
REVIEW

Model level code smell detection using EGAPSO

based on similarity measures

G. Saranya a, H. Khanna Nehemiah a,*, A. Kannan b, V. Nithya c

aRamanujan Computing Centre, Anna University, Chennai 600025, Tamil Nadu, India
bDepartment of Information Science & Technology, Anna University, Chennai 600025, Tamil Nadu, India
cDepartment of Computer Science & Engineering, Anna University, Chennai 600025, Tamil Nadu, India

Received 27 September 2016; revised 6 June 2017; accepted 10 July 2017

Available online 7 August 2017

KEYWORDS

Software maintenance;

Code smell;

Software metrics;

Search based software

engineering;

Euclidean distance;

Open source software

Abstract Software maintenance is an essential part of any software that finds its use in the day-to-

day activities of any organization. During the maintenance phase bugs detected must be corrected

and the software must evolve with respect to changing requirements without ripple effects. Software

maintenance is a cumbersome process if code smells exist in the software. The impact of poor design

is code smells. In code smells detection, majority of the existing approaches are rule based, where a

rule represents the combination of metrics and threshold. In rule based approach, defining the rules

that detect the code smells are time consuming because identifying the correct threshold value is a

tedious task, which can be fixed only through trial and error method. To address this issue, in this

work Euclidean distance based Genetic Algorithm and Particle Swarm Optimization (EGAPSO) is

used. Instead of relying on threshold value, this approach detects all code smells based on similarity

between the system under study and the set of defect examples, where the former is the initial model

and the latter is the base example. The approach is tested on the open source projects, namely Gantt

Project and Log4j for identifying the five code smells namely Blob, Functional Decomposition, Spa-

ghetti Code, Data Class and Feature Envy. Finally, the approach is compared with code smell

detection using Genetic Algorithm (GA), DEtection and CORrection (DECOR), Parallel Evolu-

tionary Algorithm (PEA) and Multi-Objective Genetic Programming (MOGP). The result of

EGAPSO proves to be effective when compared to other code smell detection approaches.

� 2017 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author.

E-mail address: nehemiah@annauniv.edu (H. Khanna Nehemiah).

Peer review under responsibility of Faculty of Engineering, Alexandria

University.

Alexandria Engineering Journal (2018) 57, 1631–1642

HO ST E D  BY

Alexandria University

Alexandria Engineering Journal

www.elsevier.com/locate/aej
www.sciencedirect.com

http://dx.doi.org/10.1016/j.aej.2017.07.006
1110-0168 � 2017 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).



Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1632

2. Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1633

2.1. Search based techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1633

2.2. Non-search based techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1634

2.3. Model based approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1634

3. Background and problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1635

3.1. Code smell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1635

3.2. Software metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1635

3.3. Euclidean distance based genetic algorithm and particle swarm optimization (EGAPSO). . . . . . . . . . . . . . . . . 1636

4. A search based approach for detecting code smells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1636

4.1. Individual representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1636

4.2. Fitness function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1636

4.2.1. Illustration of fitness function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1637

4.3. Crossover of the particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1637

4.4. Mutation of the particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1638

4.5. Adaptation of EGAPSO for code smell detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1638

5. Empirical study definition and design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1638

5.1. Research question, data analysis and metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1638

5.2. Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1639

5.3. Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1639

5.4. Average number of defects detected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1639

5.5. FMeasure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1639

5.6. Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1640

6. Evaluation of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1640

6.1. Result of RQ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1640

6.2. Result of RQ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1640

7. Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1640

8. Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1640

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1641

1. Introduction

Software evolution and maintenance involve high costs of the

development process, particularly as systems become larger

and more complex. A usual concern that makes software

maintenance and evolution difficult is the existence of struc-

tural design problems. These design problems are otherwise

known as code smells. The majority of the existing approaches

of code smell detection is in the code level [1–5].

The quality of the software can be improved if code smells

are identified in the model level of the software. Detecting the

code smells in the model level is very difficult as all the metrics

are not supported in model level [6]. A model maintenance

activity includes adding new functionalities, incorporating

modifications if needed, detecting poor design fragments and

correcting them [4].

In model level maintenance, majority of the existing

approaches is rule based [6,7]. All code smells cannot be

detected in rule based approach because finding the right

threshold value of the metrics is a tedious task. For example,

a rule that detects large classes involves metrics related to

the class size. Even though the metrics of large classes are

easily measurable, finding the right threshold value is signifi-

cant. To be precise, a class considered as a large class in a pro-

gram can be an average class in any other program. The

objective of the work is to identify the code smells in the model

level. This paper focuses on detecting the code smell in the

UML class diagram, which does not rely on the definition of

rules. Thus the approach does not require a specification of

the metrics to use their related threshold values for code smell

detection.

In this work, code smell detection is based on, estimating

the similarities between the initial model and the base example.

To this end, EGAPSO [8] is used for finding the code smells in

the model level. Three open source softwares are used in this

work. Two of them are considered as the initial models and

the third one is considered as the base example. Metrics are

computed from both initial model and base example. Based

on the metrics, the similarity between the class of the initial

model (CIM) and the class of the base example (CBE) is

determined. Finally, using EGAPSO, all the code smells

are detected. The EGAPSO is compared with the code

smell detection approaches namely genetic algorithm (GA),

DEtection and CORrection (DÉCOR), Parallel Evolutionary

Algorithm (PEA) and Multi-Objective Genetic Programming

(MOGP).

The remainder of this paper is organized as follows: Sec-

tion 2 describes a literature review of code smell detection. Sec-

tion 3 presents the relevant background material for the

presented work. Section 4 describes the approach for code

smell detection using EGAPSO; empirical study definition

and design are discussed in Section 5. In Section 6 experimen-

tal results and its analysis are discussed; Section 7 presents the

threats that could affect the validity of the code smell detection

using EGAPSO is discussed. Finally, conclusion and scope for

future work are discussed in Section 8.

1632 G. Saranya et al.



2. Literature review

Smell detection has been addressed in the literature from dif-

ferent perspectives. The approach for code smell detection

can be classified into three broad categories. The first category

is search based approach, the second category is non-search

based approach and the third category is the model based

approach.

2.1. Search based techniques

Seng et al. presented an approach that uses genetic algorithm

for suggesting the list of refactoring that do not change the

external behaviour of the software [9]. The researchers used

a genetic algorithm for finding the set of refactoring that has

to be applied in the software. They used a fitness function that

depends on an existing set of object oriented metrics which is

evaluated on the open source software JHotDraw. Using this

approach, more than 90% of refactoring operations were

found.

Harman et al. used Pareto optimality to improve the

search-based refactoring, which combines metrics and provides

numerous sequences of optimal refactoring [10]. Several runs

of this search-based refactoring system produced Pareto front,

whose values represent Pareto optimal sequences of refactor-

ing. The drawback is, the Pareto optimal search explicitly

focused only on suggesting the refactoring, not on detecting

the defects in the code.

Jensen et al. proposed an approach REMODEL based on

genetic programming and a set of software metrics to make

out the most appropriate set of refactoring that introduce

design patterns to the software [11]. The researchers used

Quality Model for Object Oriented Design (QMOOD) [12] a

suite of OO metrics to improve the quality of the software

design. The approach REMODEL was validated using the

Repository for Model Driven Development (REMODD) a

web based software system. The limitation of the approach

REMODEL is that the design defects are not detected explic-

itly as the main focus is on suggesting the suitable refactoring

to improve the quality of the software.

Kessentini et al. used genetic programming for an auto-

matic approach to define rules for code smell detection. The

rules are the combination of metrics and threshold values [5].

The researchers compared their approach to Harmony Search

(HS), Particle Swarm Optimization (PSO) and Simulated

Annealing (SA) to find a near optimal set of detection rules.

When compared to other approaches, the researchers found

a better result of an average of 75% of known code smells.

Ouni et al. had developed an approach for code smell detec-

tion and correction [13]. The approach developed by Ouni

et al. has two objectives, one is code smell detection and the

other is the correction of code smell. The correction of code

smells focuses on suggesting the suitable refactoring opera-

tions. Detection is based on the technique of Genetic Program-

ming whereas Non-dominated Sorting Genetic Algorithm

(NSGA-II) is used for the correction of code smells. This

approach had been evaluated on six open source projects,

namely Gantt project, Quick UML, Azureus, Log4J,

ArgoUML and Xerces. The approach attained 94% precision

and 97% recall for Ganttproject, 91% precision and 91%

recall for Xerces, 87% precision and 93% recall for

ArgoUML, 86% precision and 93% recall for QuickUML,

73% precision and 87% recall for Azureus and 79% precision

and 83% recall for Log4J.

Ghannem et al. proposed an approach to detect code smell

based on Genetic Algorithm [14]. The approach detects code

smells in the design stage of the project with the help of

well-known design defects. The approach was evaluated on

four open source program, namely GanttProject, ArgoUML,

Log4J and Xerces which targets to detect the three design

defects namely blob, functional decomposition and data class.

This approach attained 95% precision and 75% recall.

Shizhe Fu et al. proposed a novel approach to detect code

smells through Evolutionary data mining [29]. They used asso-

ciation rules mined from the change history of software sys-

tems along with the heuristics algorithms to detect code

smells. Experimentation was performed on 5 open source pro-

jects namely Eclipse, Junit, Guava, Closure Compiler and

Maven to detect 3 code smells such as duplicate code, shotgun

surgery and divergent change. On the basis of their experi-

ments and results they concluded that their approach achieves

precision between 50% and 100%, recalls between 60% and

100% and F-measure between 58% and 100%. The research-

ers have compared their approach with SonarQube which

detects more duplicate code but achieves low F-measure in

the detection of duplicate code. They have also compared their

approach with DECOR, JDeodorant and DCPP to show that

their approach outperforms other approaches.

Kessentini et al. (2014) proposed parallel evolutionary algo-

rithm (PEA) for the detection of code smell namely blob, func-

tional decomposition, spaghetti code, feature envy, data class,

long parameter list, lazy class and shotgun surgery [33]. In

PEA the researchers used genetic programming and genetic

algorithm in parallel to generate the code smell detection rules

and the detectors from well-designed code examples respec-

tively. The approach has been evaluated on nine open source

projects namely JFreechart, Ganttproject, ApacheAnt V1.5.2,

ApacheAnt V1.7.0, Nutch, Log4J, Lucene, Xerces-J and

Rhino. The PEA used for code smell detection approach is

compared with random search (RS) algorithm and two single

population based approaches and two code smell detection

techniques that are not based on meta-heuristics search. In

the nine open source software, the approach PEA attained

an average precision and recall of 85% on eight different types

of code smell detection.

Mansoor et al. introduced a multi-objective approach to

generate rules for the detection of code smell [34]. The

researchers used Multi-Objective Genetic Programming

(MOGP) to find the best combination of metrics that maximize

the detection of code smell examples and minimize the detec-

tion of well-designed code examples. They achieved 86% pre-

cision and 91% recall.

The major limitation of using these search based techniques

is that, most of them can be applied only for refactoring the

software system. The results produced by search based tech-

niques are complementary when compared with other code

analysis techniques. Some of the search based techniques

require generation of rules for identifying the code smells. In

this paper, a search based technique EGAPSO is used, which

overcomes all the limitations of the existing approaches. It

does not require the generation of rules for defect detection;

instead it uses defect examples to identify the code smells.

Model level code smell detection using EGAPSO 1633



2.2. Non-search based techniques

Marinescu proposed a metric-based approach to detect code

smells with detection strategies [4]. The metric based approach

defines a set of rules for detecting the defects in the object ori-

ented design at method, class or subsystem level. The strategies

capture deviations from good design principles and heuristics.

The detection strategies have been evaluated on multiple

industrial case studies of size ranging from 700 KLOC to

2000 KLOC. For all the strategies, the accuracy rate is over

50%, and the average accuracy is over 67%. However, there

are some limitations in their detection strategies, such as they

have no justification for choosing the metrics, thresholds and

the combination of the metrics and threshold.

Moha et al. introduced an approach called DÉCOR that

includes all the necessary steps for the specification and detec-

tion of code and design smells [15]. This approach describes the

symptoms of the defects in abstract rule language. These

descriptions are then mapped to detection algorithms. To over-

come the threshold, this method uses some heuristics to

approximate some notions. The approach DÉCOR had

detected the code smells namely Blob, Swiss army knife, Func-

tional decomposition, Spaghetti code and their underlying fif-

teen code smells. The approach is tested on the open source

project Xerces-J and obtained an overall precision of 60.5%

and recall of 100%. However, they have not compared

approach DÉCOR with the other existing approaches related

to smell detection.

Budi et al. proposed an approach to detect the defects in

layered oriented architecture based on stereotypes [16]. In this

layered approach, the classes are automatically separated into

three groups boundary, entity and control to detect the design

flaws associated with each stereotype. The limitation of this

approach is that it can detect only the defects associated with

the stereotype and not the real design defects.

Palomba et al. have proposed an approach Historical Infor-

mation for Smell deTection (HIST) to detect the code smells in

the source code [17]. The approach HIST detected five differ-

ent code smells, namely Shotgun Surgery, Parallel Inheritance,

Divergent Change, Feature Envy and Blob by exploiting

change history information mined from versioning systems.

For example, classes that change frequently are considered

as a blob. The researchers evaluated the approach HIST to

eight projects such as Apache Ant, Apache Tomcat, jEdit

and five Android applications and obtained an overall preci-

sion of 71% and overall recall of 81%. Vimala et al. proposed

a refactoring framework based on game theory to restructure

the PL/SQL code [18]. The similarity measure has been used

to compute the payoff matrix and refactoring is based on game

theory.

Fontana et al. proposed an approach based on Machine

learning techniques [30]. The focus of the approach was based

on the detection of code smells namely God class, Data class,

Long method, Feature Envy. They considered 76 systems for

the analysis and experimented on 6 different machine learning

algorithms. Experimentation was performed on J48, Random

forest, Naive Bayes, Jrip, SMO, LibSVM classifiers through

k-fold cross validation in different configurations to find the

best one. They have also produced a learning curve to deter-

mine which algorithm learns more quickly. On the basis of

the experiment and results, they concluded that J48, Random

Forest, Jrip and SMO have accuracy values greater than 90%

for all data sets and an average they have best performances.

Naive Bayes has slightly lower performances on Data class

and Feature Envy than on the other two smells. LibSVM per-

formances are lower than the others. The limitation of this

approach is that they have also used default parameters

instead of optimized parameters. Better results can be obtained

with optimized setting of parameters.

Hamid et al. formed a comparative study on two tools

namely JDeodorant and incode to detect two bad smells such

as God class and Feature Envy [31]. The incode uses metrics

based approach and JDeodorant uses the agglomerative clus-

tering technique to detect God class smell. Feature envy smells

detected by incode tool are static methods whereas JDeodor-

ant detects non-static methods. They have also extracted some

suggestions on the bases of variations found in the results of

both detection tools. They concluded that besides development

of new tools current tools also need to be revised. They have

differentiated static and non-static methods with the use of

two tools and are unable to find the reason why inCode does

not detect non-static methods detected by Jdeodorant.

Rasool et al. discussed analysis of code smell mining tech-

niques. They illustrated generic code smell detection process

steps to diagnose symptoms in the design [32]. They presented

a comparison of seven approaches namely manual approach,

symptoms based, metric based, probabilistic approach,

search-based approach and cooperative approach based on

their key features. They highlighted some of the issues in the

code smell detection tools such as the integration of tool with

other tools is not considered by most authors. They also

pointed out the missing feature of tools in the detection of

design and architectural smells. Through the review of 46

selected primary papers, the authors have not found any

language-independent code smell detection technique that

requires the attention of the researchers. They presented a

summary of techniques/tools, and stated that not a single tech-

nique/tool is capable of detecting all 22 code smells of Fowler.

Experiments reveal the differences in results computed by dif-

ferent tools. The majority reasons in the disparity of results are

due to the different threshold values on the number of param-

eters used by these tools. Though an up-to-date review on the

state of the art techniques and tools used for mining code

smells are presented, they are limited by covering the area of

code smells on detection rather than covering all aspects of

code smells.

To conclude, the major drawback of existing non-search

based techniques is mainly its difficulty in defining the thresh-

old values for metrics which are used in identifying the defects.

2.3. Model based approaches

Model maintenance is defined as the different modifications

made to the model in-order to improve its quality, to add

new functionalities to the model, to easily detect the badly

designed fragments in the model, to correct the defects in the

model and to modify the model. When arbitrary changes are

made to a model, it is quite likely that its behaviour consistency

is not preserved. To preserve the behaviour, the maintainers

apply the refactoring operations. The goal of the refactoring

operation was to improve the structure of the model and pre-

serve the behavioural properties. Van Der Straeten et al.

1634 G. Saranya et al.



explored the relationship between behaviour consistencies of

model refinements and behaviour preservation of model refac-

toring [6]. Moreover, the researchers developed a plug-in which

is an extension of the Poseidon plug-in to show the practical use

of relation model refinement and refactoring. This plug-in

detects automatically, whether model refinements and model

refactoring are behaviourally consistent. It has been tested in

ATM software developed by Prof. Russell Bjork from Gordon

University. The main drawback of this approach is that the

experiment has been carried out only on small projects.

Van Kempen et al. described the refactoring for the UML

model [19]. The researchers used the class diagram of Software

Architecture Analysis Tool (SAAT) as a case study for refac-

toring. From the class diagram of SAAT, the researchers cal-

culated the metrics. Using the metrics, they identified the

design defects and the corresponding refactoring operation is

applied. The researchers also used Communicating Sequential

Process (CSP) to prove the behaviour equivalence of the

SAAT after refactoring. The drawback is that this process

becomes difficult when it is operated over more complex

designs.

Zhang et al. proposed a rule based approach that describes

how the model refactoring is applied [20]. The researchers

developed a model transformation engine named as C-SAW,

which provides the general refactoring tool for manipulating

models, and then it has been integrated with the refactoring

browser to enable the automation of refactoring methods. Ivan

Porres defined model refactoring as a rule-based model trans-

formation which is similar to Zhang et al. But, the refactoring

tool of Porres does not support automated refactoring and

domain-specific model refactoring [21].

Most of the model based approaches are based either on the

rules or on graph transformation and focus on refactoring

operations. However, complete code smell detection was not

considered in model level.

The existing search based techniques in general can be

applied only to refactoring the software system. Also they have

limitation in defining the rules and ensuring the correctness of

the rules in identifying the code smells. The existing non-search

based technique presents complexity in finding the correct

threshold values for metrics which are used to detect the

defects. The existing model based approaches do not focus in

code smell detection. Hence, to overcome these issues, an

EGAPSO based approach is proposed to detect code smell

in the model level. The proposed EGAPSO based approach

aims in overcoming these limitations of rule based approach

using a similarity search based optimization search technique

rather than relying on a simple threshold value. Hence the pro-

posed approach yields better results than the other approaches.

3. Background and problem statement

This section provides the necessary background material used

for the detection of code smells. The definition of code smells,

the metrics used for code smell detection and EGAPSO are dis-

cussed below:

3.1. Code smell

Code smells are first defined by Fowler and Beck [22]. They

defined code smells as the symptoms of code and design prob-

lems [22]. In this paper, code smells detection that occurs in the

model level, especially in the class diagram is focused, thereby

improving the model quality. The following five code smells

were considered and evaluated in this paper.

� Blob: Blob is found in designs where one large class monop-

olizes the behaviour of a system. It is a large class that has

many fields and methods with low cohesion and almost the

class does not have parent class and children. It is a class

which implements different responsibilities and has large

size.

� Functional Decomposition (FD): FD occurs when a class is

designed with the intent of performing a single function.

FD is found in a class, where inheritance and polymor-

phism are poorly used. This is found in class diagrams pro-

duced by non experienced object-oriented developers.

� Data Class (DC): It is a class that has only data. It does not

have any processing on the data. The only methods that are

defined by this class are the getters and the setters.

� Feature Envy: Feature envy is a classic smell that occurs

when a method get fields of another method in some other

class than the one it is actually implemented in. It is often

characterized by a large number of dependencies with the

envied class, so it reduces the cohesion and increases the

coupling of the class.

� Spaghetti Code: Spaghetti Code is a classic code smell that

occurs when the code does not use appropriate structuring

mechanisms. Spaghetti Code prevents the use of object ori-

ented mechanisms, namely polymorphism and inheritance.

Classes affected by this smell, are characterized by complex

methods, with no parameters and interaction between them

using instance variables.

3.2. Software metrics

Software metrics provide some useful information that helps in

assessing the quality of the software [23]. It can also be used

for detecting the similarities between the software systems

[24]. In this work, ten metrics are considered, where, all these

metrics are related to the class entity in the class diagram.

Among the ten metrics, NA, NPvA, NpbA, NprotA, NM,

NPvM, NPbM, NprotM metrics give information about the

number of methods and attributes in the class diagram, while

NAss and Ngen give the relationship between classes. The

Table 1 Metrics description.

Metrics Description of the metrics

NA The total number of attributes per class

NPvA The total number of private attributes per class

NpbA The total number of public attributes per class

NprotA The total number of protected attributes per class

NM The total number of methods per class

NPvM The total number of Private methods per class

NPbM The total number of Public methods per class

NprotM The total number of Protected methods per class

NAss The total number of Associations

Ngen The total number of Generalization relationships

Model level code smell detection using EGAPSO 1635



metrics that are considered in this work with expressiveness

and usefulness are listed in Table 1 [25].

3.3. Euclidean distance based genetic algorithm and particle

swarm optimization (EGAPSO)

The EGAPSO [8] is a population based heuristic search opti-

mization algorithm developed by Kim and Park in 2006. The

EGAPSO is a hybrid approach of Particle Swarm Optimiza-

tion (PSO) [26] and Genetic Algorithm (GA) [27] which is

based on Euclidean distance. This algorithm was used to tune

the proportional integral derivative (PID) controller in a steam

temperature control system of the thermal power plant, indus-

trial system of chemical process and also in biomedical process

[8]. EGAPSO works as follows: In EGAPSO, each particle is

considered as individuals, whereas a group of particles is called

as a swarm. Each particle in the swarm has its own position

and its velocity. Initially the particles are placed at random

positions in the search space, and the velocity of the particle

is represented as zero. For each generation the position of

the particle and its velocity in EGAPSO can be updated using

the formula given in the Eqs. (1) and (2).

viðtþ 1Þ  xviðtÞ þ c1r1ðpbestiðtÞ � xiðtÞÞ

þ c2r2ðgbestiðtÞ � xiðtÞÞ ð1Þ

xiðtþ 1Þ  xiðtÞ þ vi ð2Þ

In the Eqs. (1) and (2), xiðtÞ and xiðtþ 1Þ represent the

position of the particle at time (t) and time (t + 1), respec-

tively. viðtÞ is the velocity of the particle at time (t), pbestiðtÞ
is the best position of the particle found so far, gbestiðtÞ is
the global best position of the particles, c1 and c2 are the accel-

eration coefficients that influence the best position of the par-

ticles, r1 and r2 are the random variables and x represents the

inertia weight of the particles.

During the search process, the position of a particle is

guided by two factors, namely local best (pbest) and global best

(gbest). The best visited position for the particle by itself is

local best (pbest) and it arrives at the best position obtained

so far by any particle in the neighbourhood is global best

(gbest). During iterations particle converges to its local point

and it moves according to the following iterative mathematical

models:

pbestiðtþ 1Þ ¼
pbestiðtÞ if fðpbestiðtÞÞ 6 fðxiðtþ 1ÞÞ

xiðtþ 1Þ if fðpbestiðtÞÞ > fðxiðtþ 1ÞÞ

�

ð3Þ

gbestðtþ 1Þ ¼ minffðyÞ; fðgbestiðtÞÞg ð4Þ

where y 2 fpbest0ðtÞ; pbest1ðtÞ . . . . . . . . . . . . ::pbestsðtÞg.
After computing the local best and global best of the parti-

cles, Euclidean distance is computed between each particles

pbest and the gbest value using Eq. (5).

Euclideandistanceðj;iÞ ¼ a:fðpjÞ � fðpiÞ=jjpj � pijj ð5Þ

a ¼ jjsjj=fðpgÞ � fðpwÞ ð6Þ

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xp

i¼1
ðxi1 � xi2Þ

2
q

ð7Þ

In the above Eqs. (5)–(7) fðpjÞ represents the pbest value of

the jth particle, fðpiÞ represents the pbest value of the i
th particle,

‘a’ represents the scaling factor which can be computed from

the formula given in the Eq. (6). In Eq. (6) fðpgÞ represents

the global best of the particle and fðpwÞ represents the global

worst of the particle. ‘S’ represents the size of the search space

which can be computed using the formula given in Eq. (7). In

Eq. (7) p represents the size of the swarm, xi1 and xi2 represent

the position of the particle. Based on the value of the Eucli-

dean distance, the particles at a minimum distance with the

gbest are chosen for single pair crossover and random muta-

tion operation. The obtained offsprings from the random

mutation operation are added to the existing particles for the

next generations. The process is repeated until the optimal

solution is returned.

4. A search based approach for detecting code smells

In this paper, EGAPSO is used for identifying the code smells

present in the given model specifically from class diagrams. In

the EGAPSO, the knowledge from the class of the base exam-

ple (CBE) and software metrics are used to detect the code

smell in the class of the initial model (CIM). In the following

subsections, the paper describes how the code smell detection

is encoded using EGAPSO algorithm.

4.1. Individual representation

An individual is represented as a block. A block is a triplet

which consists of three parts. It includes CIM, CBE and the

code smell detected from the base example. An example of

an individual is represented below in Fig. 1. The set of individ-

uals is combined to form the initial population.

4.2. Fitness function

The fitness function denotes the quality of the individuals. It

indicates the similarity between the model under analysis

Gantt Dialog Info 

Abstract DOM Parser 

Blob 

Fig. 1 Individual representation.

Table 2 Classes from the initial model, base example and their metric values.

Classes NA NPvA NProtA NPbA NM NPvM NProtM NPbM NAss Ngen

AbstractChart Implementation 10 10 0 0 45 2 8 35 0 1

AbstractDOM Parser 51 6 45 0 45 0 7 8 0 0

1636 G. Saranya et al.



(initial model) and the existing model (base example) to infer

the code smell that must be corrected. In this work, the similar-

ity between CIM and CBE is calculated. If the similarity value

is high, then the code smell in the base example exists in the

initial model. The formula for computing the similarity

between CIM and CBE is given in Eqs. (8) and (9).

SimilarityðCIM;CBEÞ ¼
1

m

X

m

i¼1

SimðCIMi;CBEiÞ ð8Þ

SimðCIMi;CBEiÞ ¼

1 if CIMi ¼CBEi

0 if ðCIMi ¼ 0andCBE–0Þ

or ðCIMi–0 and CBEi ¼ 0Þ

CIMi=CBEi if CIMi <CBEi

CBEi=CIMi if CBEI <CIMi

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð9Þ

where m is the number of metrics and SimðCIMi;CBEiÞ is

given in Eq. (9). CIMi denotes the metric value of ith class in

the initial model and CBEi denotes the metric value of ith class

in the base example. Then the fitnessfunction is calculated

using Eq. (10).

fitnessfunction ¼ f1 þ f2=2 ð10Þ

The value of the fitnessfunction is normalized in the range

[0,1]. Using similarity between the classes, the function f1 is

calculated using Eq. (11) and the function f2 ensures the

completeness of an individual using Eq. (12).

f1 ¼
1

n

X

n

j¼1

SimilarityðCIMBj;CBEBjÞ ð11Þ

where n is the number of blocks and CIMBj and CBEBj are the

classes composing the first two parts of the jth block.

f2 ¼ IndividualSize=MaximumIndividualSize ð12Þ

4.2.1. Illustration of fitness function

To illustrate the computation of fitness function of two indi-

viduals, two classes are taken, one from initial model (Abstract

Chart Implementation) and the other class from base example

(Abstract DOM Parser). First the metric values are calculated

from the two classes which are represented in Table 2.

f1¼1=1½1=10½ð10=51þ6=10þ0þ1þ1þ0þ7=8þ8=35þ1þ0Þ��

f2¼1

finalfitness¼0:74

After computing the fitness function, the individuals are

sorted based on their fitness values.

4.3. Crossover of the particles

In this work, single point crossover is applied. Two parent

individuals for crossover are selected based on the minimum

Euclidean distance of the particles. From the selected individ-

uals the CBE block is interchanged to produce two new off-

              Before Crossover                                                                         After Crossover 

Gantt Dialog Info 

Abstract DOM Parser 

Blob 

Gantt Dialog Info 

CMNodeFactory 

Blob 

Gantt Applet 

Abstract DOM Parser 

Functional Decomposition 

Gantt Applet 

CMNode Factory 

Functional Decomposition 

Fig. 2 Crossover operation on individuals.

Gantt Dialog Info 

Abstract DOM Parser 

Blob 
Gantt Dialog Info 

CMNodeFactory 

Functional Decomposition Gantt Applet 

CMNode Factory 

Functional Decomposition 

Fig. 3 Mutation of two individuals.

Model level code smell detection using EGAPSO 1637



springs. The crossover operation on individuals is shown in

Fig. 2.

4.4. Mutation of the particles

The individuals for mutation are selected based on minimum

Euclidean distance. From the selected individuals, the CBE

and Defects from base example of one individual are replaced

with the CBE and Defects from base example of other individ-

ual. In this paper, the random mutation operation is applied.

Fig. 3 shows the effect of the mutation operation that the class

Abstract DOM parser (base example) of the design defect Blob

is replaced with the class CMNode Factory (base example) of

the design defect Functional decomposition.

4.5. Adaptation of EGAPSO for code smell detection

Input: CIM, Set of Quality metrics, Set of code smells from CBE

Output: Best solution: Code smells in CIM

1: I:= set of (CIM, CBE, code smells in CBE) /*I represents an

individual*/

2: P:= Set of (I) /*P represents the size of the swarm*/

3: initial population (P, Max_size)

4: Repeat

5: For all I in P do /*Compute the fitness for every particle*/

6: Compute fitness f1(I) using Eq. (11)

7: Compute fitness f2(I) using Eq. (12)

8: fitnessfunction(I):= {f1(I)+f2(I)}/2

9: End for

10: For all I in P do /*finds the best-solution*/

11: best_fitnessfunction (I):= min(fitnessfunction(I))

12: Best_Solution:= best_fitnessfunction (I)

13: End for

14: While the stop criteria is not satisfied do

15: Update velocity of the individuals using Eq. (1)

16: Move the individuals using Eq. (2)

17: Calculate the Euclidean distance using Eq. (5)

18: Perform single point crossover

19: Perform random mutation operation

20: End

21: P := generate_new_ population (P) /*new population

generation*/

22: it = it + 1;

23: Until it = max_it or fitnessfunction (best_solution);

24: Return best_solution

25: End

The pseudo code for the EGAPSO algorithm for code smell

detection in model level is given above. EGAPSO takes input

as, CIM, a set of software metrics and set of code smells from

CBE as controlling parameters, it returns the set of code smells

detected as output. Lines 1–3 construct an initial population,

which is a set of individuals that stand for possible solutions,

The function set of (CIM, CBE, code smells in CBE) returns

an individual I which is represented as a block. The individual

representation is discussed in Section 4.1. The function Set of

(I) returns the size of the swarm. In lines 4–9 the search space

is explored. During the iteration, the quality of each individual

is evaluated using the fitnessfunction which is defined as an

average of two functions f1 and f2, where f1 computes the sim-

ilarities between the CIM and CBE of each block composing

the individual and f2 computes the ratio of the individual size

by the maximum individual size. In line 10–13 the individual

having the best_fitnessfunction (I) is saved. In line 21, a new

population (P + 1) of individuals is generated from the cur-

rent population. In line 14–20, the position and velocity of

the individuals are updated from the new population and the

Euclidean distance is calculated. Based on the Euclidean dis-

tance, the individuals with minimum distance are selected.

From the selected individuals, crossover and mutation opera-

tion are performed. This produces the population for the next

generation. The algorithm terminates after the given maximum

number of generations or the best fitnessfunction value (line 23)

and returns the best_solution (line 24).

5. Empirical study definition and design

The goal of the study is to examine the EGAPSO approach, in

detecting the code smells, namely blob, data class, spaghetti

code, functional decomposition and feature envy in software

systems. The quality focus is the detection accuracy on code

smells when compared to the GA approach, while the perspec-

tive is of other researchers, who want to evaluate the effective-

ness of the approach in identifying code smells to build better

recommenders for developers. The context of the study con-

sists of three open source projects, namely Gantt-Project,

Log4j and Xerces-J. Gantt-Project is a cross-platform tool

for project scheduling. Log4j is a Java-based logging utility.

Finally, Xerces-J is a family of software packages for parsing

XML. Gantt-Project and Log4j are used as initial model and

Xerces-J is used as base example.

5.1. Research question, data analysis and metrics

This work aims at addressing the following two research

questions:

RQ1: What type of code smells does it detect correctly?

RQ2: How does the proposed approach perform compared

to the existing code smell detection approaches?

To answer RQ1, the authors investigated the types of code

smell that are detected by this EGAPSO approach. To answer

RQ2, this paper compares the EGAPSO approach to the exist-

ing approaches using evaluation parameters, namely precision,

recall, average number of defects detected and Fmeasure [28].

Table 3 Code smell present in GanttProject.

Code smells Gantt project

Number of classes 245

Number of blobs 10

Number of data class 10

Number of functional decomposition 17

Number of feature envy 11

Number of spaghetti code 16

1638 G. Saranya et al.



5.2. Precision

Precision denotes the fraction of correctly detected code smells

over the detected code smells. From the value of the precision,

one can infer the probability that the detected code is correct.

Precision ¼ fðReleventCodeSmellsÞ

\ ðDetectedCodeSmellsÞg=ðDetectedCodeSmellsÞ

ð13Þ

5.3. Recall

Recall denotes the fraction of correctly detected code smells

among the set of manually detected code smells to find out

how many code smells have not been missed. From the value

of the recall, one can infer the probability that an expected

code smell is detected.

Recall ¼ fðReleventCodeSmellsÞ

\ ðDetectedCodeSmellsÞg=ðReleventCodeSmellsÞ

ð14Þ

5.4. Average number of defects detected

Average Number of Defects Detected (ANDD) is the fraction

of the defects detected by the approach over the number of

defects that are actually present.

AverageNumber ofDefectsDetected

¼Numberof defectsdetected=Number of defects actually present

ð15Þ

5.5. FMeasure

Fmeasure is defined as the harmonic mean of precision and

recall.

Table 4 Code smell present in Log4j.

Code smells Log4j

Number of classes 227

Number of blobs 3

Number of data class 5

Number of functional decomposition 11

Number of feature envy 2

Number of spaghetti code 8

Table 5 Parameter setting.

Algorithms Parameters Values

EGAPSO Population size 100

Number of generations 500

GA Population size 100

Number of generations 1000

T
a
b
le

6
P
re
ci
si
o
n
a
n
d
re
ca
ll
v
a
lu
es

fo
r
G
A

a
n
d
E
G
A
P
S
O
.

O
p
en

so
u
rc
e

so
ft
w
a
re

D
ef
ec
ts

G
A

E
G
A
P
S
O

P
re
ci
si
o
n

(%
)

R
ec
a
ll

(%
)

A
N
D
D

(%
)

F
m
e
a
su
re

(%
)

S
p
ec
ifi
ci
ty

(%
)

A
U
C

(%
)

P
re
ci
si
o
n

(%
)

R
ec
a
ll

(%
)

A
N
D
D

(%
)

F
m
e
a
su
re

(%
)

S
p
ec
ifi
ci
ty

(%
)

A
U
C

(%
)

G
a
n
tt

p
ro
je
ct

B
lo
b

1
0
0

9
0

9
0

9
4

1
0
0

9
5

1
0
0

9
5

1
0
0

1
0
0

1
0
0

9
8

F
u
n
ct
io
n
a
l

d
ec
o
m
p
o
si
ti
o
n

1
0
0

4
7

4
7

6
4

1
0
0

7
3

1
0
0

7
6

7
6

8
6

1
0
0

8
8

F
ea
tu
re

en
v
y

1
0
0

8
1

8
2

9
0

1
0
0

9
0

1
0
0

8
2

8
2

1
0
0

1
0
0

9
1

D
a
ta

cl
a
ss

9
0

8
8

1
0
0

9
0

9
9

9
3

1
0
0

9
8

1
0
0

9
0

1
0
0

9
9

S
p
a
g
h
et
ti
co
d
e

9
0

6
2

6
8

7
4

9
9

8
1

1
0
0

8
1

8
1

9
4

1
0
0

9
1

L
o
g
4
j

B
lo
b

1
0
0

9
7

1
0
0

1
0
0

1
0
0

9
9

1
0
0

9
7

1
0
0

1
0
0

1
0
0

9
9

F
u
n
ct
io
n
a
l

d
ec
o
m
p
o
si
ti
o
n

1
0
0

6
3

6
4

7
7

1
0
0

8
2

1
0
0

8
1

8
1

8
9

1
0
0

9
1

F
ea
tu
re

en
v
y

5
0

4
7

1
0
0

5
0

9
9

7
3

1
0
0

9
7

1
0
0

1
0
0

1
0
0

9
9

D
a
ta

cl
a
ss

7
5

6
0

8
0

6
6

9
9

8
0

8
0

7
7

1
0
0

8
0

9
9

8
8

S
p
a
g
h
et
ti
co
d
e

8
0

5
0

6
2

6
1

9
9

7
5

8
3

6
2

7
5

7
1

9
9

8
1

Model level code smell detection using EGAPSO 1639



Fmeasure ¼ 2 � jPrecision � recall=Precisionþ recallj% ð16Þ

5.6. Experimental setup

For the code smell detection approach, three open source soft-

wares are used namely GanttProject, Log4j and Xerces-J. In

this approach GanttProject, Log4j are taken as initial model

and Xerces-J is taken as the base example. First metrics are

computed from the initial model using UML generator plug-

in in Netbeans. Then the metrics and code smells are detected

from the base example. Finally, the code smells in the initial

model are detected using EGAPSO using the metrics detected

from both the initial model and base example and code smells

detected from the base example, and compared with the code

smells detected using GA. Tables 3 and 4 provide the informa-

tion about these open source software including number of

classes and the number of code smell detected. The parameter

setting of EGAPSO and GA is given in Table 5.

6. Evaluation of results

A preliminary evaluation of EGAPSO approach was per-

formed on a well-designed open-source system, namely

GanttProject, Log4j and Xerces-J. Here GanttProject, Log4j

are taken as initial model and Xerces-J as the base example.

For identifying the code smells, first the metrics are computed

from the initial model (Gantt Project and Log4j) and base

example (Xerces-J), then the code smells are detected from

the base example using infusion tool. Then using EGAPSO

the code smells are identified from the open source project.

The evaluation is aimed at investigating the detection accuracy

of the code smells using EGAPSO approach. This approach

can identify the code smell (Blob, Functional decomposition,

Feature envy, Data class and Spaghetti Code) more accurately

when compared with that of genetic algorithm.

To test the accuracy of EGAPSO approach, the measures,

namely precision, recall, average number of defects detected

(ANDD), Fmeasure and area under the ROC curve (AUC) have

been calculated. The computed values of precision, recall,

ANDD, Fmeasure and AUC for genetic algorithm and

EGAPSO are tabulated in Table 6.

6.1. Result of RQ1

To answer this question, this work uses the precision values to

prove that all the code smell detected by the proposed

approach were true. To further analyse the effectiveness of

the proposed approach, the precision of the proposed

EGAPSO approach is compared to the other state of the art

approaches such as GA (Ghannem et al., 2016), DECOR

[15], PEA [33] and MOGP [34] using precision values men-

tioned in Table 7. The precision values for the state of the

art approaches in Table 7 are obtained directly without imple-

mentation from these works.

6.2. Result of RQ2

The comparison of the approach EGAPSO over the existing

GA in terms of precision, recall, average number of defects

detected and Fmeasure values reveals the efficiency and accuracy

of the EGAPSO over the GA.

Using the code smell from base example and set of metrics

computed from both initial model and base example, the

EGAPSO approach identifies not only the code smell, but also

improves the cohesion of the system under study.

7. Threats to validity

External validity refers to the generalizability of the findings.

In this work, the experiments are performed on the open

source softwares which are described in Tables 3 and 4. How-

ever, it cannot be asserted that the results can be generalized to

industrial applications, other programming languages and to

other practitioners. Future work of this study is necessary to

confirm the generalizability of the findings.

Construct validity is concerned with the relationship

between theory and what is observed. Most of what is mea-

sured in this experiment are standard metrics such as precision,

recall, average number of defects detected and Fmeasure that are

widely accepted for quality of code-smell detection solutions.

In future, this approach will be compared using different

meta-heuristics search algorithms. Another threat to construct

validity arises because, although five types of code-smells are

considered, we did not evaluate the detection of other types

of code-smells. In future, it is planned to evaluate the perfor-

mance of this approach to detect other types of code smells.

8. Conclusion and future work

Using the EGAPSO approach, five code smells namely blob,

functional decomposition, feature envy, data class and spa-

ghetti code have been detected from the open source software

Table 7 Comparison of precision values for the proposed code smell detection approach using EGAPSO with the other state of art

approaches.

Open

source

software

Defects Precision of

EGAPSO

(%)

Precision of GA

Ghannem et al. [14]

(%)

Precision of DECOR

Moha et al. [15] (%)

Precision of PEA

Kessentini et al. [33]

(%)

Precision of MOGP

Mansoor et al. [34]

(%)

Gantt

Project

Blob 100 100 90 93 83

Functional

decomposition

100 88 26.7 88 77

Log4j Blob 100 100 100 82 –

Functional

decomposition

100 100 54.5 93 –

1640 G. Saranya et al.



namely Gantt Project and Log4j. The fitness function used in

EGAPSO aims in maximizing the similarity between the model

under analysis and the model in the base example which there

by maximizing the number of detected defects. The main

advantage of the approach is that this method can identify

the code smells present in the model level of the open sources;

whereas most of the existing approaches cannot be used for

identifying code smells present in the model level of the soft-

ware. The algorithms EGAPSO and GA are evaluated and

the results revealed the completeness and correctness of

EGAPSO over the existing GA. The approach has also

increased the average precision, recall, average number of

defects detected and Fmeasure over the existing approach. More-

over, the precision of EGAPSO is compared with the other

state of the art approaches namely GA, DECOR, PEA and

MOGP. In future, this approach can be applied on other open

source projects. Correction of code smell can also be consid-

ered in future.

References

[1] H. AliKacem, H. Sahraoui, Détection D’anomalies Utilisant Un

Langage De Description De Règle De Qualité, in: Actes Du 12e

Colloque LMO, 2006, pp. 185–200.

[2] K. Erni, C. Lewerentz, Applying Design-Metrics to Object-

Oriented Frameworks, in: Proceedings of the 3rd International

Software Metrics Symposium, IEEE, 1996, pp. 64–74.

[3] G. El Boussaidi, H. Mili, Understanding design patterns—what

is the problem?., Software: Practice Experience 42 (12) (2012)

1495–1529.

[4] R. Marinescu, Detection strategies: metrics-based rules for

detecting design flaws, in: Proceedings of the 20th IEEE

International Conference on Software Maintenance (ICSM),

2004, pp. 350–359.

[5] M. Kessentini, H. Sahraoui, M. Boukadoum, M. Wimmer,

Search-based design defects detection by example, in:

Proceedings of the 14th International Conference on

Fundamental Approaches to Software Engineering: Part of the

Joint European Conferences on Theory and Practice of

Software, Springer, (Saarbru¨Cken, Germany), 2011, pp. 401–

415.

[6] R. Van Der Straeten, V. Jonckers, T. Mens, A formal approach

to model refactoring and model refinement, Software Syst.

Modeling 6 (2007) 139–162.

[7] B.D. Bois, S. Demeyer, J. Verelst, Refactoring Improving

Coupling and Cohesion of Existing Code, in: Proceedings of

the 11th Working Conference on Reverse Engineering, IEEE

Computer Society, 2004, pp. 144–151.

[8] H. Kim, J. Park, Improvement of genetic algorithm using PSO

and Euclidean data distance, Int. J. Inf. Technol. 12 (3) (2006)

142–148.

[9] O. Seng, J. Stammel, D. Burkhart, Search-based determination

of refactorings for improving the class structure of object-

oriented systems, in: Proceedings of the 8th Annual Conference

on Genetic and Evolutionary Computation, ACM, 2006, pp.

1909–1916.

[10] M. Harman, L. Tratt, Pareto optimal search based refactoring

at the design level, in: Proceedings of the 9th Annual Conference

on Genetic and Evolutionary Computation, ACM, London,

England, 2007, pp. 1106–1113.

[11] A.C. Jensen, B.H.C Cheng, On the use of genetic programming

for automated refactoring and the introduction of design

patterns, in: Proceedings of the 12th Annual Conference on

Genetic and Evolutionary Computation. (Portland, Oregon,

USA), 2010, pp. 1341–1348.

[12] J. Bansiya, C.G. Davis, A hierarchical model for object-oriented

design quality assessment, IEEE Trans. Software Eng. 28 (1)

(2002).

[13] A. Ouni, M. Kessentini, H. Sahraoui, M. Boukadoum,

Maintainability defects detection and correction: a multi-

objective approach, Automated Software Engineering (ASE)

20 (2013) 47–79.

[14] A. Ghannem, G. El Boussaidi, M. Kessentini, On the use of

design defect examples to detect model refactoring

opportunities, Software Quality J. 24 (4) (2016) 947–965.

[15] N. Moha, Y.G. Gueheneuc, L. Duchien, A.F. Le Meur,

DECOR: a method for the specification and detection of code

and design smells, Software Eng., IEEE Trans. 36 (1) (2010) 20–

36.

[16] A. Budi, D. Lucia Lo, L. Jiang, S. Wang, Automated detection

of likely design flaws in N-tier architectures, Software Eng.

Knowledge Eng. (SEKE) (2011) 613–618.

[17] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,

D. Poshyvanyk, Detecting bad smells in source code using

change history information, ASE (2014) 268–278.

[18] S. Vimala, H. Khanna Nehemiah, R.S. Bhuvaneswaran, G.

Saranya, A. Kannan, Applying game theory to restructure PL/

SQL code, Int. J. Soft Comput. 7 (2012) 264–270.

[19] M. Van, Kempen, M. Chaudron, D. Kourie, B. Andrew,

Towards proving preservation of behaviour of refactoring of

UML models, in: Proceedings of the 2005 Annual Research

Conference of the South African Institute of Computer

Scientists and Information Technologists on IT Research in

Developing Countries (SAICSIT), 2005, pp. 252–259.

[20] J. Zhang, Y. Lin, J. Gray, Generic and domain-specific model

refactoring using a model transformation engine, In Model-

driven Software Development—Research and Practice Software

Engineering (2005) 199–217.

[21] Ivan Porres, Model refactorings as rule-based update

transformations, in: Proceedings of UML Conference, Volume

2863 of Lecture Notes in Computer Science, San Francisco,

Springer-Verlag, 2003, pp. 159–167.

[22] M. Fowler, K. Beck, J. Brant, Refactoring: improving the design

of existing code, in: Proceeding of the Second XP Universe and

First Agile Universe Conference on Extreme Programming and

Agile Methods, Springer, 1999, p. 256.

[23] N.E. Fenton, S.L. Pfleeger, Software Metrics: A Rigorous

and Practical Approach, PWS Publishing Co., Boston, MA,

1998.

[24] A. Ben Fadhel, M. Kessentini, P. Langer, M. Wimmer, Search

based detection of high level model changes, ICSM (2012) 212–

221.

[25] M. Genero, M. Piattini, C. Calero, Empirical validation of class

diagram metrics, Proc. Int. Symp. Empirical Software Eng.

(2002) 195–203.

[26] J. Kennedy, R. Eberhart, Particle swarm optimization, Proc.

IEEE Int. Conf. Neural Networks 4 (1995) 1942–1948.

[27] D.E. Goldberg, Genetic Algorithms in Search, Addison-Wesley,

Optimization and Machine Learning, 1989.

[28] R. Baeza-Yates, B. Ribeiro-Neto, in: Modern Information

Retrieval, ACM Press, New York, 1999, p. 463.

[29] Shizhe Fu, B. Shen, Code bad smell detection through

evolutionary data mining, in: Proceedings of ACM/IEEE the

International Symposium on Empirical Software Engineering

and Measurement (ESEM), 2015, pp. 1–9.

[30] F.A. Fontana, M. Zanoni, A. Marino, M.V. Mantyla, Code

smell detection: towards a machine learning-based approach, in:

Proceedings of the 29th IEEE International Conference on

Software Maintenance (ICSM), 2013, pp. 396–399.

[31] A. Hamid, M. Ilyas, M. Hummayun, A. Nawaz, A comparative

study on code smell detection tools, Int. J. Adv. Sci. Technol. 60

(2013) 25–32.

Model level code smell detection using EGAPSO 1641



[32] G. Rasool, Z. Arshad, A review of code smell mining

techniques, J. Software: Evolution Process 27 (11) (2015) 867–

895.

[33] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, A. Ouni,

A cooperative parallel search-based software engineering

approach for code-smells detection, IEEE Trans. Software

Eng. 40 (9) (2014) 841–861.

[34] U. Mansoor, M. Kessentini, B.R. Maxim, K. Deb, Multi-

objective code-smells detection using good and bad design

examples’, Software Quality J. (2016) 1–24.

1642 G. Saranya et al.


	Model level code smell detection using EGAPSO based on similarity measures
	1 Introduction
	2 Literature review
	2.1 Search based techniques
	2.2 Non-search based techniques
	2.3 Model based approaches

	3 Background and problem statement
	3.1 Code smell
	3.2 Software metrics
	3.3 Euclidean distance based genetic algorithm and particle swarm optimization (EGAPSO)

	4 A search based approach for detecting code smells
	4.1 Individual representation
	4.2 Fitness function
	4.2.1 Illustration of fitness function

	4.3 Crossover of the particles
	4.4 Mutation of the particles
	4.5 Adaptation of EGAPSO for code smell detection

	5 Empirical study definition and design
	5.1 Research question, data analysis and metrics
	5.2 Precision
	5.3 Recall
	5.4 Average number of defects detected
	5.5 FMeasure
	5.6 Experimental setup

	6 Evaluation of results
	6.1 Result of RQ1
	6.2 Result of RQ2

	7 Threats to validity
	8 Conclusion and future work
	References


