithm. This allows discovering all CFML sequential patterns from the 

sequential database. Kawade and Oza [13] explained the frequent sequential pattern mining with weighted RE 

and length constraints. The length of the pattern was also an important criterion. Similarly, in multiple biologi-

cal sequences, Htike and Win [10] clarified the frequent patterns mining. They initially clarified the idea of the 

primary pattern, which was expanded to form larger patterns in the series. A prefix tree was erected to identify 

frequent primary patterns. Chen and Liu [6] clarified the problem of frequent pattern mining without user-spec-

ified gap constraints. Moreover, they brought in PMBC (namely pattern mining from biological sequences with 

wildcard constraints) to work out the problem. Similarly, Lin et al. [18] explained the efficient algorithms for 

mining up-to-date high-utility patterns (UDHUPs). These consider not only utility measure but also the times-

tamp factor to discover the recent high-utility patterns (HUPs). In Ref. [17], Lin et al. explained the frequent item 

set mining algorithm based on the principle of inclusion-exclusion and transaction mapping. Moreover, Laksh-

manna and Khare [14] have explained the Constraint-Based Measures for DNA Sequence Mining using Group 

Search Optimization Algorithm. they develop the mining process into three steps such as (1) applying prefix 

span algorithm, (2) length and width constraints, (3) Optimal mining via group search optimization (GSO).

Moreover, the recognition of promoters in DNA sequences using weightily averaged one-dependence 

estimators was clarified by Wu et al. [35]. They have also elucidated the growing interest in the process of 

gene finding and gene recognition from DNA sequences. Park et al. [24] clarified the protein function fore-

cast in view of gap constraints. Also, Lin et al. [18] clarified the proficient calculations for mining UDHUP. 
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It considers utility measure as well as timestamp variable to find the late HUPs. The UDHUP-apriori was 

initially acquainted with mine UDHUPs in a level-wise manner. In Ref. [3], Aloysius and Binu explained an 

approach for products placement in supermarkets using PS algorithm. An approach was put forward to mine 

user buying patterns using PS algorithm and to place the products on shelves based on the order of mined 

purchasing patterns. In [16], Lakshmanna et al. have explained Enhanced Algorithm for Frequent Pattern 

Mining from Biological Sequences. Masseglia et al. [21] explained the efficient mining of sequential patterns 

with time constraints. They introduced an algorithm, G
TC

 (graph for time constraints), for mining such pat-

terns in very large databases. Moreover, Nakamura et al. [23] explained the mining approximate patterns with 

frequent locally optimal occurrences. Here, candidate patterns were generated without duplication using the 

suffix tree of a given string. They further define a k-gap-constrained setting, in which the number of gaps in 

the alignment between a pattern and an occurrence is limited to at most k. Moreover; Lakshmanna and Khare 

[15] have explained Frequent DNA Sequence Mining Using FBSB and Optimization. Here, to optimize the 

pattern, the Prefix Span with Group Search Optimization (PSGSO) was hybrid.

3   Technical Preliminaries

In this section, we explain the algorithm presented in the paper. After that, we go to the proposed DNA 

sequence pattern mining process.

3.1   Sequential Pattern Mining

Sequential pattern mining aims to mine a complete set of sequential patterns with respect to a given sequence 

database DS. Let DS be a DNA sequential database where each transaction T contains the ID and a set of the 

item involved in the transaction. Let P = {p
1
, p

2
, p

m
} be a unique set of items. An item set is a non-empty subset 

of items, and an item set with k is called the k-item set. A sequence S is an ordered list of item sets based on the 

timestamp. It is denoted as <s
1
,s

2
,…,s

n
, where, s

j
, j∈1,2,…, n is an item set that is also called an element of the 

sequence S and s
j
∈I. A sequence of K items (or of length k) is called k-sequence. For example, <(a)(c)(e)>, <(b)

(c,d)>, and <(a)(b)(a)> are all three sequences. A sequence <s
1
, s

2
,…, s

n
> is called a subsequence of another 

sequence 
1 2
, ,...,

q
s s s< >′ ′ ′  (n  ≤  q) if there exists an integer 1  ≤  i

1
  ≤  i

2
,…, i

n
  ≤  q such that 

1 2
1 2

, ,..., .
n

i i n i
s s s s s s⊆ ⊆ ⊆′ ′ ′  

For instance, <(b)(e)> is a sequence of <(d)(b)(a)(c,e)> as (b) ⊆ (b) and (e) ⊆ (c,e). The support of sequence 

S in a sequence database DS is the number of transactions that contained the sequence S. The sequence S is 

called a frequent sequential pattern in the sequential database such that Sub(S)  ≥  min_sup, where min_ sup 

is a given positive integer, supports the threshold.

3.2   PS Algorithm

PS is the most promising pattern-growth method. It is based on the recursive construction of the patterns 

and a simultaneous restriction of the search to projected databases [26]. A database is a set of subsequences. 

They are suffixes of the sequences that have a prefix. In each step, the algorithm looks for frequent sequences 

with prefix a, in the correspondent projected database. Let us consider the DNA sequence database DS having 

n-numbers of sequence. For this, the sequential patterns are mined from this database by using PS algorithm. 

Let our running database be DNA sequence database DS specified in Figure 2 and min_support = 2.

The set of the items in the database in Table 1 is {p, q, r, s, t, u, v}. The sequence <p (p q r) (p r) s (r u)> 

has five elements: (p), (p q r), (p r), (s), and (r u), where item p and r appear more than once, respectively, in 

different elements. It is also a nine-sequence set, as there are nine instances appearing in that sequence. Item 

p happens three times in this sequence, so it contributes 3 to the length of the sequence. The step-by-step 

process is explained below.
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4      K. Lakshmanna and N. Khare: Mining DNA Sequence Patterns with Constraints

Step 1: Find length-1 sequential pattern

Find the length of sequence patterns for the DNA sequence database DB considering the minimum support 

that has been given. Initially, the scanning process is prepared on the database once to find all the frequent 

items in sequences. Each of these frequent items is a length-1 sequential pattern (Table 2), as revealed in 

Figure 3. They are 〈P〉:4,〈Q〉:4,〈R〉:4,〈S〉:3,〈T〉:3,〈U〉:3 and 〈V〉:1, where the notation of “<pattern>: count” sym-

bolizes the pattern and its related support count [30].

Step 2: Divide the search space

Divide the search space into the prefixes whose support is greater than the minimum support. That is, the com-

plete patterns can be divided into the subsequent four prefixes: the ones with prefix <P><Q><R><S><T><U>.

Step 3: Find subsets of sequential patterns

The subsets of sequential patterns can be mined by constructing corresponding projected databases and 

mining each recursively. The projected databases, as well as sequential patterns found in them, are listed in 

Table 3, while the mining process is explained as follows.

3.3   RE Constraints

An RE constraint is the constraint that is used to mine the sequential pattern present in the database. An RE 

constraint R is indicated as an RE over the alphabet of sequence elements utilizing the setup set of the RE 

operator, for example disjunction (|) and Kleeneclosure (*). Thus, an RE constraint R 
either

 specifies a language 

Table 1: DNA Sequence Database.

ID Sequences

10 <p(p q r) (p r) s (r u)>

20 <(p s) r ( q r) (p t)>

30 <(t u) (p q) (s u) r q>

40 <t v (p u) r q r>

Table 2: Obtained Length-1 Frequent Item Sets.

<P>   <Q>  <R>  <S>  <T>  <U>  <V>

4   4  4  3  3  3  1

<P><Q><R><S><T><U>            

Table 3: Projected Database and Mined Sequence.

Prefix Projected database Sequential patterns

<p> <(p q r) (p r) s (r u)>, <(_s) r (q r) (p t)>, <(_ q) 

(s u) r q>, <(_u) r q r>

<p>, <pp>,<pq>, <p(qr)>, <p(qr)p>, <pqp>, <pqr>, <(pq)>, <(pq)r>, <(pq)

s>, <(pq)u>, <(pq)sr>, <pr>, <prp>, <prq>, <prr>, <ps>, <psr>, <pu>

<q> <(_r) (p r) s (r u)>, <(_r) (p t)>, <(s u) r q>, <r> <q>, <qp>, <qr>, <(qr)>, <(qr)p>, <qs>, <qsr>, <qu>

<r> <(p r) s (r u)>, <(q r) (p t)>, <q>, <q r> <r>, <rp>, <rq>, <rr>

<s> <(r u)>, <r (q r) (p t)>, <(_u) r q>, <s>, <sq>,<sr>, <srq>

<t> <(_u) (p q) (s u) r q>, <-v (p u) r q r> <t>, <tp>, <tpq>, <tpr>, <tprq>, <tq>, <tqr>, <tr>, <trq>, <tu>, <tuq>, 

<tur>, <turq>

<u> <(p q) (s u) r q><r q r> <u>, <uq>, <uqr>, <ur>, <urq>
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of strings over the element alphabet, or equivalently, it specifies a regular family of sequential patterns that 

is of interest to the user. Thus, given any RE R, it is possible to build a deterministic finite automaton AR such 

that AR extracts the language generated by R. Informally, a deterministic finite automaton is a finite-state 

machine with (i) a well-defined start state (denoted by a) and one or more accept states, and (ii) deterministic 

transitions across states on symbols of the input alphabet (in our case, sequence elements). A transition from 

state b to state c on the element s
i
 is denoted by .i

s
b c→  We also use the shorthand 

s
b c⇒  to denote the sequence 

of transitions on the elements of sequence s straight at the state b and ending in the state c. A sequence s is 

accepted by AR if following the sequence of transitions for the elements of s from the start state results in an 

accepting state. Figure 1 shows the state diagram of a deterministic finite automaton for the RE 1 * (22|234|44). 

For example, we consider the RE constraint R = 1 * (22|234|44). Sequence <1 2 3> is legal with respect to state 

a and sequence <3 4> is legal with respect to state b, while sequences <1 3 4> and <2 4> are not legal with 

respect to any state of AR. Similarly, sequence <3 4> is valid with respect to sate b (as 
34

b
< >

⇒d and d is an accept 

state); however, it is not valid with respect to the start state a of AR. Examples of valid states include <1 1 2 2> 

and <2 3 4>.

4   Proposed Sequential Pattern Mining

The basic idea of our proposed methodology is to mine DNA sequential patterns with constraints using the 

HFGSO algorithm. Normally, the DNA sequence database has a big number of items. The long sequence 

creates a great dispute for presented sequential pattern discovery algorithms. According to this, we mine 

the frequent pattern. Basically, this paper consists of three modules: (i) PS module, (ii) constraint module, 

and (iii) hybrid optimization module. In each module, the repeated DNA sequences are mined. The overall 

diagram of the proposed DNA sequence mining is shown in Figure 1.

Module 1: Mining based on PS algorithm

The PS algorithm is one of the important algorithms to mine the DNA sequence. The DNA sequence database 

consists of five types of items, such as <A><G><C><T>. This algorithm was carried out to perform the initial-

level mining process. The detailed explanation of sequential pattern mining is given in Section 4.

DNA sequence

Some of the patterns are minedPrefix span based mining

A

A

A

T

T

T A

T
G

C

G

C

G

C

G

C

HFGSO based mining

 Mined output

Multiple constraints based

mining 
Some of the patterns are mined

Some of the patterns are mined

Figure 1: Overall Diagram of the Proposed DNA Sequence Mining.

Brought to you by | New York University

Authenticated

Download Date | 5/18/17 7:22 PM



6      K. Lakshmanna and N. Khare: Mining DNA Sequence Patterns with Constraints

Module 2: DNA sequential pattern mining based on constraints

The mined DNA sequence obtained from PS algorithm is given in this section. In the first module, some of 

the sequences are mined. Here, we use three types of constraints, such as length, weight, and RE constraints, 

for discovering the frequent patterns. This algorithm takes as inputs the weight of each item obtained from 

the PS algorithm, an RE, and min_length and max_length. This algorithm scans the database only once and 

finds frequent sequential patterns that satisfy the given min_weight, min_length, and max_length. The RE 

constraint is explained in Section 4. In this work, we take the RE as <A * C * G * T>. Moreover, the sequence 

[ACGT], [ACG], [GT] is the valid sequence. Here, we also find out the total number of patterns that satisfy the 

RE. After that, we check whether these obtained sequences satisfy the length and weight constraints. Finally, 

we check which sequences satisfy all the three constraints, which are taken as the mined pattern. All the 

other patterns are eliminated.

Module 3: Optimal mining via the HFGSO algorithm

The fullness of the mining process is prepared through the HFGSO algorithm after length, width, and RE 

constraints. The optimization is prepared to decrease the redundancy and duplication of sequences from 

the DNA sequence data. Here, at first, we apply the GSO algorithm to the DNA sequence pattern to mine the 

pattern. GSO [8] algorithms have three operators, such as producer, scrounger, and ranger. To improve the 

effectiveness of the system, we hybridized the FA [33, 37] and the GSO algorithm [8]. By hybridizing these two 

classifiers, we assume that the mining performance will be increased, which will help improve the accuracy 

of the mined pattern. By our assumptions, the results section shows that the proposed optimization algo-

rithm of HFGSO achieved better performance than the individual optimization algorithm. The step-by-step 

process is explained below.

Step 1: Initialize the search solution as well as the head angle

Solution encoding is the important stage of the optimization algorithm. Here, we create the solution for the 

hybrid of the GSO and FA algorithms. The solution was based on the DNA sequences obtained from module 2. 

HFGSO considers the extracted sequences as the first population. At first, the search solution is initialized and, 

in the case of the novel technique, the solution characterizes the DNA sequence obtained from module 2. HFGSO 

considers the extracted sequence as the first population. Let us reflect on the first population, as follows:

 1 1
[ , , , ]S

n
P P P P= …  (1)

The set PS represents the population of the extracted sequence, and the individuals in the population are rep-

resented with P
1
 to P

n
. In respect of each and every individual population, the head angle can be expressed as 

shown in Eq. (2), and the direction of the member is given in Eq. (3):

 1 ( 1)
( , , ) ,s s s

i i i n
Ψ Ψ Ψ

−

= …  (2)

 1 ( )
( ) ( , , ).s s s s

i i i i n
L l lΨ = …  (3)

The polar and Cartesian coordinate transformations are effectively deployed to appraise the direction of 

search based on the head angle.

 

1

1 1
cos( ),

n
s s

i ipp
L Π Ψ

−

=

=

 
(4)

 

1

( 1)
sin( cos( ) where( 2,..., 1),

n
s s s

ij i j ipp j
L j nΨ Π Ψ

−

−
=

= = −

 
(5)

 ( 1)
sin( ).s s

in i n
L Ψ

−

=  (6)

Brought to you by | New York University

Authenticated

Download Date | 5/18/17 7:22 PM



K. Lakshmanna and N. Khare: Mining DNA sequence patterns with constraints      7

Step 2: Fitness calculation

Once we have created the solution, then we calculate the fitness of the population. The fitness for the func-

tions is planned based on the support, confidence, frequency, and lift parameters of the suggested approach. 

The support of the sequence is described as the relevance of a specific sequence in the DNA sequence data-

base, and the support is the ratio of presence of a specific sequence in the transactions to the total number 

of transactions in the DNA sequence database. The minimum support is the support necessary to maintain a 

sequence regarding the DNA sequence database. The minimum support is symbolized as main support and 

is described as

 

( , )
min_support ,

n

T X Y

T
=

 

(7)

where T(X,Y) is the number of transactions that enclose the sequences and T
n
 is the total number of trans-

actions. The other characteristics that are referred to the fitness function are confidence and lift param-

eters. The parameters confidence and lift are obtained from the parameter support. The parameter can be 

obtained as

 

Support( )
Confidence ,

Support( )

X Y

X

∪
=

 

(8)

 

Support( )
Lift .

Support( ) Support( )

X Y

X Y

∪
=

×
 

(9)

Hence, based on these parameters, we expand a fitness function for the suggested method for optimizing the 

sequences. The fitness is described by relating the confidence, support, and the lift value.

 left right
Fitness conf( ) log(Support( ) (min_Suppot( ) min_Support( ))* lift( )).s s i i s= + × +

 
(10)

Now, i
left

 and i
right

 are the item sets in the left side and right side of a sequence correspondingly. Once all the 

fitness values are computed, the fitness values are supplied to a fitness set, which encloses the fitness of the 

sequences.

 1 1
[ , , , ].C c c c

n
F f f f= …  (11)

Step 3: Find the producer Z
p
 of the group

The member with the top fitness of Z
i
 is known as the producer and indicated as Z

p
.

 – Producer performance

In the course of the functioning of the GSO technique, the action of the producer Z
p
 at the sth iteration 

may be described as given below.

 – It carries out the scanning assignment at zero degree:

 1 max
( ),s s s

z p p
Z Z d Lε Ψ= +  (12)

where d
max

 denotes the maximum search distance.

 – It accomplishes the scanning function at the right-hand-side hypercube:

 

max
1 max 2 2

s s s

r p p
Z Z d L

Φ
ε Ψ ε

 
= + +  

 
(13)

 – It executes the scanning task at the left-hand side hypercube:
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max
1 max 2

,
2

s s s

l p p
Z Z d L

Φ
ε Ψ ε

 
= + −  

 

(14)

where ε
1
 points to a normally distributed random numbers with zero mean and unity standard deviation 

and ε
2
 stands for a uniformly distributed random sequence, which has values within the range 0 and 1.

The maximum search angle Φ
max

 is effectively represented as

 
max 2

,
C

π
Φ =

 
(15)

 round( 1),C n= +  (16)

 
max

.
1n

π
Φ =

+  
(17)

The evaluation of maximum search distance d
max

 includes the ensuing equations:

 

max

2

max
1

.
( )

U L

n

Ui Li
i

d d d

d d d
=

= −

= −∑
 

(18)

Here, d
Ui

 and d
Li

 represent the upper and lower limits of the ith dimension, correspondingly. The best location 

consisting of the most beneficial resource may be achieved by means of Eqs. (4), (5), and (6). The existing best 

location will give way for a new best location if its existing resource is found to be inferior to that in the new 

location. Otherwise, the producer preserves its location and turns its head as per the head angle direction, 

which is randomly produced by Eq. (19):

 
1

2 max
,s s

Ψ Ψ ε τ
+

= +  (19)

 

max

max
.

2

Φ
τ =

 
(20)

When the producer is unable to identify a better position even after the completion of m iterations, its head 

would then assume its initial position as given in Eq. (21):

 .s c s
Ψ Ψ

+

=  (21)

Step 4: Scrounger performance

In all the iterations, many members other than the producer are selected and they are termed as scroungers. 

The scrounging action of the GSO generally includes the area copying task. During the sth iteration, the func-

tion of area copying, which the ith scrounger carries out, may be shaped as a movement to inch toward the 

producer in an intimate manner, which is illustrated as

 
1

3
( ).s s s s

i p i
Z Z Z Zε ο

+

= + −  (22)

Here, ᴏ specifies the Hadamard product that determines the product of the two vectors in an entry-wise 

manner and ε
3
 denotes a uniform random sequence lying in the interval of (0, 1). The ith scrounger continues 

to be in its searching task so as to make a selection of the superior chance for the purpose of linking.

Step 5: Solution update via firefly operator

The FA works based on the brightness of the birds. The firefly update is based on Eq. (23):
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( )2

1 0

1
rand ,

2

r

i i j i
Z Z B e Z Z

γ

α
−

+

 
= + − + −  

 

(23)

where B
0
 is the degree of attractiveness of the firefly at distance r = 0, r is the distance between any two fire-

flies, and γ is the coefficient of light absorption.

Once the iteration is over, the fitness between the old sequence and novel sequence are compared, and 

the one with higher fitness is maintained. If the novel sequence has better fitness, it will be substituted 

with the old sequence. Alternatively, if the old sequence has higher fitness, it will be subjected to develop-

ment in the next iteration of HFGSO. Likewise, the processes are prolonged until each sequence is revised. 

The last step of the HFGSO algorithm is optimizing the sequences based on the fitness threshold. A set for the 

optimized sequence is produced for storing the optimized sequences from the extorted sequences based on 

the fitness, defined by S
op

. Let the set of sequences be S and S
d
 be the rejected sequences:

 

,if fitness threshold
.

,if fitness threshold
i op

i

i d

r S
s S

r S

 ∈ >
∈ = 

∈ <  

(24)

The above expressions specify that the set of sequences s
i
 in S is passed to either the set of optimized sequences 

or the set of discarded sequences.

Step 6: Termination criteria

The algorithm discontinues its execution only if a maximum number of iterations is achieved and the solu-

tion that is holding the best fitness value is selected. Once the best fitness is attained by means of the HFGSO 

algorithm, the selected sequences are mined DNA sequences.

5   Results and Discussion

In this section, the experimental results of the proposed approach for DNA sequence mining are explained. 

We evaluate the efficiency and performance of our proposed approach by comparing it with the traditional 

algorithm PS. In this approach, we use two sets of DNA sequence datasets, such as AF008216.1 (dataset 1) 

and AF348525.1 (dataset 2) [26]. The DNA to be sequenced is prepared as a single strand. The DNA sequence 

presents the dideoxy nucleotides (A, G, C, and T). The proposed approach has been programmed using JAVA 

(jdk 1.6), and the experimentation is performed on a 3.0 GHz Pentium PC machine with 2 GB main memory.

5.1  Experimental results of analysis

The basic idea of our research is to mine DNA sequence patterns with constraints using HFGSO. The follow-

ing Figures 3 and 4 show our proposed approach experimental result outputs. Table 4 shows the sample data 

Table 4: Sample DNA Sequence Database.

ID Sequence

10 ACTATTGTAGAGTA

20 AGTATTAATCGAT

30 ACTAGTCGATCG

40 CTAGTGCGATCTATGCTTAA

50 GAGTGCTTAATCG
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10      K. Lakshmanna and N. Khare: Mining DNA Sequence Patterns with Constraints

sequences. The parameter used in this HFGSO algorithm is shown in Table 5. To test the scalability of the 

algorithms, we choose 3000 sequences from the DNA sequence dataset and divide the selected sequences 

into five groups. In each group, we use protein sequences with similar length to form one or two test data sets. 

In different groups, data sets have different numbers of sequences from 100 to 500. Table 6 shows the number 

of data sets and the number of sequences in each data set.

The experimental results obtained from the proposed approach with the two types of DNA sequence data-

sets are described in Figure 2. Initially, the input dataset are given to the proposed approach of three-module 

DNA sequence mining (DNASM) algorithm to mine the sequence. The mining performance with respect to the 

mined sequence is given in the graphs shown in Figures 2 and 3. Figure 2A shows the total number of mined 

patterns by varying the length of the sequence. If the length of the sequence is 3, we obtain the mined pattern 

of 22. Likewise, Figure 2B shows the performance of the proposed method for dataset 1 by varying the width 

of the sequence. In our work, we use three constraints, such as length, width, and RE. Here, the algorithm 

uses an RE for discovering user-interested patterns. Weights are used to discover the pattern according to the 

importance of items, and length constraint is used to restrict the length of the pattern so as to reduce search 
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Figure 2: Number of Patterns Mined from Dataset 1.

(A) By varying length. (B) By varying width. (C) By varying iterations.

Table 5: Parameters of the HFGSO Algorithm.

Step size factor α Population size, N Absorption coefficient, γ Initial head angle Producer Scrounger Ranger φ
max

0–1 100 1 45 1 16 3 π/6

Table 6: Groups of Sequences Tested.

Group ID Total number of sequences Number of datasets Number of sequences in each dataset

1 200 2 100

2 400 2 200

3 600 2 300

4 800 2 400

5 1000 2 500
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space and find user-interested pattern efficiently and effectively. Figure 2C shows that we obtain the total 

number of mined patterns by varying the iteration. From the figure, we understand that the number of itera-

tions increases as the total number of mined sequences also increases. Similarly, Figure 4 shows the experi-

mental result based on dataset 2. Moreover, Figure 4 shows the number of patterns mined using different 

constraints. In this work, we utilized a hybridization of the three constraints of length, width, and RE. From 

Figure 5, we clearly understand that our proposed hybrid approach is better than the individual constraints 

such as length, width, and RE.

5.2  Comparative analysis of the proposed approach

This section describes the comparative analysis of the proposed approach to PS, PS + GSO, and PS + FA. The 

comparative result clearly ensures that the proposed approach provides an optimal order of sequential pat-

terns compared to the existing algorithm. In the proposed approach, we use length 3 and width 2.

In this DNA sequence mining method, we use the hybrid optimization algorithm, which increases the 

effectiveness of the approach. We use HFGSO for the mined pattern. To prove the effectiveness of the proposed 
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Figure 3: Number of Patterns Mined from Dataset 2.

(A) By varying length. (B) By varying width. (C) By varying iteration.
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approach, we use two types of data sets for the comparison. Actually, the second dataset is synthetically gen-

erated with the view of an installation that will be done with respect to the first patterns. The support of the 

mined patterns from the first dataset is relatively high in the second dataset as per the data given in Tables 7 

and 8. Table 7 shows the comparative analysis of the proposed approach for dataset 1. When the minimum 

support is 2, we obtain the mined pattern of 58 for the proposed approach, 13,118 for the PS approach, 5098 

for the PS + GSO approach, and 7854 for PS + FA, which are associated with dataset 1. Similarly, we choose the 

minimum support of 4, which means that our proposed approach achieves the mined pattern of 63. Moreover, 

Table 8 shows the comparative analysis of the proposed approach for dataset 2. Here, our proposed approach 

achieves the minimum mined pattern of 56. In this work, we use three types of constrains that increase the 

effectiveness of the system. The RE constraints used to select the RE of the sequence of other patterns are 

eliminated. Moreover, Figure 5A and B shows the comparative analysis based on computation time. Here, 

we compare our proposed work with PS, PS + GSO, and PS + FA. When analyzing Figure 5A, our proposed 

work takes minimum time compared to other approaches. When analyzing Figure 5B, compared to other 

techniques, the PS-based DNA sequence approach takes maximum time. From Tables 7 and 8, we clearly 

understand that our proposed approach achieves better performance compared to the existing approach.

6   Conclusion

In this paper, we explained an algorithm that enables to efficiently manage the constant-based DNA sequence 

mining task. The detailed DNA sequence mining process contains mainly three modules: (i) mining based on 

Table 7: Comparative Analysis of the Proposed Approach for Dataset 1.

Min_support Mined patterns

PS + HFGSO PS PS + GSO PS + FA

2 58 13118 5098 7854

3 61 6142 4321 6543

4 63 3768 2567 5247

Table 8: Comparative Analysis of the Proposed Approach for Dataset 2.

Min_support Mined patterns

PS + HFGSO PS PS + GSO PS + FA

2 56 8072 6543 7932

3 55 3636 5643 6893

4 53 2168 4562 5342
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Figure 5: Performance Comparison Based on Computation Time.

(A) Dataset 1. (B) Dataset 2.
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PS algorithm, (ii) constrain-based mining, and (iii) optimal mining via HFGSO. In the first step, the concept 

of PS is presented, which detects frequent DNA sequence patterns using a prefix tree. After that, we apply 

constraint-based mining. We use three types of constraints, such as weight, length, and RE. The proposed 

RE constraints in the pattern mining process are used to generate a frequent pattern of user interest. Also, 

we used the weight of each item, which is an important indicator of each item. Similarly, our proposed algo-

rithm uses length constraints, which restrict the length of the pattern. This algorithm generates a frequent 

pattern that satisfies the minimum weight, length, and RE constraints. Finally, the optimized mining result is 

obtained through the HFGSO algorithm. The experimentation results demonstrated that the proposed system 

achieved higher-quality results compared with other methods.
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