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Abstract This article presents the nonlinear, steady state mixed convection boundary layer flow,

heat and mass transfer of an incompressible non-Newtonian Jeffrey’s fluid past a non-isothermal

wedge. The transformed conservation equations are solved numerically subject to physically appro-

priate boundary conditions using a versatile, implicit finite-difference Keller box technique. The

influence of a number of emerging non-dimensional parameters, namely Deborah number (De),

ratio of relaxation to retardation times (k), pressure gradient parameter (m), Buoyancy ratio param-

eter (N), mixed convection parameter ðk1Þ, radiation parameter (F) and heat generation/absorption

parameter (D) on velocity, temperature and concentration evolution in the boundary layer regime is

examined in detail. Also, the effects of these parameters on surface heat transfer rate, mass transfer

rate and local skin friction are investigated.

� 2015 Ain Shams University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Non-Newtonian transport phenomena arise in many branches

of process mechanical, chemical and materials engineering.

Most non-Newtonian models involve some form of

modification to the momentum conservation equations. These

include power-law fluids [1], Walters-B short memory models

[2,3], Oldroyd-B models [4], differential Reiner–Rivlin models

[5,6], Bingham plastics [7] and tangent hyperbolic fluids [8].

As with a number of rheological models developed, the Jef-

frey model has proved quite successful. This simple, yet elegant

rheological model was introduced originally to simulate earth

crustal flow problems [9]. This model [10] constitutes a vis-

coelastic fluid model which exhibits shear thinning characteris-

tics, yield stress and high shear viscosity. The Jeffrey fluid

model degenerates to a Newtonian fluid at a very high wall

shear stress i.e. when the wall stress is much greater than yield

stress. This fluid model also approximates reasonably well the

rheological behavior of other liquids including physiological

suspensions, foams, geological materials, cosmetics, and
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syrups. Interesting studies employing this model include

peristaltic transport of Jeffery fluid under the effect of magne-

tohydrodynamic [11], peristaltic flow of Jeffery fluid with

variable-viscosity [12], radiative flow of Jeffery fluid in a por-

ous medium with power law heat flux and heat source [13],

recent studies on Jeffrey’s fluid include [14–16].

The heat transfer analysis of boundary layer flow with radi-

ation is important in various materials processing operations

including high temperature plasmas, glass fabrication, and liq-

uid metal fluids. When coupled with thermal convection flows,

these transport phenomena problems are highly nonlinear. At

a high temperature the presence of thermal radiation changes

the distribution of temperature in the boundary layer, which

in turn affects the heat transfer at the wall. A number of stud-

ies have appeared that consider multi-physical radiative–con-

vective flows. Recently, Asmat Ara et al. [17] reported the

radiation effect on boundary layer flow of Eyring-Powell fluid

from an exponentially shrinking sheet. Noor et al. [18] used the

Rosseland model to study radiation effects on hydromagnetic

convection with thermophoresis along an inclined plate. Fur-

ther, studies employing the Rosseland model include Gupta

et al. [19] who examined on radiative convective micropolar

shrinking sheet flow, Cortell and Suction [20] who investigated

non-Newtonian dissipative radiative flow, and Bhargava et al.

[21] who studied radiative-convection micropolar flow in por-

ous media.

Very few of the above studies have considered Falkner–

Skan flows [22,23]. This family of boundary layer flows is

associated with the two-dimensional wedge configuration.

Non-Newtonian flows from wedge bodies arise in a number

of chemical engineering systems which have been described

in detail by Peddieson [24] employing the second order

Reiner–Rivlin model. The mixed convection boundary layer

flow from a heated wedge plate has also drawn some interest.

The combined forced and free convection flow and heat trans-

fer about a non-isothermal wedge subject to a non-uniform

free stream velocity was first considered by Sparrow et al.

[25]. Watanabe et al. [26] analyzed theoretically mixed convec-

tion flow over a perforated wedge with uniform suction or

injection. Kafoussias and Nanousis [27] and Nanousis [28]

studied the effect of suction or injection on MHD mixed con-

vection flow past a wedge. Gorla [29] used a power-law model

to study heat transfer in polymer flow past a wedge. Yih [30]

evaluated radiation effects on mixed convection flow about

an isothermal wedge embedded in a saturated porous medium.

Rashidi et al. [31] developed homotopy solutions for third

grade viscoelastic flow from a non-isothermal wedge. Cham-

kha et al. [32] presented computational solutions for MHD

forced convection flow from a non-isothermal wedge in the

presence of a heat source or sink with a finite difference

method. Hsiao [33] reported on MHD convection of viscoelas-

tic fluid past a porous wedge, observing that the elastic effect

increases the local heat transfer coefficient and heat transfer

rates at the wedge surface. Ishak et al. [34] obtained a

self-similar solution for a moving wedge in a micropolar

fluid. Ishak et al. [35] further studied numerically steady

two-dimensional laminar flow past a moving wedge in non-

Newtonian fluid. Ishak et al. [36] studied the MHD boundary

layer flow of a micropolar fluid past a wedge with constant

heat flux. Ishak et al. [37] examined the MHD boundary layer

flow of a micropolar fluid past a wedge with variable wall

temperature.

The current work presents a numerical study of laminar

boundary layer flow, heat and mass transfer of Jeffrey’s

Nomenclature

C concentration

Cf skin friction coefficient

cp specific heat parameter

De Deborah number

Dm mass (species) diffusivity

f non-dimensional steam function

F thermal Radiation

g acceleration due to gravity

Grx Grashof (free convection) number

K thermal diffusivity

k thermal conductivity of Jeffrey’s fluid

k� mean absorption coefficient

m pressure gradient parameter

Nb buoyancy ratio parameter

Nu heat transfer rate (local Nusselt number)

Pr Prandtl number

qr radiative heat flux

Rex Reynolds number

S Cauchy stress tensor

Sc local Schmidt number

Sh mass transfer rate (Sherwood number)

T temperature of the Jeffrey’s fluid

u, v non-dimensional velocity components along the

x- and y-directions, respectively

x stream wise coordinate

y transverse coordinate

Greek symbols

a thermal diffusivity

b coefficient of thermal expansion

b� coefficient of concentration expansion

k ratio of relaxation to retardation times

k1 mixed convection parameter

k2 retardation time

g dimensionless radial coordinate

l dynamic viscosity

v kinematic viscosity

h non-dimensional temperature

/ non-dimensional concentration

q density of fluid

n dimensionless tangential coordinate

W dimensionless stream function

D heat generation (source)/heat absorption (sink)

parameter

r� Stefan–Boltzmann constant

Subscripts

w surface conditions on wedge

1 free stream conditions
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non-Newtonian fluid past a non-isothermal wedge with

thermal radiation and heat generation/absorption. The non-

dimensional equations with associated dimensionless

boundary conditions constitute a highly nonlinear, coupled

two-point boundary value problem. Keller’s implicit finite dif-

ference ‘‘box” scheme is implemented to solve the problem.

The effects of the emerging thermophysical parameters, namely

Deborah number (De), ratio of relaxation to retardation times

(k), pressure gradient parameter (m), radiation parameter

(F), Heat source/sink parameter (D), and mixed convection

parameter (k1), on the velocity, temperature, concentration,

local skin friction, heat transfer rate and mass transfer rate

characteristics are studied. The present problem has to the

authors’ knowledge not appeared thus far in the scientific liter-

ature and is relevant to polymeric manufacturing processes and

nuclear waste simulations.

2. Mathematical model

The steady, laminar, two-dimensional, incompressible

boundary layer flow, heat and mass transfer from a non-

isothermal wedge to Jeffrey’s fluid in the presence of heat

source/sink and thermal radiation is studied, as illustrated in

Fig. 1. Both wedge and Jeffrey’s fluid are initially maintained

at a constant temperature and concentration. Instantaneously,

they are raised to a temperature Tw > T1ð Þ and concentration

Cw > C1ð Þ, where the latter (ambient) temperature and

concentration of the fluid are sustained constant. The

x-coordinate (tangential) is measured along the wall of the

wedge and the y-coordinate (radial) is measured normal to

it. The corresponding velocities in x and y directions are u

and v respectively. The gravitational acceleration g, acts verti-

cally downwards. The Boussinesq approximation holds i.e. the

density variation is only experienced in the buoyancy term in

the momentum equation. The Cauchy stress tensor, S, of a

Jeffrey’s non-Newtonian fluid [38] takes the form as follows:

T ¼ �pIþ S; S ¼
l

1þ k
ð _cþ k2€cÞ ð1Þ

where a dot above a quantity denotes the material time deriva-

tive and _c is the shear rate. The Jeffrey’s model provides an ele-

gant formulation for simulating retardation and relaxation

effects arising in non-Newtonian polymer flows. The shear rate

and gradient of shear rate are further defined in terms of veloc-

ity vector, V, as follows:

c
�
¼ rVþ ðrVÞT ð2Þ

€c ¼
d

dt
c
�
� �

ð3Þ

Introducing the boundary layer approximations, and incor-

porating the stress tensor for a Jeffrey’s fluid in the momentum

equation (in differential form), the conservation equations take

the form as follows:

@u

@x
þ

@v

@y
¼ 0 ð4Þ

u
@u

@x
þ v

@u

@y
¼ U1

dU1

dx
þ

m

1þ k

@2u

@y2
þ k2 u

@3u

@x@y2
�

@u

@x

@2u

@y2

��

þ
@u

@y

@2u

@x@y
þ v

@3u

@y3

��

þ gb T� T1ð Þ sin
X

2

� �

þ gb� C� C1ð Þ sin
X

2

� �

ð5Þ

u
@T

@x
þ v

@T

@y
¼ a

@2T

@y2
�

1

qcp

@qr
@y

þ
Q0

qcp
T� T1ð Þ ð6Þ

u
@C

@x
þ v

@C

@y
¼ Dm

@2C

@y2
ð7Þ

The Jeffrey’s fluid model, introduces a number of mixed

derivatives in the momentum boundary layer Eq. (4) and in

particular two third order derivatives u @3u
@x@y2

and v @3u
@y3

, making

the system an order higher than the classical Navier–Stokes

(Newtonian) viscous flow model. The non-Newtonian effects

feature in the shear terms only of Eq. (5) and not the convec-

tive (acceleration) terms. The third term on the right hand side

Figure 1 Physical model and coordinate system.
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of Eq. (5) represents the thermal buoyancy force and couples

the velocity field with the temperature field Eq. (6). The fourth

term on right hand side of Eq. (5) represents the species buoy-

ancy effect (mass transfer) and couples Eq. (5) to the species

diffusion Eq. (7). Viscous dissipation effects are neglected in

the model.

The appropriate boundary conditions are as follows:

At y¼ 0; u¼ 0; v¼ 0; T¼Tw; C¼Cw

As y!1; u!U1 ¼Cxm; v! 0; T!T1; C!C1

ð8Þ

where U1 ¼ Cxm is the free stream velocity, m ¼ b1= 2� b1ð Þ is
the Hartree pressure gradient parameter which corresponds to

b1 ¼ X=p for a total angle X of the wedge, and C is a positive

number.

In Eq. (6) the penultimate term on the right side is the ther-

mal radiation flux contribution based on Rosseland approxi-

mation [39,40]. This formulation allows the transformation

of the governing integro-differential equation for radiative

energy balance into electrostatic potential (Coulomb’s law)

which is valid for optically-thick media in which radiation only

propagates a limited distance prior to experiencing scattering

or absorption. It can be shown that the local intensity is caused

by radiation emanating from nearby locations in the vicinity of

which the emission and scattering are comparable to the loca-

tion under consideration. For zones where conditions are

appreciably different, the radiation has been shown to be

greatly attenuated prior to arriving at the location being ana-

lyzed. The energy transfer depends only on the conditions in

the area near the position under consideration. In applying

the Rosseland assumption, it is assumed that refractive index

of the medium is constant, intensity within the porous medium

is nearly isotropic and uniform and wavelength regions exist

where the optical thickness is greater than 5. Further details

are available in Bég et al. [41]. The final term on the right hand

side of Eq. (6) is the heat source/sink contribution. The Rosse-

land diffusion flux model is an algebraic approximation and

defined as follows:

qr ¼
4r�

3k�
@T4

@y
ð9Þ

where k� – mean absorption coefficient and r� – Stefan–Boltz-

mann constant. It is customary [42] to express T4 as a linear

function of temperature. Expanding T4 using Taylor series

and neglecting higher order terms lead to

T4 ffi 4T3
1T� 3T4

1 ð10Þ

Substituting (10) into (9), eventually leads to the following ver-

sion of the heat conservation Eq. (6):

u
@T

@x
þ v

@T

@y
¼ a

@2T

@y2
þ
16r�T3

1

3k�qcp

@2T

@y2
þ

Q0

qcp
T� T1ð Þ ð11Þ

To transform the boundary value problem to a dimension-

less one, we introduce a stream function W defined by the

Cauchy–Riemann equations, u ¼ @W
@y

and v ¼ � @W
@x
.

The mass conservation Eq. (4) is automatically satisfied.

The following dimensionless variables are introduced into

Eqs. (5)–(8):

n ¼
rx

qU1

; g ¼
y

x
Re1=2x ; f ¼

w

U1xmð Þ1=2
;

h n; gð Þ ¼
T� T1

Tw � T1

; / n; gð Þ ¼
C� C1

Cw � C1

Pr ¼
mqcp

k
; Sc ¼

m

Dm

; Grx ¼
gb Tw � T1ð Þx3

4m2
;

De ¼
k2mRex

x2
; Rex ¼

U1x

m
; k1 ¼

Grx

Rex

ð12Þ

The resulting momentum, energy and concentration bound-

ary layer equations take the form as follows:

f 000

1þk
þ
1þm

2
ff 00�m f 0ð Þ

2
þmþk1 hþN/ð Þsin

X

2

� �

�
De

1þk

1�mð Þf 0f 000�3m�1
2

f 002

þ1þm
2
ff iv

 !

¼n 1�mð Þ f 0
@f 0

@n
�f 00

@f

@n
�

De

1þk
f 0
@f 000

@n
�f 000

@f 0

@n
þ f 00

@f 00

@n
�f iv

@f

@n

� �� �

ð13Þ

h 00

Pr
1þ

4

3F

� �

þ
1þm

2
fh 0 þDh¼ n 1�mð Þ f 0

@h

@n
� h 0 @f

@n

� �

ð14Þ

/ 00

Sc
þ
1þm

2
f/0 ¼ n 1�mð Þ f 0

@/

@n
�/0 @f

@n

� �

ð15Þ

The corresponding non-dimensional boundary conditions

for the collectively eighth order, multi-degree partial differen-

tial equation system defined by Eqs. (13)–(15) assume the fol-

lowing form:

At g ¼ 0; f ¼ 0; f0 ¼ 0; h ¼ 1; / ¼ 1

As g ! 1; f0 ! 1; f 00 ! 0; h ! 0; / ! 0
ð16Þ

Here primes denote the differentiation with respect to g.

N ¼ b� Cw�C1ð Þ
b Tw�T1ð Þ

– concentration to thermal buoyancy ratio

parameter, F ¼ Kk�

4r�T3
1
– the radiation parameter, D ¼ Q0x

2

qmcpRex
–

the dimensionless heat generation/absorption coefficient.

The skin-friction coefficient (shear stress at the wedge

surface), Nusselt number (heat transfer rate) and

Sherwood number (mass transfer rate) can be defined using

the transformations described above with the following

expressions:

Cf

Re1=2x

¼ f 00ðn; 0Þ ð17Þ

Nux

Re1=2x

¼ �h=ðn; 0Þ ð18Þ

Shx

Re1=2x

¼ �/=ðn; 0Þ ð19Þ

The location, n � 0, corresponds to the vicinity of the lower

stagnation point on the wedge. For this scenario, the model

defined by Eqs. (13)–(15) contracts to an ordinary differential

boundary value problem:

f 000

1þ k
þ
1þm

2
ff 00 �m f0ð Þ

2
þmþ k1 hþN/ð Þ sin

X

2

� �

�
De

1þ k

1�mð Þf0f 000 � 3m�1
2

f 002

þ 1þm
2
ff iv

 !

¼ 0

ð20Þ
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h00

Pr
1þ

4

3F

� �

þ
1þm

2
fh0 þ Dh ¼ 0 ð21Þ

/00

Sc
þ
1þm

2
f/0 ¼ 0 ð22Þ

3. Computational finite difference solutions

The Keller-Box implicit difference method is utilized to solve

the nonlinear boundary value problem defined by Eqs. (13)–

(15) with boundary conditions (16). This technique, despite

recent developments in other numerical methods, remains a

powerful and very accurate approach for boundary layer flow

equation systems which are generally parabolic in nature. It is

unconditionally stable and achieves exceptional accuracy. An

excellent summary of this technique is given in Keller [42].

Magnetohydrodynamics applications of Keller’s method are

reviewed in Bég [43]. This method has also been applied suc-

cessfully in many rheological flow problems in recent years.

These include oblique micropolar stagnation flows [44],

Walter’s B viscoelastic flows [45], Stokesian couple stress fluids

[46], hyperbolic-tangent convection flows from curved bodies

[47], micropolar nanofluids [48], Jeffrey’s elasto-viscous

boundary layers [14], magnetic Williamson fluids [49] and

Maxwell fluids [50]. The Keller-Box discretization is fully cou-

pled at each step which reflects the physics of parabolic systems

– which are also fully coupled. Discrete calculus associated

with the Keller-Box scheme has also been shown to be funda-

mentally different from all other mimetic (physics capturing)

numerical methods, as elaborated by Keller [42]. The Keller

Box Scheme comprises four stages:

(1) Reduction of the N th order partial differential equation

system to N first order equations.

(2) Finite Difference Discretization.

(3) Quasilinearization of Non-Linear Keller Algebraic

Equations.

(4) Block-tridiagonal Elimination of Linear Keller Alge-

braic Equations.

4. Results and discussion

Comprehensive results are obtained and are presented in

Tables 1–4 and Figs. 2–10. The numerical problem comprises

of two independent variables (n, g), three dependent fluid

dynamic variables (f; h;/) and nine thermo-physical and body

force control parameters, namely, De, k, D, k1, F, m, N, Pr, Sc.

The following default parameter values i.e. De= 0.1, k = 0.2,

D = 0.1, k1 = 0.1, F = 0.5, m = 0.2, N= 0.5, Pr = 0.71,

Sc= 0.6 are prescribed (unless otherwise stated).

Table 1 depicts the influence of increasing Sc, De on skin

friction, heat transfer rate and mass transfer rate, along with

a variation in k and transverse coordinate (n). Increasing Sc,

which implies a decrease in mass diffusivity of the species is

observed to suppress skin friction and heat transfer rate

whereas it enhances the mass transfer rate. With an increase

in k, skin friction is strongly boosted as are heat transfer rate

and mass transfer rate. Also, increasing De reduces skin fric-

tion, heat transfer rate and mass transfer rate.

Table 2 presents the influence of increasing parameter k1, N

on skin friction, heat transfer rate and mass transfer rates,

along with a variation in Pr and transverse coordinate, n. With

increasing k1, it is observed that the skin friction, heat transfer

rate and mass transfer rate increase significantly. An increase

in N is found to enhance skin friction, heat transfer rate and

mass transfer rate. And an increase in Pr is observed to reduce

skin friction and mass transfer rate but increases heat transfer

rate.

Table 3 presents the influence of increasing D and m on skin

friction, heat transfer rate and mass transfer rate, along with a

variation in F and the transverse coordinate, n. Increasing m, is

found to increase skin friction, heat transfer rate and mass

transfer rate. This trend is sustained for all values of transverse

coordinate. An increase in D boosts skin friction but heat

transfer rate is reduced markedly but mass transfer rate is

increased slightly. Increasing F is observed to decrease skin

friction and mass transfer rate whereas the heat transfer rate

is increased markedly.

Table 4 presents the values of skin friction and heat transfer

for different values of k and the values are compared with

those of Minkowycz et al. [51]. The present work values are

found to be in good correlation with [51].

In Fig. 2(a)–(c), the evolution of velocity ðf 0Þ, temperature

(h) and concentration (/) functions with a variation in De, is

depicted. Dimensionless velocity (Fig. 2(a)) is considerably

decreased with increasing De. De clearly arises in connection

with high order derivatives in Eq. (13) i.e. De
1þk

½ 1�mð Þf 0f 00 � 3m�1
2

f 002 þ 1þm
2
ff iv� and n � De

1þk
f 0 @f 000

@n
� f 000 @f 0

@n
þ

h�

f 00 @f 00

@n
� f iv @f

@n

i�

. In Fig. 2(b), an increase in De is seen to con-

siderably increase temperatures throughout the boundary layer

regime. Although De does not arise in the thermal boundary

layer Eq. (14), there is a strong coupling of this equation with

the momentum field via the convective terms n f = @h
@n

h i

and

n �h= @f
@n

h i

. Furthermore, the thermal buoyancy force term,

þh in the momentum Eq. (13) strongly couples the momentum

flow field to the temperature field. Thermal boundary layer

thickness is also elevated with increasing De. Fig. 2(c) shows

a slight increase in concentration is achieved with increasing

De values.

Fig. 3(a)–(c) illustrates the effect of k on the velocity ðf 0Þ,
temperature (h) and concentration (/) distributions through

the boundary layer regime. Velocity is significantly increased

with increasing k. The polymer flow is therefore considerably

accelerated with an increase in relaxation time (or decrease in

retardation time). The temperature is also increased with

increasing k. Conversely, temperature and concentration are

depressed markedly with increasing k. The mathematical

model reduces to the Newtonian viscous flow model as k? 0

and De? 0, since this negates relaxation, retardation and elas-

ticity effects. The momentum boundary layer equation in these

cases contracts to the familiar equation for Newtonian mixed

convection from a wedge:

f 000 þ
1þm

2
ff 00 �mf=2 þmþ k hþN/ð Þ sin

X

2

� �

¼ n 1�mð Þ f 0 @f
0

@n
� f 00 @f

@n

� �

ð23Þ

Mixed convection boundary layer flows 149



The thermal boundary layer equation and concentration

Eqs. (14) and (15) remain unchanged.

Fig. 4(a)–(c) presents typical profiles for velocity ðf 0Þ,
temperature (h) and concentration (/) for various values of

F. Increasing F, strongly decelerates the flow i.e. decreases

velocity. This parameter features in the term, 1
Pr

1þ 4
3F

� �

h== in

the energy conservation Eq. (14). F represents the relative

contribution of thermal conduction to thermal radiation heat

transfer. For F= 1 both models of heat transfer have the same

contribution. Temperatures are therefore also decreased, as

observed in Fig. 4(b). Conversely, there is a slight enhancement

in concentration values with increasing F values, as shown in

Fig. 4(c).

Fig. 5(a)–(c) depicts the velocity ðf 0Þ, temperature (h)

and concentration (/) distributions with the variation in

k1. Clearly, from these figures it can be seen that as k1
increases, the fluid velocity increases. Fig. 5(b) shows the effect

of k1 on the temperature profiles. It is noticed that temperature

profiles decrease with an increase in k1. A strong decrease in

concentration is observed as shown in Fig. 5(c) with the

increasing k1.

Fig. 6(a)–(c) presents typical profiles for velocity ðf 0Þ, tem-

perature (h) and concentration (/) for various values of D.

Increasing heat generation (D > 0) significantly accelerates

the flow and also increases temperature magnitudes but

reduces concentration values. Conversely, with a heat sink

Table 1 Values of Cf, Nu and Sh for various values of De, k and Sc (Pr= 0.71, N = 0.5, D = 0.1, F= 0.5, k1 = 0.1, X = 300,

m= 0.2).

De k Sc n= 1.0 n= 2.0 n= 3.0

Cf Nu Sh Cf Nu Sh Cf Nu Sh

0.05 0.2 0.6 0.5578 0.2164 0.3267 0.5523 0.2155 0.3256 0.4601 0.1523 0.3027

0.1 0.5510 0.2147 0.3234 0.5479 0.2142 0.3229 0.4601 0.1523 0.3027

0.35 0.5348 0.2136 0.3211 0.5313 0.2134 0.3209 0.4601 0.1523 0.3027

0.65 0.5287 0.2127 0.3190 0.5204 0.2126 0.3190 0.4601 0.1523 0.3027

1.0 0.5159 0.2108 0.3070 0.5120 0.2105 0.3060 0.4601 0.1523 0.3027

0.1 0.0 0.6 0.5141 0.2140 0.3210 0.5102 0.2131 0.3198 0.4601 0.1523 0.3027

0.5 0.3202 0.2186 0.3324 0.6154 0.2178 0.3316 0.4601 0.1523 0.3027

1.0 0.7108 0.2218 0.3406 0.7051 0.2211 0.3400 0.4601 0.1523 0.3027

1.5 0.7911 0.2242 0.3468 0.7847 0.2237 0.3465 0.4601 0.1523 0.3027

2.0 0.8642 0.2261 0.3518 0.8567 0.2257 0.3515 0.4601 0.1523 0.3027

0.1 0.2 0.25 0.5606 0.2162 0.2580 0.5563 0.2153 0.2571 0.4601 0.1523 0.3027

0.78 0.5582 0.2160 0.3559 0.5539 0.2151 0.3548 0.4601 0.1523 0.3027

0.94 0.5577 0.2160 0.3799 0.5534 0.2151 0.3787 0.4601 0.1523 0.3027

1.25 0.5569 0.2159 0.4209 0.5526 0.2151 0.4193 0.4601 0.1523 0.3027

1.75 0.5560 0.2158 0.4751 0.5516 0.2150 0.4734 0.4601 0.1523 0.3027

2.0 0.5556 0.2158 0.4985 0.5512 0.2150 0.4968 0.4601 0.1523 0.3027

Table 2 Values of Cf, Nu and Sh for various values of k1, N and Pr (De = 0.1, Sc = 0.6, D = 0.1, F = 0.5, k= 0.2, X = 300,

m= 0.2).

k1 N Pr n= 1.0 n= 2.0 n= 3.0

Cf Nu Sh Cf Nu Sh Cf Nu Sh

�0.2 0.5 0.71 0.3981 0.2035 0.3096 0.3925 0.2085 0.3074 0.3906 0.2080 0.3065

�0.1 0.4533 0.2067 0.3153 0.4483 0.2108 0.3136 0.4465 0.2104 0.3189

0.0 0.5069 0.2096 0.308 0.5022 0.2130 0.3194 0.5006 0.2127 0.3189

0.1 0.5589 0.2122 0.3261 0.5546 0.2152 0.3250 0.530 0.2149 0.3246

0.3 0.6591 0.2170 0.3361 0.6552 0.2192 0.3354 0.6537 0.2190 0.3351

0.2 �0.5 0.71 0.5276 0.2108 0.3231 0.5231 0.2140 0.3219 0.5215 0.2137 0.3214

0.0 0.5433 0.2115 0.3246 0.5389 0.2146 0.3235 0.5373 0.2143 0.3230

1.0 0.5744 0.2129 0.3276 0.5701 0.2158 0.3265 0.5685 0.2155 0.3261

2.0 0.6049 0.2143 0.3304 0.6007 0.2169 0.3295 0.5992 0.2167 0.3291

0.2 0.5 0.5 0.5594 0.2080 0.3262 0.5551 0.2106 0.3251 0.5535 0.2103 0.3247

1.0 0.5583 0.2184 0.3260 0.5540 0.2217 0.3249 0.5524 0.2214 0.3245

2.0 0.5563 0.2397 0.3256 0.5519 0.2445 0.3245 0.5503 0.2441 0.3241

3.0 0.5545 0.2594 0.3253 0.5501 0.2652 0.3242 0.548 0.2649 0.3237

5.0 0.5519 0.2901 0.3248 0.5475 0.2975 0.3237 0.5459 0.2972 0.3233

7.0 0.5502 0.3108 0.3245 0.5458 0.3193 0.3234 0.5441 0.3190 0.3230
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present, (D < 0) the flow is retarded (momentum boundary

layer thickness is lowered), and thermal boundary layer

thickness is reduced whereas, concentration boundary layer

thickness increases.

Fig. 7(a)–(c) depicts the profiles for velocity ðf 0Þ, tempera-

ture (h) and concentration (/) for various values of m. It is

observed that an increase in m significantly accelerates the flow

i.e., velocity increases as shown in Fig. 7(a), whereas, increas-

ing m is found to decrease temperature and concentration as

shown in Fig. 7(b) and (c).

Fig. 8(a)–(c) depicts the profiles for velocity ðf 0Þ, tempera-

ture (h) and concentration (/) for various values of N. Increas-

ing N is found to accelerate the flow i.e., velocity increases.

However, increasing N is found to reduce both temperature

and concentration.

Fig. 9(a)–(c) presents the influence of Deborah number,

De on dimensionless skin friction coefficient f 00 n; 0ð Þð Þ, heat

transfer rate �h0 n; 0ð Þð Þ and mass transfer rate �/0 n; 0ð Þð Þ
at the wedge surface. It is observed that the dimensionless

skin friction is decreased with an increase in De i.e. the

boundary layer flow is decelerated with greater elasticity

effects in the non-Newtonian fluid. Likewise, on the other

hand the heat transfer rate is also substantially decreased

with increasing De values. There is also a progressive decay

in heat transfer rate (local Nusselt number) with increasing

tangential coordinate i.e. n-value. A decrease in heat transfer

rate at the wall will imply less heat is convected from the fluid

regime to the wedge, thereby heating the boundary layer. The

mass transfer rate (local Sherwood number) is also found to

be suppressed with increasing values of De and furthermore,

plummets with further distance from the lower stagnation

point (i.e. higher n values).

Fig. 10(a)–(c) illustrates the response to the parameter ratio

of relaxation and retardation times, k, on the dimensionless

skin friction coefficient nf 00 n; 0ð Þð Þ, heat transfer rate

�h0 n; 0ð Þð Þ and mass transfer rate �/0 n; 0ð Þð Þ at the wedge sur-
face. The skin friction at the wedge surface is accentuated with

increasing k. Also there is a strong elevation in shear stress

(skin friction coefficient) with increasing value of the tangential

coordinate, n. The flow is therefore strongly accelerated along

the curved wedge surface away from the lower stagnation

point. Heat (local Nusselt number) and mass transfer (local

Sherwood number) rates are increased with increasing, k,

although not as profoundly as the skin friction. With increasing

values of the tangential coordinate, n, however both local

Nusselt number and local Sherwood number are depressed.

As elaborated earlier these characteristics are only maximized

at the lower stagnation point.

Table 3 Values of Cf, Nu and Sh for various values of D, F and m (De = 0.1, k= 0.2, Pr = 0.71, N = 0.5, Sc = 0.6, F= 0.5,

k1 = 0.1).

D m F n = 1.0 n = 2.0 n = 3.0

Cf Nu Sh Cf Nu Sh Cf Nu Sh

�2.0 0.2 0.5 0.6000 0.6691 0.3993 0.5958 0.6674 0.3977 0.5947 0.6667 0.3971

�1.0 0.6019 0.5192 0.3994 0.5976 0.5251 0.3978 0.5960 0.5245 0.3972

0.0 0.6043 0.3512 0.3996 0.6001 0.3555 0.3980 0.5985 0.3551 0.3974

0.2 0.6049 0.3132 0.3996 0.6006 0.3171 0.3981 0.5991 0.3167 0.3975

0.5 0.6059 0.2527 0.997 0.6016 0.2561 0.3981 0.6000 0.2558 0.3976

0.1 �0.02 0.5 0.4084 0.2046 0.2990 0.4096 0.2041 0.2988 0.4099 0.2088 0.2041

0.1 0.4914 0.2083 0.3126 0.4890 0.2100 0.3124 0.4885 0.2098 0.3123

0.2 0.5589 0.2122 0.3261 0.5546 0.2152 0.3250 0.5530 0.2149 0.3246

0.3 0.6259 0.2162 0.3398 0.6191 0.2205 0.3377 0.6197 0.2200 0.3369

0.4 0.6917 0.2202 0.3531 0.6824 0.2216 0.3502 0.6791 0.2253 0.3492

0.1 0.2 0.1 0.5601 0.2020 0.3263 0.5558 0.2040 0.3253 0.5542 0.2038 0.3248

1.0 0.5580 0.2253 0.3259 0.5537 0.2244 0.3249 0.5521 0.2240 0.3244

1.5 0.5575 0.2312 0.3258 0.5531 0.2304 0.3247 0.5515 0.2301 0.3243

2.0 0.5571 0.2354 0.3258 0.5528 0.2346 0.3247 0.5512 0.2343 0.3242

Table 4 Comparison values of f 00 n; 0ð Þ and �h0 n; 0ð Þ for various values of k.

k Minkowycz et al. [51] Present

f 00 n; 0ð Þ �h0 n; 0ð Þ f 00 n; 0ð Þ �h0 n; 0ð Þ

0 0.33206 0.29268 0.33205 0.29268

0.2 0.55713 0.33213 0.55712 0.33212

0.4 0.75041 0.35879 0.75038 0.35878

0.6 0.92525 0.37937 0.92522 0.37936

0.8 1.08792 0.39640 1.08789 0.39638

1.0 1.24170 0.41106 1.24169 0.41104

2.0 1.92815 0.46524 1.92814 0.46523

10.0 5.93727 0.64956 5.93725 0.64955
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Figure 2 (a) Influence of De on velocity profiles. (b) Influence of De on temperature profiles. (c) Influence of De on concentration

profiles.
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Figure 3 (a) Influence of k on velocity profiles. (b) Influence of k on temperature profiles. (c) Influence of k on concentration profiles.
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Figure 4 (a) Influence of F on velocity profiles. (b) Influence of F on temperature profiles. (c) Influence of F on concentration profiles.
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Figure 5 (a) Influence of k1 on velocity profiles. (b) Influence of k1 on temperature profiles. (c) Influence of k1 on concentration profiles.
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Figure 6 (a) Influence of D on velocity profiles. (b) Influence of D on temperature profiles. (c) Influence of D on concentration profiles.
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Figure 7 (a) Influence of m on velocity profiles. (b) Influence of m on temperature profiles. (c) Influence of m on concentration profiles.
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Figure 8 (a) Influence of N on velocity profiles. (b) Influence of N on temperature profiles. (c) Influence of N on concentration profiles.
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Figure 9 (a) Influence of De on local skin friction coefficient. (b) Influence of De on Nusselt number. (c) Influence of De on Sherwood

number.
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Figure 10 (a) Influence of k on local skin friction coefficient. (b) Influence of k on Nusselt number. (c) Influence of k on Sherwood

number.
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5. Conclusions

A mathematical model has been developed for the non-similar,

buoyancy-driven boundary layer mixed convection flow, heat

and mass transfer of Jeffrey’s non-Newtonian fluid from a

non-isothermal wedge, in the presence of thermal radiation

and heat generation/absorption. The transformed conserva-

tion equations have been solved with prescribed boundary con-

ditions using the implicit finite difference Keller-Box method.

A comprehensive assessment of the effects of De, k, F, k1, D

and N. Very accurate and stable results are obtained with

the present finite difference code. The numerical code is able

to solve nonlinear boundary layer equations very efficiently

and therefore shows excellent promise in simulating transport

phenomena in other non-Newtonian fluids. It is therefore

presently being employed to study micropolar fluids and

viscoplastic fluids which also represent other chemical

engineering working fluids. The present study has neglected

time effects. Future simulations will also address transient

polymeric boundary layer flows and will be presented soon.
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