Accepted Manuscript

Molecular characterisation of Panton Valentine leukocidin (PVL) toxin encoding phages from South India

Yamuna Devi Bakthavatchalam, Francis Yesurajan Inbanathan, Balaji Veeraraghavan

PII: S2052-2975(17)30068-9

DOI: 10.1016/j.nmni.2017.08.005

Reference: NMNI 356

To appear in: New Microbes and New Infections

Received Date: 22 April 2017

Revised Date: 2052-2975 2052-2975

Accepted Date: 1 August 2017

Please cite this article as: Devi Bakthavatchalam Y, Inbanathan FY, Veeraraghavan B, Molecular characterisation of Panton Valentine leukocidin (PVL) toxin encoding phages from South India, *New Microbes and New Infections* (2017), doi: 10.1016/j.nmni.2017.08.005.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Molecular characterisation of Panton Valentine leukocidin (PVL) toxin encoding phages from South India

Yamuna Devi Bakthavatchalam¹, Francis Yesurajan Inbanathan¹, Balaji Veeraraghavan¹

¹Department of Clinical Microbiology, Christian Medical College, Vellore – 632004, India

*Corresponding author:

Dr. V. Balaji

Professor and Head

Department of Clinical Microbiology

Christian Medical College

Vellore - 632 004

Tamil Nadu, India

Ph: +91 9442210555

E-mail: vbalaji@cmcvellore.ac.in

1 Summary:

2	A total of 19 MRSA isolates was investigated for Panton Valentine (PVL) toxin, PVL
3	gene sequence variation and PVL-encoding phages. Whole genome sequencing was
4	performed for all the isolates. Analysis of MRSA isolates (n=19), confirmed that majority of
5	MRSA (n=11) were positive PVL gene and multi-drug resistant. ST772-MRSA-V was the
6	predominant PVL positive MRSA clone and all of them were found to carry \$ IND772PVL
7	phage in the genome. This study provides an insight into the evolution of new lineage of
8	PVL-MRSA and highlights the potential risk of the emergence of multi-drug resistant
9	community acquired (CA) MRSA with high virulence.
10	Key words: MRSA, PVL, ST772, [§] IND772PVL
11	
12	
13	
14	
15	
16	
17	
10	
20	
21	
22	
23	
24	
25	
26	

27 Introduction:

Panton-Valentine leukocidin (PVL) toxin is the specific virulent entity, often 28 associated with recurrent Staphylococcus aureus skin and soft tissue infection (SSTIs) and 29 necrotising pneumonia. Mortality due to PVL positive necrotising pneumonia is reported to 30 be high (40-60%) [1]. This is due to pro-inflammatory and cytotoxic effects on neutrophils, 31 monocytes and macrophages. Incubation of the cells with low doses of PVL (0.04–0.4 µg/ml; 32 1–10 nM) results in i) inflammasome activation, ii) induces a huge IL-1ß release within 33 34 minutes, iii) cell death (apoptosis) [2]. Despite clear epidemiological data, the function of PVL in causing pathogenesis is controversy. Some animal models and clinical studies in bone 35 and joint infections (BJI) and necrotizing pneumonia have recognized PVL as an indicator of 36 disease severity independent of methicillin resistance [3]. However, several other clinical 37 trials show that severe SSTIs caused by PVL producing and non-producing strains do not 38 39 have a difference in outcomes [4].

40 PVL production is encoded by two co-transcribed genes, *lukS-PV* and *lukF-PV*.
41 The PVL encoding genes (*lukS-PV* and *lukF-PV*) are bacteriophage encoded (^{\$\$}PVL,
42 ^{\$\$}108PVL, ^{\$\$}7247PVL, ^{\$\$}Sa2958, ^{\$\$}Sa2MW, ^{\$\$}SLT, ^{\$\$}Sa2USA, ^{\$\$}TCH60) [5]. PVL has been
43 epidemiology linked with community-acquired methicillin resistant *S. aureus* (CA-MRSA),
44 but some CA- MRSA strains do not carry PVL genes [6]. PVL positive HA-MRSA strains
45 have also been reported [7].

In India, CA-MRSA clones are genetically diverse and apparently three-fourth is PVL
positive [8]. ST772 and ST22 were the major clones reported from India [9,10]. ST772MRSA-V called as "Bengal Bay clone" is a multi- drug resistant, PVL positive CA-MRSA
clone initially isolated and reported from India [8]. Four studies from India, have reported
16% - 64% of PVL gene prevalence in *S. aureus* [9-12]. Despite the high incidence of PVL

positive *S. aureus*, clonal lineages as well the typing of PVL encoding phages in *S. aureus*has not been adequately reported from India.

This study was planned to investigate i) the distribution of PVL genes in CA and HAMRSA, ii) to compare antimicrobial resistant pattern of PVL positive and negative MRSA
isolates, iii) analyse of mutation in PVL genes iv) typing of PVL encoding phages and iv)
epidemiology and molecular characteristics of PVL positive and negative *S. aureus* isolated
from bloodstream infection.

58 Methods:

A total of 19 non-duplicate MRSA isolates collected during 2015-2016 from patients 59 with sepsis were included in this study. Antibiotic susceptibility testing was performed by 60 using disk diffusion method for the following antibiotics; cefoxitin (30 µg), gentamicin 61 (10µg), trimethoprim-sulfamethoxazole (1.25/23.75 µg), netilmicin (30µg), rifampicin (5µg), 62 erythromycin (15µg), clindamycin (2µg), tetracycline (30µg) and linezolid (30µg). Inducible 63 clindamycin resistance was detected by using D-zone test. Minimum inhibitory concentration 64 (MIC) of vancomycin was determined by microbroth dilution method according to CLSI 65 guidelines [13]. SCC mec typing was performed as previously described [14]. 66

DNA isolation from pure cultures was performed using QiAamp DNA mini Kit (Qiagen, 67 Germany). The whole genome shotgun sequencing was performed for all the isolates using 68 the Ion Torrent PGM system (Life Technologies) with 400 bp chemistry. The raw data 69 generated were assembled *de novo* using AssemblerSPAdes v.5.0.0.0 embedded in Torrent 70 71 suite server v.5.0.4. Genome sequence was annotated using PATRIC, the bacterial bioinformatics database and analysis resource (http://www.patricbrc.org) [15], and the NCBI 72 73 Prokaryotic Genome Automatic Annotation Pipeline (PGAAP) (http://www.ncbi.nlm. 74 nih.gov/genomes/static/Pipeline.html). Downstream analysis was performed using the Center

75	for Genomic Epidemiology (CGE) server (<u>http://www.cbs.dtu.dk/services</u>), and PATRIC.
76	Resistance genes profile was analysed using ResFinder 2.1 from the CGE server
77	(https://cge.cbs.dtu.dk//services/ResFinder/). The sequence type (ST) was determined for all
78	the isolates in the allele order of arcc, aroe, glpf, gmk, pta, tpi and yqil by comparing the
79	sequences with S. aureus database maintained at the MLST website (<u>http://saureus.mlst.net/</u>).
80	PHASTER (PHAge Search Tool Enhanced Release) has been used for annotation and
81	identification of prophage sequences in bacterial genome.
82	Results:
83	Of the analysed genome (n=19), 11 MRSA isolates were found to be PVL positive
84	and multi-drug resistant, except two isolates. Among PVL positive isolates, 5 were CA-

occurred secondary to skin and soft tissue infection (SSTIs)/pneumonia. All PVL positive
isolates were ciprofloxacin resistant and are often susceptible to clindamycin (D-zone
negative).

85

MRSA and 6 were HA-MRSA. In half of the PVL positive cases, bloodstream infection

The genome was analysed for SNPs in both *lukS-PV* and *lukF-PV* genes, using the 89 published genome of CA-MRSA strain USA300 (Accession no. CP000255) as the reference 90 91 sequence. Although, PVL gene sequence is highly conserved, each of these genes showed 92 nucleotide variations at three different positions. Of the identified SNPs, three were nonsynonymous (2 in lukS-PVL and 1 in lukF-PVL). This includes phenylalanine (F) to tyrosine 93 94 (Y) substitution at amino acid residue 157 (nucleotide, 470) and arginine (A) to histidine (H) substitution at amino acid residue 176 (nucleotide, 527) in lukS-PVL; alanine (A) to valine 95 (V) substitution at amino acid residue 47 (nucleotide, 140) in lukF-PVL. Remarkably, all 96 97 PVL positive MRSA isolates was identified as "H" variant (nucleotide A at 527 and histidine (H) residue at 176) (Table 1). Regardless of different MRSA clonal lineages, PVL gene 98

99 variation and PVL encoding phages, the integration site (*att*L and *att*R) of these prophages
100 were seems to be similar in all the isolates.

101	A specific association between PVL phages and ST was observed. "Bengal-bay clone"
102	(ST772-MRSA-V) was the predominant PVL positive MRSA clone, followed by small
103	numbers of "EMRSA clone" (ST22- MRSA-IV). Among the PVL-negative MRSA isolates,
104	clonal types were heterogeneous including USA 400 clone (ST1-MRSA-IV) and Hungarian
105	clone (ST239-MRSA-III). It is noteworthy, that majority of PVL positive MRSA carried ϕ
106	IND772PVL phage in the genome, identified with the clonal lineage of ST722-MRSA-V and
107	belongs to CC1 (Table 1). Interestingly, for the first time in India, we observed $^{\phi}PVL$
108	carrying MRSA isolates belong to CC22 with the ST2371/ST22. All these ^{\$} PVL encoding
109	PVL toxin was identified in HA-MRSA. The phage [§] IND772PVL was found to carry PVL as
110	well staphylococcal enterotoxin (sea) gene, while ⁴ PVL was only identified with PVL gene.
111	spa typing showed high genetic diversity, as indicated by the presence of 11 different spa
112	types (n=19) among PVL positive and PVL negative isolates.

113 **Discussion:**

PVL toxin is considered as an important marker for differentiation of HA-MRSA 114 and CA-MRSA. The present study provides an insight into micro-epidemiology of PVL 115 positive MRSA isolates from bloodstream infection. We observed that majority of the PVL 116 positive HA-MRSA are associated with skin and soft tissue infection (SSTIs), but less likely 117 with pneumonia or sepsis. Multidrug resistant (MDR) PVL positive MRSA was observed in 118 this study. Presumptive identification based on susceptibility to ciprofloxacin and gentamicin 119 is no longer reliable in detecting PVL positive CA-MRSA [16,17]. However, the present 120 showed that all PVL positive MRSA are ciprofloxacin resistant. 121

PVL gene variation identified in this study was similar to the previously described
non-synonymous SNPs [7,18-20]. All the PVL positive isolate was identified as "H" variant

and are capable of causing invasive disease was observed in this study. Besseyre *et al.*,
demonstrated that histidine to arginine amino acid substitution doesn't impaired leucotoxicity
of PVL toxin [21]. Despite of PVL gene variation, H or R variant has demonstrated with
significant leucotoxicity. However, possible association between other non-synonymous
mutation and leucotoxicity remains unclear. This could be an important cause for evasion of
host immune response to invasive disease [22]. Acquisition of PVL genes by HA-MRSA
strain could raise the morbidity and mortality.

PVL positive isolates investigated in this study were from three different genetic
backgrounds (ST772-MRSA-V, ST22-MRSA-IV, ST2371-MRSA-I/V). This finding reveals
the vertical transmission of PVL genes within the same clone or horizontal transmission
between different clones. The present study highlights the evolution of new lineages
(ST22/ST2371) of PVL positive HA-MRSA carrying ⁴PVL phage. Interestingly, all the ⁴
IND772PVL phage identified in this study was found to carry PVL as well *sea* toxin on the
propahage as previously described [8].

Four studies have reported the prevalence of PVL with clonal lineage from India. This 138 includes two from carriers and two from clinical isolates [23]. Dhawan et al., has reported 139 140 that PVL distribution was significantly associated with ST22-MRSA-IV (66%) as compared to ST772-MRSA-V (27%) in clinical isolates [9]. D'souza et al., has reported that 65% of 141 ST22-MRSA-IV and ST772-MRSA-V were positive for PVL and 27% of them were multi-142 drug resistant from mixed CA-MRSA and HA-MRSA infection [10]. In contrast, the present 143 study showed, ST772-MRSA-V (63%) was the predominant PVL positive clone and was 144 multi-drug resistant. 145

146

148 **Conclusion:**

149	In conclusion, variants of PVL gene and PVL-encoding phages are lineage-specific.
150	ST772-MRSA-V (Bengal Bay clone) belongs to CC1 serves as a major reservoir for the
151	dissemination phage mediated PVL toxin. This community acquired MRSA clone (ST772-
152	MRSA-V) was found with unique feature of high virulence and multi-drug resistance. In
153	addition, co-carriage of PVL and sea toxin enhances both superantigenic and cytotoxic
154	response. This combination of toxin on the same prophage was not reported in the other
155	strains of <i>S. aureus</i> .
156	Acknowledgement: None
157	Conflict of interest: The authors declare no conflicts of interest.
158	Financial support: None
159	
160	
161	
162	
163	
164	
165	
166	
167	

168 **Reference:**

- Gillet Y, Issartel B, Vanhems P, Fournet J-C, Lina G, Bes M, et al. Association between
 Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly
 lethal necrotising pneumonia in young immunocompetent patients. Lancet Lond Engl
 2002;359(9308):753–9.
- Perret M, Badiou C, Lina G, Burbaud S, Benito Y, Bes M, et al. Cross-talk between
 Staphylococcus aureus leukocidins-intoxicated macrophages and lung epithelial cells
 triggers chemokine secretion in an inflammasome-dependent manner. Cell Microbiol
 2012;14(7):1019–36.
- Löffler B, Niemann S, Ehrhardt C, Horn D, Lanckohr C, Lina G, et al. Pathogenesis of
 Staphylococcus aureus necrotizing pneumonia: the role of PVL and an influenza
 coinfection. Expert Rev Anti Infect Ther 2013;11(10):1041–51.
- Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management.
 Clin Microbiol Rev 2015;28(3):603–61.
- Zhao H, Hu F, Jin S, Xu X, Zou Y, Ding B, et al. Typing of Panton-Valentine
 Leukocidin-Encoding Phages and lukSF-PV Gene Sequence Variation in
 Staphylococcus aureus from China. Front Microbiol 2016;7:1200.
- 186 6. Zhang C, Guo L, Chu X, Shen L, Guo Y, Dong H, et al. Presence of the Panton187 Valentine Leukocidin Genes in Methicillin-Resistant Staphylococcus aureus Is
 188 Associated with Severity and Clinical Outcome of Hospital-Acquired Pneumonia in a
 189 Single Center Study in China. PloS One 2016;11(6):e0156704.
- Hu Q, Cheng H, Yuan W, Zeng F, Shang W, Tang D, et al. Panton-Valentine leukocidin (PVL)-positive health care-associated methicillin-resistant Staphylococcus aureus isolates are associated with skin and soft tissue infections and colonized mainly by infective PVL-encoding bacteriophages. J Clin Microbiol 2015;53(1):67–72.
- Prabhakara S, Khedkar S, Shambat SM, Srinivasan R, Basu A, Norrby-Teglund A, et al.
 Genome sequencing unveils a novel sea enterotoxin-carrying PVL phage in
 Staphylococcus aureus ST772 from India. PloS One 2013;8(3):e60013.
- 9. Dhawan B, Rao C, Udo EE, Gadepalli R, Vishnubhatla S, Kapil A. Dissemination of methicillin-resistant Staphylococcus aureus SCCmec type IV and SCCmec type V epidemic clones in a tertiary hospital: challenge to infection control. Epidemiol Infect 200 2015;143(2):343–53.
- D'Souza N, Rodrigues C, Mehta A. Molecular characterization of methicillin-resistant
 Staphylococcus aureus with emergence of epidemic clones of sequence type (ST) 22
 and ST 772 in Mumbai, India. J Clin Microbiol 2010;48(5):1806–11.
- Shambat S, Nadig S, Prabhakara S, Bes M, Etienne J, Arakere G. Clonal complexes and
 virulence factors of Staphylococcus aureus from several cities in India. BMC Microbiol
 206 2012;12:64.

207 208 209 210 211	12.	Eshwara VK, Munim F, Tellapragada C, Kamath A, Varma M, Lewis LE, et al. Staphylococcus aureus bacteremia in an Indian tertiary care hospital: observational study on clinical epidemiology, resistance characteristics, and carriage of the Panton- Valentine leukocidin gene. Int J Infect Dis IJID Off Publ Int Soc Infect Dis 2013;17(11):e1051-1055.
212 213 214	13.	National Committee for Clinical and Laboratory Standards (1981) Development of in vitro susceptibility testing criteria and quality control parameters. Approved standard M23-A2. Wayne, PA: NCCLS.
215 216 217 218	14.	Ghaznavi-Rad E, Nor Shamsudin M, Sekawi Z, van Belkum A, Neela V. A simplified multiplex PCR assay for fast and easy discrimination of globally distributed staphylococcal cassette chromosome mec types in meticillin-resistant Staphylococcus aureus. J Med Microbiol 2010;59(Pt 10):1135–9.
219 220 221 222 223	15.	Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, Gillespie JJ, Gough R, Hix D, Kenyon R, Machi D, Mao C, Nordberg EK, Olson R, Overbeek R, Pusch GD, Shukla M, Schulman J, Stevens RL, Sullivan DE, Vonstein V, Warren A, Will R, Wilson MJC, Yoo HS, Zhang C, Zhang Y, Sobral BW. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res 2014; 42:D581–D591
224 225 226 227	16.	Pantelides NM, Gopal Rao G, Charlett A, Kearns AM. Preadmission screening of adults highlights previously unrecognized carriage of Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus in London: a cause for concern? J Clin Microbiol 2012;50(10):3168–71.
228 229	17.	Nimmo GR, Coombs GW. Community-associated methicillin-resistant Staphylococcus aureus (MRSA) in Australia. Int J Antimicrob Agents 2008;31(5):401–10.
230 231 232 233	18.	O'Hara FP, Guex N, Word JM, Miller LA, Becker JA, Walsh SL, et al. A geographic variant of the Staphylococcus aureus Panton-Valentine leukocidin toxin and the origin of community-associated methicillin-resistant S. aureus USA300. J Infect Dis 2008 ;197(2):187–94.
234 235 236 237	19.	Li X, Sun J, Wu D, Wang L, Yang Y, Wang C, et al. Panton-Valentine leukocidin gene sequence variation and phage in methicillin-resistant and methicillin-susceptible Staphylococcus aureus from children in mainland China. Microbiol Immunol 2012;56(3):155–62.
238 239 240 241	20.	Brown ML, O'Hara FP, Close NM, Mera RM, Miller LA, Suaya JA, et al. Prevalence and sequence variation of panton-valentine leukocidin in methicillin-resistant and methicillin-susceptible staphylococcus aureus strains in the United States. J Clin Microbiol 2012;50(1):86–90.
242 243 244	21.	Besseyre des Horts T, Dumitrescu O, Badiou C, Thomas D, Benito Y, Etienne J, et al. A histidine-to-arginine substitution in Panton-Valentine leukocidin from USA300 community-acquired methicillin-resistant Staphylococcus aureus does not impair its

244 community-acquired methicillin-resistant Staphy
245 leukotoxicity. Infect Immun 2010;78(1):260–4.

- 246 22. Kobayashi SD, Malachowa N, Whitney AR, Braughton KR, Gardner DJ, Long D, et al.
 247 Comparative analysis of USA300 virulence determinants in a rabbit model of skin and
 248 soft tissue infection. J Infect Dis 2011;204(6):937–41.
- 249 23. Sunagar R, Hegde NR, Archana GJ, Sinha AY, Nagamani K, Isloor S. Prevalence and
 250 genotype distribution of methicillin-resistant Staphylococcus aureus (MRSA) in India. J
 251 Glob Antimicrob Resist 2016;7:46–52.
- 252
- 253
- 254

Table 1: Antimicrobial resistant pattern, mutational analysis of PVL gene variant, PVL phage typing and molecular characteristics of PVL positive and negative MRSA isolates from bloodstream infection.

						lukS-PVL			lukF-PVL								
						N sync mut	on- onymo us tation	Synonym ous mutation	Non- synonymo us mutation	Syno s mu	onymou itation						
Isolate ID	CA/ HA MR SA	Source of MRSA sepsis	Antimicro bial resistant profile	Accession no	PVL gene	47 0 (T)	527 (G)	663 (T)	140 (C)	45 6 (A)	789 (G)	PVL encoding phage	SCC <i>mec</i> types	spa type	Sequenc e type (ST)	Clonal comple x (CC)	
VB9939	CA	Skin and soft	Gen, SXT,	MLQK0000	+	Т	Α	G	C	G	Α	∮ IND772PVL	V	t657	ST722	CC1	
VB16578	CA	Epidural MRSA abscess	ery, cip Gen, SXT, ery, cip	0000 MLQD0000 0000	+	Т	Α	G	С	А	A	∲ IND772PVL	V	t657	ST722	CC1	
VBA463	CA	Skin and soft	Gen, SXT,	MLQG0000	+	Т	Α	G	Т	А	Α	∮ IND772PVL	V	t548	ST772	CC1	
89 VB9352	CA	Postatic abscess	ery, cip Gen, SXT, ery, cip	LXWR0000 0000	+	Т	A	G	С	А	A	∲ IND772PVL	V	t657	ST772	CC1	
VB23686	HA	Epidural	Gen, SXT,	MANS0000	+	Т	A	G	С	А	Α	[∳] IND772PVL	V	t657	ST772	CC1	
VB26276	HA	Necrotising soft tissue	Gen, SXT, ery, cip	LWMF0000 0000	+	T	A	G	С	А	Α	∮ IND772PVL	V	t657	ST772	CC1	
VBA428	CA	MRSA sepsis	Gen, SXT,	Yet to	+	Α	A	G	С	А	A	∮ IND772PVL	V	t021	ST772	CC1	
3 VB31683	НА	Necrotising	ery, cip Fry clin	receive MANT0000	+	т	Δ	G	С	Δ	٨	ΦΡVΙ	IVc	t657	ST22	CC22	
VD51005	IIA	soft tissue infection	cip	0000		1	A	0	C	A	A	ΨI VL	Ive	1057	(EMRSA -15)	0022	
VBA440 94	HA	Necrotising soft tissue infection	Ery, clin, cip	MLQH0000 0000	+	Т	Α	G	С	G	А	ΦPVL	IVc	t474	ST22 (EMRSA -15)	CC22	
VB9982	HA	Necrotising	Cip	MLQI00000	+	Т	Α	G	С	А	Α	ΦΡVL	Ι	t6827	ST2371	CC22	
VB20017	HA	MRSA sepsis	Cip	MLQE0000	+	Т	Α	G	С	G	Α	ΦΡVL	V	t6827	ST2371	CC22	
VBA430 11	CA	Infective spondylodiscit is	Ery	MLQJ00000 000	_	NA	NA	NA	NA	NA	NA	NA	IV	t127	ST1	CC1	

						1	ACCEP	TED MAN	JSCRIPT							
VB1490	HA	SSTIs	Gen, Ery, Tet, Clin TBM	MLQB0000 0000	_	NA	NA	NA	NA	NA	NA	NA	III	t037	ST239	CC8
VBA353	HA	Epidural	Ery,Gen,	MLQC0000	_	NA	NA	NA	NA	NA	NA	NA	V	t2473	ST72	CC8
16 VBA439 64	HA	MRSA abscess Infective endocarditis	Gen, Ery, Tet, Clin.TRM	0000 MLQA0000 0000	_	NA	NA	NA	NA	NA	NA	NA	II	t4615	ST580	CC398
VB12268	CA	Skin and soft tissue infection	Susceptible to all tested antibiotics except cefoxitin	LXWS0000 0000	_	NA	NA	NA	NA	NA	NA	NA	V	t657	ST672	Singlet on
VBV169	CA	MRSA sepsis	Susceptible to all tested antibiotics except cefoxitin	LWMG0000 0000	_	NA	NA	NA	NA	NA	NA	NA	V	t657	ST672	Singlet on
VBP3985	CA	MRSA sepsis	Susceptible to all tested antibiotics except cefoxitin	Yet to receive	_	NA	NA	NA	NA	NA	NA	NA	IVc	l t304	ST6	Singlet on
VB44746	CA	Necrotising fasciitis	Susceptible to all tested antibiotics except cefoxitin	MLQF00000 000	_	NA	NA	NA	NA	NA	NA	NA	IVI	n t131	ST1290	Singlet on

SCC – Staphylococcal cassette chromosome, *spa* – staphylococcal protein A