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Brain tumor diagnosis has been a lengthy process, and automation of a process such

as brain tumor segmentation speeds up the timeline. U-Nets have been a commonly

used solution for semantic segmentation, and it uses a downsampling-upsampling

approach to segment tumors. U-Nets rely on residual connections to pass information

during upsampling; however, an upsampling block only receives information fromone

downsampling block. This restricts the context and scope of an upsampling block. In

this paper, we propose SPP-U-Net where the residual connections are replaced with a

combination of Spatial Pyramid Pooling (SPP) and Attention blocks. Here, SPP provides

information from various downsampling blocks, which will increase the scope of

reconstruction while attention provides the necessary context by incorporating local

characteristics with their corresponding global dependencies. Existing literature uses

heavy approaches such as the usage of nested and dense skip connections and

transformers. These approaches increase the training parameters within the model

which therefore increase the training time and complexity of themodel. The proposed

approach on the other hand attains comparable results to existing literature without

changing the number of trainable parameters over larger dimensions such as 160 ×

192 × 192. All in all, the proposed model scores an average dice score of 0.883 and a

Hausdorff distance of 7.84 on Brats 2021 cross validation.
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1. Introduction

Brain tumor segmentation using magnetic resonance images (MRI) is a vital step for treating

tumors present in the brain and a specialist can use this to find the damage caused by a tumor in

a region. The most frequent and severe malignant brain tumors are glioblastomas, often known

as gliomas (GBM). Magnetic resonance imaging (MRI) with automated and exact segmentation

of these malignancies is critical for early diagnosis as well as for administering and monitoring

treatment progression. Assessment of tumor presence is the first step in brain tumor diagnosis

and the assessment is done on the basis of segmentation of tumors present in MRI. This process

is often done manually making it a time and human intensive task. Moreover, tumors exist in

different forms and sizes making it a task requiring expertise. The process of assessment can be

sped up by automating the segmentation of brain tumors (1).

The Brain Tumor Segmentation Challenge (BraTS) (2, 3) is a worldwide annual competition

that has been concentrating on evaluation of state-of-the-art automated tumor sub-region

segmentation algorithms since 2012. The American Society of Neuroradiology (ASNR), the

Radiological Society of North America (RSNA), and MICCAI together hosted the BraTS
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FIGURE 1

The different views of brain MRI slices with annotations.

2021 competition (1) honoring its 10th anniversary. With 1,251

meticulously annotated, multi-institutional, multi-parametric MR

images (mpMRI) of patients with various degrees of gliomas, BraTS

2021 provides us with a sizable dataset. The segmentation of the

histologically diverse brain tumor sub-regions and the classification

of the tumor’s O-methylguanine-DNA methyltransferase (MGMT)

promoter methylation status are the two main goals of BraTS 2021.

In this study, the first task will be the main focus.

The peritumoral edematous/invaded tissue (ED-label 2), the

Gd-enhancing tumor (ET-label 4), and the necrotic tumor core

are the tumor sub-regions for each patient (NCR-label 1). The

peritumoral edematous and infiltrated tissue known as ED has an

infiltrative non-enhancing tumor as well as peritumoral vasogenic

edema and is linked with an abnormal hyperintense signal envelope

on the T2 FLAIR volumes. ET stands for the tumor’s enhancing

segment and is identified by T1Gd MRI regions that exhibit some

enhancement. On T1GdMRI, the necrotic core of the tumor, or NCR,

seems to be substantially less intense. Figure 1 depicts the various

tumor sub-regions.

In many vision tasks like segmentation, particularly in the

healthcare industry, deep learning-based segmentation systems have

shown amazing success, outperforming other traditional methods

in brain tumor analysis (4–8). With exceptional results, Fully

Convolutional Networks (FCN) (9) achieve end-to-end semantic

segmentation for the first time. The most popular architecture for

medical picture segmentation is called U-Net (10), which combines

a symmetric encoder-decoder topology with skip-connections to

maximize information preservation. The performance for image

segmentation is greatly improved by many U-Net variants, including

U-Net++ (11), two-stage cascaded U-Net (12), and Res-U-Net (13).

Although CNN-based techniques have great encoding capacities,

because of the convolution kernels’ constrained receptive fields, it

is challenging to produce an apparent long-distance dependency.

Learning global semantic information, which is essential for dense

prediction issues like segmentation, is made more difficult by this

constraint of convolution operation.

U-Nets consist of residual connections, and these connections

are key for reconstruction. These connections pass local and global

information to a particular decoder (10). However, information

passed from one layer to another may be inadequate for

reconstruction. Potentially passing information from a higher

resolution may provide better clarity as inputs passed from one

layer to another information is lost due to downsizing. Hence skip

connections can further be employed to pass information fromhigher

dimensional encoders.

Segmentation maps have been formed using a 3D U-Net which

consists of three downsampling and upsampling blocks followed by

a set of convolutional layers. The authors use a patching approach

to train the model (14). Kaur et al. (15) proposes a 2D and 3D

DGA-U-Net. In the 3Dmodel, mainly the pooling layers are replaced

with upsampling. The following is done to increase the resolution

of the image within the contraction phase of the U-Net. Punn and

Agarwal (16) utilized a multi-modal approach to segment brain

tumors, where the multi-modalities of the dataset are fused across

using deep inception encoding. Finally, a tumor extractor collects

features from the fused images to the tumor segmenter. The extractor

and segmentation have an U-Net-based architecture. Jiang et al. (12)

used a cascaded U-Net in 2 stages. The approach is multi-modal

in nature, where in all the class maps are concatenated and passed

to the first U-Net. The output of the first U-Net along with the

concatenated model input is passed to the second U-Net. Here, a

triplet loss is used to train the model, where in the output of the

first U-Net along with output of second U-Net and two output maps

(Deconvolution and Interpolation approach). Isensee et al. (17) used

the nn-U-Net (18) framework to propose a model which is then

further enhanced by using post-processing, patching strategies and

augmentations that are Brats specific. Qamar et al. (19) increased

the contextual information by using a Hyperdense Inception (HI)

3D U-Net. The HI methodology builds the connections between

factored convolutional layers to lookmore like dense connections. U-

Nets have been versatile wherein transformer-based models are used

within themodel (20–22) and have provided significant improvement

in results.

Wang et al. (23) proposed a SAR-U-Net which is based on

the traditional U-Net with SE (Squeeze and Excitation) block to

avoid focus on unnecessary regions within the dataset and Atrous

Spatial Pyramid Pooling (ASPP) (24) to pass information on a

multi scale basis. The model is trained on LITs dataset and has

achieved significant results. Ahmad et al. (25) used a similar

approach of using ASPP along with U-Net on Cardiac MRI dataset.

The following two approaches are 2-dimensional in nature. Jiang

et al. (26) used a 3D Atrous Inception U-Net where the Atrous

pooling is used in the residual connections between the encoder

and decoder on the Brats dataset. In this approach, the outputs

of the succeeding encoder blocks are upsampled and concatenated

across before sending to the decoder for reconstruction. Wang et al.

(27) introduced the 3D CNN based Transformers for segmenting

brain tumors.

Hence, we were able to identify some research gaps:

• As can be seen, existing literature uses heavy approaches

such as the usage of nested and dense skip connections

and transformers. Hence an approach which considers the

parameters in mind is needed. Considering applications such

as edge computing which heavily emphasize efficient and

accurate predictions, the proposedmechanism fits such problem

statement in hand.

• Moreover, the skip connections have always been an aspect

of the experimentation. Additional information to the decoder
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layers throughmechanisms such as ASPP has given performance

improvement. Hence utilizing a similar mechanism on multiple

encodings in a 3-dimensional manner seemed to be an idea

for the research.

1.1. Contributions

We propose a U-Net with SPP and attention. SPP takes

information from three encoder layers and passes it to the decoder

in the U-Net. The proposed addition provides the model with

additional context and information for better reconstruction by

providing scope from neighboring layers. The proposed mechanism

does not have additional training parameters therefore the need for

computational power remains the same. Therefore, the resultant

model is lightweight in nature aiding for faster medical diagnosis

and medical workflow in a production environment. To introduce

reproducibility, the codebase utilized has been made public:

https://github.com/sanchitvj/rsppUnet-BraTS-2021. We encourage

the community to use and possibly improve the mechanism further

in the form of open-source contributions.

2. Materials and methods

2.1. Data processing

The dataset used was Brats 2021. The MRI scans were firstly

bought across to a common dimension of 160 × 192 × 192. This

size was arrived upon based on experimentation and the comparison

was done on the basis of Dice Score (further discussed in results).

Figure 1 shows sample MRI slices from two MRI files. The scans

are brought to a common dimension using padding and cropping.

Padding is used whenever the image size is lower than the specified

size and in cases where dimension of the original image being

larger cropping takes place. Augmentations are key in this case

as the number of data samples is low, hence a combination of

augmentations are used at random. The following augmentations

are used:

• Image flip

• Brightness adjust

• Rotation: Images can be rotated on the z-axis with themaximum

angle of rotation being 30◦ and the minimum angle of rotation

being−30◦.

• Elastic transformation

• Intensity shift

Note that the choice of augmentations, within this set, used

are random hence this makes the model robust to overfitting. The

following is achieved by randomly choosing the augmentations on

the basis of a threshold. K-Folds were used to divide the data into

5-folds, with Fold 1 being used to assess the model’s performance

and the other folds being used for training. Table 1 demonstrates the

distribution of the data used. Fold 1 was chosen on the basis of metric

stability. It was often noted that results achieved on Fold 1 had a

relatively smooth progression. This dataset has a balance of noisy and

normal data samples. In a way, training on these other noisy folds

makes the model get a generalized understanding of the data.

TABLE 1 Data split for brats 2021.

Data split

Split name Number of samples

Train split 1,000

Validation split 250

2.2. Residual spatial pyramid
pooling-powered 3D U-Net model

Spatial Pyramid Pooling (21) has been widely used in

classification and object detection. The reason being, SPP provides

an effective representation of varying sized images and it can

be considered as an ensemble of pooling layers. In this way, the

feature maps captured by convolutional layers can be deciphered

in various ways, and pooling has often been the solution to

aggregate the learning of convolutional layers. Hence, concentrating

information using different dimensional pooling layers can provide

representations that can further enhance the performance of

the model.

Atrous Spatial Pyramid Pooling was proposed based on SPP and

carries the concept of SPP by using parallel Atrous Convolutional

layers. ASPP has been extensively used in semantic segmentation,

and it serves the purpose of providing context at different levels

or views. ASPP has been employed in various studies within brain

segmentation. However, as per Tampu et al. (28), boosting context

alone does not increase the performance of the model.

Attention is a process through which we humans put forth

focus on doing certain tasks. While reading, we capture context

by understanding neighboring words within a sentence. This

mechanism is applied to the attention layer and its purpose is to

capture context. The attention layer has been extensively employed

in deep learning and has contributed to cutting-edge outcomes.

Attention is obtained for the model by combining the output of two

encoder layers. By feeding the output of two encoder layers into two

different 3D convolutional layers, the following is accomplished. The

output of the two layers is combined, and relu is then used to activate

it. The activated output is passed through a 3D convolutional layer

and is then normalized and activated. Fusing the output of these

layers along with activation aids in maintaining context while not

compromising on the dimensionality aspect.

Hence, SPP is used as a feature aggregator within the model, and

to introduce context, attention layers are employed. The SPP layer,

along with the attention layer, have been used to replace some residual

connections within the U-Net. SPP is typically used at the end of

the process, after the feature maps have been flattened so that fully

connected neural networks can use the maps to predict class(es) or

bbox(es). A 3D convolutional layer with a kernel size of 1 is utilized to

modify SPP so that it functions as a residual connection. The output

of the SPP is again converted to a 3D representation by this layer.

Additionally, by sending input from many encoder levels to each

pooling layer, information is gathered over a wide range. Figure 2

shows the architecture of the SPP Layer.

The U-Net used is based on the NvNet (29) and the following

figure shows the architecture of the model. As shown in the

architecture SPP is just used in two places, the reason for the same

was to maintain the aspect of dimensionality. The SPP layer takes
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input from various encoder layers therefore when pooling is applied

the dimension of the output varies substantially.

In this paper, experimentation is done on 3 model architectures

based on Figure 3:

• No SPP: The SPP blocks would be omitted therefore boosting

the model only in terms of context.

FIGURE 2

The architectural diagram for SPP.

• 1 SPP: The upper SPP block would be removed from the

architecture keeping only the lower block (with 3rd encoder

layer). Hence boosting the model with a combination of context

and features.

• 2 SPP: Both the SPP blocks were used. This model carries more

feature boost from the other two models used.

2.2.1. Training procedure
Table 2 shows the hyperparameters used during training. In

general, the increase in performance post 60 epochs was negligible

hence the same was chosen. We experimented with different sizes

(image size format: channel ∗ length ∗ width) such as 160 × 160 ×

160, 128× 160× 160, and 160× 192× 192. The original dimensions

of the slice were 155 × 240 × 240. Among these 160 × 192 ×

192 showed the best convergence so we decided to go with it. The

TABLE 2 Hyperparameters used for training.

Hyperparameters used

Hyperparameter Value

Image size (channels ∗ length ∗ width) 160× 192× 192

Epochs 60

Learning rate 2.50E-04

Weight decay 1.00E-07

Scheduler Cosine annealing LR

Criterion Dice loss

Optimizer Adam

Normalization Group norm

FIGURE 3

The architecture of U-Net used.
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TABLE 3 Results obtained in standard setting.

Model name Metrics

WT, whole tumor; TC, tumor core; ET, enhancing tumor (sub regions of tumor affected brain)

Hausdorff distance Dice

WT TC ET Average WT TC ET Average

No SPP 13.070 11.010 10.210 11.430 0.908 0.877 0.838 0.870

1 SPP 9.430 7.780 6.300 7.840 0.899 0.899 0.850 0.883

2 SPP 16.060 5.650 5.270 8.990 0.904 0.880 0.845 0.876

Hatamizadeh et al. (32) 4.739 15.309 16.326 12.120 0.927 0.876 0.853 0.890

Jia and Shu (22) 3.000 2.236 1.414 2.220 0.926 0.935 0.887 0.920

Qamar et al. (19) – – – – 0.875 0.837 0.795 0.840

Jiang et al. (12) 4.610 4.130 2.650 3.800 0.888 0.837 0.833 0.850

TABLE 4 Results obtained with image size 160 × 160 × 160.

Model name Metrics

WT, whole tumor; TC, tumor core; ET, enhancing tumor (sub regions of tumor affected brain)

Hausdorff distance Dice

WT TC ET Average WT TC ET Average

No SPP 34.1 7.97 7.13 16.4 0.895 0.872 0.837 0.868

1 SPP 18.6 6.13 4.88 9.87 0.887 0.879 0.842 0.869

2 SPP 20.12 7.42 6.22 11.25 0.886 0.876 0.843 0.868

optimizer of choice was kept as Adam and the loss function of choice

was Squared Soft Dice Loss as proposed by Milletari et al. (30) the

working of the same shown in Equation (1). Here pi denotes the

truth label for the pixel and gi denotes the model prediction where

N denotes the number of voxels. The prime reason for choosing

this function was to avoid the focus of the loss function from the

background regions. In problems such as brain segmentation, the

size of the regions consisting of tumors are very small relative to

the background region and weighted losses have not been the most

efficient solution for the same. This function ranges in the value of

0–1 with an objective to maximize the loss.

Dice Loss =
2∗

∑N
i pigi

p2i g
2
i

(1)

Based on our experimentation we found the issue of gradient

explosion hence group normalization was employed. Batch

Normalization did not work in our cases as high batch size could

not be used for training. Batch size >1 did not provide the expected

results and at times would also result in the GPU running out of

memory and process killing. Hence, the choice for batch size was

kept as 1. A Nvidia Tesla V100 GPU was utilized for the training of

the models.

2.2.2. Training procedure
The evaluation process of the model has been done on the basis

of cross-validation and the model was evaluated on two metrics:

• Dice Score (as showing in Equation 2): In short it is the

F1-Score conveyed on behalf of image pixels: Wherein the

ground truth is the annotated pixels. Dice score is an efficient

metric as it penalizes false positives: If the predicted map has

large false positives, it is used in the denominator rather than

the numerator.

Dice Score =
2 ∗Region of Overlap

Region of Union
(2)

• Hausdorff Distance: The Hausdorff distance (31) describes how

closely each point in a model set resembles a point in an image

set and vice versa. So, the degree of similarity between two items

that are superimposed on one another can be gauged using

this closeness.

It should be noted that Hausdorff Distance is unconcerned with

the size of the image’s background. By calculating the extensive

distance between the extremes of the two outlines, the Hausdorff

distance complements the Dice metric. A predictionmay show nearly

voxel-perfect overlap since it severely penalizes outliers, but the

Hausdorff distance will only be meaningful if a certain voxel is far

from the reference segmentation. This statistic is quite useful for

determining the clinical importance of segmentation, despite being

noisier than the Dice index.

3. Results and discussion

Two models from the Brats 2021 dataset, as well as one model

from each of the Brats 2020 and Brats 2019 datasets, are compared to

the suggested model.

As per Table 3 the following inferences can be made:
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FIGURE 4

(A) The dice score vs. epochs. (B) Hausdorff scores vs. epochs.

FIGURE 5

Prediction vs. ground truth segmentation mask comparison.

• The model with 1 SPP block performed the best amongst

the architectures proposed. Therefore, it can be deduced

that the boosting of context and features go hand

in hand.

• In the case of Hausdorff Distance, all the three models have the

lowest metric when the class is Enhancing Tumor.

• In the case of Dice Score, both No SPP and 2 SPP

models achieve similar results in Whole Tumor and Tumor

Core. Both the models outperform 1 SPP in Whole Tumor

however lose out to 1 SPP in Tumor Core. All the

models achieve the lowest Dice Score in the case of

Enhancing Tumor.

• When comparing models trained on Brats 2019 and Brats 2020,

the proposed work outperforms the model however this is a

general trend.

• With respect to Brats 2021, the proposed work gives comparable

results to Hatamizadeh et al. (32) however loses out to

Jia and Shu (22) on a large margin. One thing to note,

both of these models use transformers which naturally

provide more context and features. Transformers are heavy

on parameters, while the proposed approach requires no

extra parameters.

The model was also trained on image size of 160 × 160 × 160.

This was done to understand the impact of a smaller image size.

Table 4 conveys the same.

The following inferences can be made from Table 4:

• 0.01 was the difference in average dice score between the

models trained on different image sizes. However, a significant

difference was observed in the Hausdorff distances.

• Again 1 SPP model performed the best but the margin of

difference was next to none. Hence we can infer that a high

image size is a key contributor to increase performance when

SPP is utilized and the following inference proves the point of

passing higher resolution features through residual connections.

The trend in the metrics can be seen as shown in Figure 4.

Figure 4A represents the Dice Score vs. Epochs and Figure 4B

portrays the Hausdorff Scores vs. Epochs. Regardless of the training

image size, the models carry a similar trend where the dice scores

plateau at 60 epochs. Secondly, the performance of models trained on

160 × 160 × 160 are lower than the models trained on 160 × 192

× 192. Moreover, it can also be observed that the convergence of the

loss is delayed for models with SPP. Although SPP does not bring any

extra trainable parameters it still keeps the model from converging.

Based on the trend, the model can be fine-tuned at extremely small

magnitudes of learning rates to increase the performance of the

model. In the case of Figure 4B it can be observed thatmodels without

SPP tend to provides metric stability once the model reaches the last

few epochs.
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Lastly, the output maps from the model are analyzed in Figure 5.

For the analysis three slices from different MRI scans are taken

wherein each slice exhibits varying presence of class. The first row

within the plot contains a sparse volume of enhancing tumor, while

the second row contains a moderate volume of enhancing tumor. The

last rowmajorly contains enhancing tumors. Based on the predictions

it can be observed that the model is able to predict all types of

cases with great accuracy. The reason for the visualization is to

showcase the model’s ability to predict enhancing tumors accurately

as its presence in data is limited. Moreover, the model is also able

to detect abnormal whole tumor shapes with ease which conveys

that the model is fit for real world diagnosis. In the first scan the

model is able to predict sparse presence of enhancing tumors which

is very crucial.

4. Conclusion

Wepropose U-Net with SPP andAttention Residual Connections

in this work. The proposed model attachment is a lightweight

mechanism which boosts information and context in the model

by passing high and low resolution information to the decoders

in the Unet. The proposed mechanism is applied to the NvNet

model in varying frequencies which then produces different variants:

Model with attention, Model with attention and 1 SPP, and

Model with attention and 2 SPP. The model with 1 SPP and

attention performs the best and provides comparable results to

heavy models with transformer residual attachments. The average

Dice Score and Haussdorf distance for the model with 1 SPP

and attention are 0.883 and 7.99, respectively. The proposed

mechanism is an approach to boost information and context

hence giving considerable performance boosts. This approach plays

well in applications such as edge computing which requires a

balance of computational efficiency and performance. Such an

approach could be utilized in mobile healthcare stations which

need immediate diagnosis with less computation power. However,

the impact of performance improvement at times falls a bit short

compared to heavy approaches and it boils down to the extra

trainable parameters brought by the components which eventually

capture more patterns. In the current work, the mechanism is

only adapted to one particular model and in the future, we

aim to make the mechanism adaptable to various other 3D-

Unet architectures.
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