
mathematics

Article

Multi-Attribute Group Decision Making Based on
Multigranulation Probabilistic Models with
Interval-Valued Neutrosophic Information

Chao Zhang 1, Deyu Li 1,*, Xiangping Kang 2,3, Yudong Liang 1, Said Broumi 4 and

Arun Kumar Sangaiah 5

1 Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education,

School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China;

czhang@sxu.edu.cn (C.Z.); liangyudong@sxu.edu.cn (Y.L.)
2 Key Laboratory of Embedded System and Service Computing, Ministry of Education,

Department of Computer Science and Technology, Tongji University, Shanghai 201804, China;

tongji_kangxp@sina.com
3 China National Tobacco Corporation, Shanxi, Taiyuan 030000, China
4 Laboratory of Information Processing, Faculty of Science Ben M’Sik, University Hassan II, Sidi Othman,

Casablanca B.P 7955, Morocco; broumisaid78@gmail.com
5 School of Computing Science and Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India;

arunkumarsangaiah@gmail.com

* Correspondence: lidysxu@163.com

Received: 8 January 2020; Accepted: 4 February 2020; Published: 9 February 2020
����������
�������

Abstract: In plenty of realistic situations, multi-attribute group decision-making (MAGDM) is

ubiquitous and significant in daily activities of individuals and organizations. Among diverse

tools for coping with MAGDM, granular computing-based approaches constitute a series of viable

and efficient theories by means of multi-view problem solving strategies. In this paper, in order to

handle MAGDM issues with interval-valued neutrosophic (IN) information, we adopt one of the

granular computing (GrC)-based approaches, known as multigranulation probabilistic models, to

address IN MAGDM problems. More specifically, after revisiting the related fundamental knowledge,

three types of IN multigranulation probabilistic models are designed at first. Then, some key

properties of the developed theoretical models are explored. Afterwards, a MAGDM algorithm for

merger and acquisition target selections (M&A TSs) with IN information is summed up. Finally, a

real-life case study together with several detailed discussions is investigated to present the validity of

the developed models.

Keywords: multi-attribute group decision-making; granular computing; interval-valued

neutrosophic information; multigranulation probabilistic models; merger and acquisition target

selections

1. Introduction

1.1. A Brief Review of MAGDM

By applying decision-making issues with multiple attributes to the setting of group

decision-making, multi-attribute group decision-making (MAGDM) generally provides consistent

group preferences by analyzing various alternatives expressed by individual preferences [1]. To

date, many granular computing (GrC)-based approaches [2–6] have been utilized to solve numerous

complicated MAGDM problems, which have started a new momentum of constant development of

social economy.
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In the process of solving a typical MAGDM problem, it is recognized that three key challenges

need to be managed reasonably, i.e., MAGDM information representation, MAGDM information

fusion, MAGDM information analysis. Among the above-stated key challenges, how to express

MAGDM information, especially for a complicated uncertain real-world scenario, as a standard

decision matrix via alternatives and attributes is the first step to address MAGDM problems.

1.2. A Brief Review of Interval-valued Neutrosophic Information

In order to meet the demands of describing fuzzy and indeterminate information at the same time

from nature and society, Smarandache [7,8] founded the notion of neutrosophic sets (NSs), which can

be regarded as many generalizations of extended fuzzy sets [9] and used in plenty of meaningful

areas [10–12]. An NS contains three types of membership functions (the truth, indeterminacy and

falsity ones), and all of them take values in ]0−, 1+[. In accordance with the mathematical formulation

of NSs, using NSs directly to a range of realistic applications is relatively inconvenient because all

membership functions are limited within ]0−, 1+[. Thus, it is necessary to update ]0−, 1+[ by virtue of

standard sets and logic. Following the above-stated research route, Wang et al. [13] put forward the

concept of IN sets (INSs) from the viewpoint of definitions, operational laws, and others. For each

membership function in INSs, all of them take values in the power set of [0, 1] instead of ]0−, 1+[. Thus,

INSs can tackle the first key challenge of solving typical MAGDM problems well [14–22].

1.3. A Brief Review of Multigranulation Probabilistic Models

To handle MAGDM information fusion and analysis with IN information effectively, GrC-based

approaches own unique superiorities in constructing problem addressing approaches via multi-view

problem solving tactics [23,24]. During the past several years, taking full advantage of GrC-based

approaches, many scholars and practitioners have obtained fruitful results in merging NSs with rough

sets [25–32], formal concept analysis [33,34], three-way decisions [35–37], and others [38,39]. In the

current article, we plan to propose a new IN MAGDM method via multigranulation probabilistic

models, which can provide a risk-based information synthesis scheme with the capability of error

tolerance in light of GrC-based approaches. In particular, the notion of multigranulation rough sets

(MGRSs) [40–42] and probabilistic rough sets (PRSs) [43–45] is scheduled to establish multigranulation

probabilistic models, and the merits of MGRSs and PRSs can be reflected in the process of MAGDM

problem addressing.

1.4. The Motivations of the Research

MGRSs play a significant role in dealing with MAGDM problems in diverse backgrounds.

One one hand, some scholars have made eminent contributions to the applications of MGRSs in

MAGDM problems in recent years. For instance, Zhang et al. [46,47] developed various MGRSs in

the context of hesitant fuzzy and interval-valued hesitant fuzzy sets for handling person-job fit and

steam turbine fault diagnosis, respectively. Sun et al. [48,49] proposed several MGRSs with linguistic

and heterogeneous preference information, then they further designed corresponding MAGDM

approaches. Zhan et al. [50] and Zhang et al. [51] put forward two novel covering-based MGRSs with

fuzzy and intuitionistic fuzzy information for addressing MAGDM problems. On the other hand, some

scholars adopted PRSs to address MAGDM problems. For instance, Liang et al. [52–54] studied novel

decision-theoretic rough sets in hesitant fuzzy, incomplete, and Pythagorean information systems.

Xu and Guo [55] generalized MGRSs to double-quantitative and three-way decision frameworks.

Zhang et al. [56,57] combined decision-theoretic rough sets with MGRSs in Pythagorean and hesitant

fuzzy linguistic information systems. In this paper, we generalize MGRSs and PRSs to IN information

and apply them to M&A TSs. Specifically, the following motivations of utilizing MGRSs and PRSs in

IN MAGDM problems can be summed up:
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1. In order to address the challenge of MAGDM information representation, INSs take advantages

of NSs and interval-valued sets at the same time. Thus, INSs play a significant role in describing

indeterminate and incomplete MAGDM information.

2. In order to address the challenge of MAGDM information fusion, MGRSs excel in accelerating

the information fusion procedure by virtue of processing multiple binary or fuzzy relations in

parallel. In addition, classical MGRSs offer decision makers both an optimistic information fusion

rule and a pessimistic counterpart. In conclusion, MGRSs play a significant role in constructing

reasonable MAGDM information fusion methods [46–51].

3. In order to address the challenge of MAGDM information analysis, starting from the probability

theory and Bayesian procedures, PRSs own the capability of fault tolerance. Hence, PRSs play a

significant role in coping with incorrect and noisy data and they can be seen as a useful tool for

robust MAGDM information analysis [52–57].

1.5. The Contributions of the Research

In this work, we aim to utilize MGRSs and PRSs in solving complicated MAGDM issues with

IN information. Specifically, several comprehensive risk-based models named IN multigranulation

PRSs (MG-PRSs) over two universes are looked into. Then, we further present a MAGDM approach

in the setting of M&A TSs in light of the developed theoretical models that can avoid an impact of

three above-mentioned challenges. Finally, a real-world example is employed to prove the validity

of the established decision-making rule. In addition, it is noteworthy that plenty of interesting

nonlinear modeling approaches have been proved to be successful in various applications [58–67].

For instance, Medina and Ojeda-Aciego [58] applied multi-adjoint frameworks to general t-concept

lattice, and some other works on fuzzy formal contexts based on GrC-based approaches were explored

in succession [64–67]. Takacs et al. [59] put forward a brand-new oft tissue model for constructing

telesurgical robot systems. Gil et al. [60] studied a surrogate model based optimization of traffic

lights cycles and green period ratios by means of microscopic simulation and fuzzy rule interpolation.

Smarandache et al. [61] explored word-level sentiment similarities in the context of NSs, and some

other meaningful works on word-level sentiment analysis were also investigated recently [62,63,68,69].

Compared with existing popular nonlinear modeling approaches, the vital contributions of the

work lie in the utilization of IN information and multigranulation probabilistic models. For one thing,

the above-mentioned literature on nonlinear modeling approaches can not process various practical

situations with indeterminate and incomplete information effectively, thus this work shows some

merits in the representation of uncertain MAGDM information. For another, the majority of nonlinear

modeling approaches can not fuse and analyze multi-source information with incorrect and noisy data

reasonably, thus this work shows some merits in the fusion and analysis of MAGDM problems with IN

information. Moreover, several specific key contributions of the work can be further concluded below:

1. Several new IN membership degrees are put forward to handle incorrect and noisy data via the

capability of fault tolerance.

2. Three types of multigranulation probabilistic models are designed according to diverse risk

attitudes of decision makers, i.e., the first one in light of optimistic rules, the second one in light

of pessimistic rules, and the third one in light of adjustable rules.

3. On the basis of GrC-based methods, IN MG-PRSs over two universes can address a typical IN

MAGDM issue from multiple views, and integrate different individual preferences by considering

risk appetites and error tolerance.

1.6. The Structure of the Research

The rest of the work is arranged below. The next section intends to review several basic knowledge

on INSs, MGRSs, and PRSs. Three types of theoretical models along with their key properties are

explored in Section 3. In the next section, we develop an IN MAGDM approach via multigranulation
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probabilistic models in the context of M&A TSs. In Section 5, a practical illustrative case study is

explored to highlight the validity of the presented IN MAGDM rule. Finally, Section 6 contains several

conclusive results and future study options.

2. Preliminaries

The current section plans to revisit various preliminary knowledge in terms of INSs, MGRSs, and

PRSs in a brief outline.

2.1. INSs

The concept of INSs was put forward by Wang et al. [13] by updating the formulation of ]0−, 1+[

from the scope of membership functions in NSs. With this update, INSs are equipped with the

capability of expressing indeterminate and incomplete information simultaneously.

Definition 1 ([13]). Suppose U is an arbitrary universe of discourse. An INS E over U is provided as the

following mathematical expression:

E = {〈x, [µL
E (x) , µU

E (x)], [νL
E (x) , νU

E (x)], [ωL
E (x) , ωU

E (x)]〉 |x ∈ U },

where µ, ν, ω : U → int [0, 1] (int [0, 1] represents the set of all closed subintervals of [0, 1]). Similar with NSs,

there also exists the restriction of 0 ≤ µU
E (x) + νU

E (x) + ωU
E (x) ≤ 3. Moreover, a set that includes all INSs

over U is further named IN (U).

For an INS E, it is noticed that E may degenerate into two special forms, i.e., an INS E is named

a full INS U when [µL
E (x) , µU

E (x)] = [1, 1], [νL
E (x) , νU

E (x)] = [0, 0] and [ωL
E (x) , ωU

E (x)] = [0, 0];

an INS E is named an empty INS ∅ when [µL
E (x) , µU

E (x)] = [0, 0], [νL
E (x) , νU

E (x)] = [1, 1] and

[ωL
E (x) , ωU

E (x)] = [1, 1].

In IN MAGDM information analysis, it is common to compare the magnitude of IN numbers,

thus a frequently-used method was developed in [15].

Definition 2 ([15]). Suppose x = 〈[µL
E (x) , µU

E (x)], [νL
E (x) , νU

E (x)], [ωL
E (x) , ωU

E (x)]〉 is an IN number.

A score function with regard to x is provided as the following mathematical expression:

s (x) = [µL
E (x) + 1 − νU

E (x) + 1 − ωU
E (x) , µU

E (x) + 1 − νL
E (x) + 1 − ωL

E (x)],

for arbitrary two IN numbers x and y, x ≤ y ⇔ s (x) ≤ s (y) is evident.

It is noted that another significant issue in IN MAGDM information analysis is viable operational

laws, which are used in constructing various IN MAGDM models. In what follows, we present several

IN operational laws.

Definition 3 ([13,15,22]). Suppose E and F are arbitrary two INSs over U, then some common IN operational

laws are provided as the following mathematical expressions:

1.
E ⊞ F = {〈x, [1 −

(

1 − µL
E (x)

) (

1 − µL
F (x)

)

, 1 −
(

1 − µU
E (x)

) (

1 − µU
F (x)

)

],

[νL
E (x) νL

F (x) , νU
E (x) νU

F (x)], [ωL
E (x)ωL

F (x) , ωU
E (x)ωU

F (x)]
〉

|x ∈ U
}

;

2.
E ⊠ F = {〈x, [µL

E (x) µL
F (x) , µU

E (x) µU
F (x)],

[

1 −
(

1 − νL
E (x)

) (

1 − νL
F (x)

)

, 1 −
(

1 − νU
E (x)

)

(

1 − νU
F (x)

)]

, [1 −
(

1 − ωL
E (x)

) (

1 − ωL
F (x)

)

, 1 −
(

1 − ωU
E (x)

) (

1 − ωU
F (x)

)

]
〉

|x ∈ U
}

;

3.
λE = {〈x, [1 −

(

1 − µL
E (x)

)λ
, 1 −

(

1 − µU
E (x)

)λ
],

[
(

νL
E (x)

)λ
,
(

νU
E (x)

)λ
], [

(

ωL
E (x)

)λ
,
(

ωU
E (x)

)λ
]〉 |x ∈ U };

4.
Eλ = {〈x, [

(

µL
E (x)

)λ
,
(

µU
E (x)

)λ
], [1 −

(

1 − νL
E (x)

)λ
, 1 −

(

1 − νU
E (x)

)λ
]

[1 −
(

1 − ωL
E (x)

)λ
, 1 −

(

1 − ωU
E (x)

)λ
]〉 |x ∈ U };
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5. E ⊟ F = {〈x, [
µL

E(x)−µL
F(x)

1−µL
F(x)

,
µU

E (x)−µU
F (x)

1−µU
F (x)

], [
νL

E(x)

νL
F (x)

,
νU

E (x)

νU
F (x)

], [
ωL

E(x)

ωL
F(x)

,
ωU

E (x)

ωU
F (x)

]〉 |x ∈ U }, if E ⊇ F, νL
E (x) ≤

νU
E (x)νL

F (x)

νU
F (x)

and ωL
E (x) ≤

ωU
E (x)ωL

F(x)

ωU
F (x)

;

6. E⊡ F = {〈x, [
µL

E(x)

µL
F(x)

,
µU

E (x)

µU
F (x)

], [
νL

E(x)−νL
F (x)

1−νL
F (x)

,
νU

E (x)−νU
F (x)

1−νU
F (x)

], [
ωL

E(x)−ωL
F(x)

1−ωL
F(x)

,
ωU

E (x)−ωU
F (x)

1−ωU
F (x)

]〉 |x ∈ U }, if F ⊇ E

and ωL
E (x) ≤

ωU
E (x)ωL

F(x)

ωU
F (x)

;

7. Ec = {〈x, [ωL
E (x) , ωU

E (x)], [1 − νU
E (x) , 1 − νL

E (x)], [µL
E (x) , µU

E (x)]〉 |x ∈ U };

8.
E ∪ F = {〈x,

[

max
(

µL
E (x) , µL

F (x)
)

, max
(

µU
E (x) , µU

F (x)
)]

,
[

min
(

νL
E (x) , νL

F (x)
)

,

min
(

νU
E (x) , νU

F (x)
)]

,
[

min
(

ωL
E (x) , ωL

F (x)
)

, min
(

ωU
E (x) , ωU

F (x)
)]〉

|x ∈ U
}

;

9.
E ∩ F = {〈x,

[

min
(

µL
E (x) , µL

F (x)
)

, min
(

µU
E (x) , µU

F (x)
)]

,
[

max
(

νL
E (x) , νL

F (x)
)

,

max
(

νU
E (x) , νU

F (x)
)]

,
[

max
(

ωL
E (x) , ωL

F (x)
)

, max
(

ωU
E (x) , ωU

F (x)
)]〉

|x ∈ U
}

;

10. E ⊆ F ⇔ µL
E (x) ≤ µL

F (x) , µU
E (x) ≤ µU

F (x) , νL
E (x) ≥ νL

F (x) , νU
E (x) ≥ νU

F (x) , ωL
E (x) ≥

ωL
F (x) , ωU

E (x) ≥ ωU
F (x);

11. E = F ⇔ E ⊆ F, E ⊇ F.

2.2. MGRSs

As one of the most influential generalized rough set theories, the idea of MGRSs was initially

established by Qian et al. [40–42] by means of parallel computational frameworks and risk-based

information fusion strategies.

Definition 4 ([40,41]). Suppose R1, R2, . . . , Rm are m crisp binary relations. For any X ⊆ U, the optimistic

and pessimistic multigranulation approximations of X are provided as the following mathematical expressions:

m

∑
i=1

Ri

O

(X) = {[x]R1
⊆ X ∨ [x]R1

⊆ X ∨ . . . ∨ [x]Rm
|x ∈ U };

m

∑
i=1

Ri

O

(X) = (
m

∑
i=1

Ri

O

(Xc))c;

m

∑
i=1

Ri

P

(X) = {[x]R1
⊆ X ∧ [x]R1

⊆ X ∧ . . . ∧ [x]Rm
|x ∈ U };

m

∑
i=1

Ri

P

(X) = (
m

∑
i=1

Ri

P

(Xc))c,

the pair (
m

∑
i=1

Ri

O

(X) ,
m

∑
i=1

Ri

O

(X)) is named an optimistic MGRS with regard to X, whereas the pair

(
m

∑
i=1

Ri

P

(X) ,
m

∑
i=1

Ri

P

(X)) is named a pessimistic MGRS with regard to X.

2.3. PRSs

Considering that the formulation of classical rough sets is fairly strict which may affect the

application range of it, hence the concept of PRSs [43–45] was developed subsequently by means of

the probabilistic measure theory.
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Definition 5 ([43]). Suppose R is an equivalence relation over U, P is the probabilistic measure, then (U, R, P)

is named a probabilistic approximation space. For any 0 ≤ β < α ≤ 1 and X ⊆ U, the lower and upper

approximations of X are provided as the following mathematical expressions:

Rα (X) = {P (X |[x]R ) ≥ α |x ∈ U };

Rβ (X) = {P (X |[x]R ) > β |x ∈ U },

the pair (Rα (X) , Rβ (X)) is named a PRS of X with regard to (U, R, P).

3. IN MG-PRSs over Two Universes

In what follows, prior to the introduction of new theoretical models, we shall revisit the

formulation of IN relations within the context of two universes [28] at first.

Definition 6 ([28]). Suppose U and V are two an arbitrary universes of discourse. An IN relation over two

universes R over U × V is provided as the following mathematical expression:

R = {〈(x, y) , [µL
R (x, y) , µU

R (x, y)], [νL
R (x, y) , νU

R (x, y)], [ωL
R (x, y) , ωU

R (x, y)]〉 |(x, y) ∈ U × V },

where µ, ν, ω : U, V → int [0, 1]. Similar with INSs, there also exists the restriction of 0 ≤ µU
R (x, y) +

νU
R (x, y) + ωU

R (x, y) ≤ 3. Moreover, a set that includes all IN relations over U × V is further named

INR (U × V).

3.1. Optimistic IN MG-PRSs over Two Universes

It is noted that the term "optimistic" is originated from the first paper of MGRSs [40]. Within the

context of MGRSs, the notion of single and multiple IN inclusion degrees is scheduled to propose at

first in the current section.

Definition 7. Suppose Ri is an IN relation over two universes over U × V. For any E ∈ IN (V),

x ∈ U, y ∈ V, the single IN membership degree of x in E in terms of Ri is provided as the following

mathematical expression:

η
Ri
E (x) =

∑y∈V Ri (x, y) E (y)

∑y∈V Ri (x, y)
,

based on η
Ri
E (x), the multiple IN membership degrees of x in E with regard to Ri are provided as the following

mathematical expressions:

Ψ

m
∑

i=1
Ri

E (x) =
m

min
i=1

η
Ri
E (x) ;

Ω

m
∑

i=1
Ri

E (x) =
m

max
i=1

η
Ri
E (x) ,

Ψ

m
∑

i=1
Ri

E (x) is named a minimal IN membership degree, whereas we call Ω

m
∑

i=1
Ri

E (x) a maximal IN

membership degree.

In light of maximal IN membership degrees, optimistic multigranulation probabilistic models can

be put forward conveniently.



Mathematics 2020, 8, 223 7 of 21

Definition 8. Suppose Ri is an IN relation over two universes over U × V. For any E ∈ IN (V), x ∈ U,

y ∈ V, the two IN thresholds are represented by α and β with α > β, then the lower and upper approximations

of E in optimistic multigranulation probabilistic models are provided as the following mathematical expressions:

m

∑
i=1

Ri

Ω,α

(E) = {Ω

m
∑

i=1
Ri

E (x) ≥ α |x ∈ U };

m

∑
i=1

Ri

Ω,β

(E) = {Ω

m
∑

i=1
Ri

E (x) > β |x ∈ U },

the pair (
m

∑
i=1

Ri

Ω,α

(E) ,
m

∑
i=1

Ri

Ω,β

(E)) is named an optimistic IN MG-PRS over two universes of E.

In what follows, some key properties of lower and upper approximations for optimistic

multigranulation probabilistic models are explored in detail.

Proposition 1. Suppose Ri is an IN relation over two universes over U × V. For any E, F ∈ IN (V), x ∈ U,

y ∈ V, the two IN thresholds are denoted by α and β with α > β, then the lower and upper approximations for

optimistic multigranulation probabilistic models own the following properties:

1.
m

∑
i=1

Ri

Ω,α

(∅) = ∅,
m

∑
i=1

Ri

Ω,β

(V) = U;

2. α1 ≤ α2 ⇒
m

∑
i=1

Ri

Ω,α2

(E) ⊆
m

∑
i=1

Ri

Ω,α1

(E), β1 ≤ β2 ⇒
m

∑
i=1

Ri

Ω,β2

(E) ⊆
m

∑
i=1

Ri

Ω,β1

(E);

3. E ⊆ F ⇒
m

∑
i=1

Ri

Ω,α

(E) ⊆
m

∑
i=1

Ri

Ω,α

(F) ,
m

∑
i=1

Ri

Ω,β

(E) ⊆
m

∑
i=1

Ri

Ω,β

(F);

4.
m

∑
i=1

Ri

Ω,α

(E ∪ F) ⊇
m

∑
i=1

Ri

Ω,α

(E) ∪
m

∑
i=1

Ri

Ω,α

(F),
m

∑
i=1

Ri

Ω,β

(E ∩ F) ⊆
m

∑
i=1

Ri

Ω,β

(E) ∩
m

∑
i=1

Ri

Ω,β

(F);

5.
m

∑
i=1

Ri

Ω,α

(E ∩ F) ⊆
m

∑
i=1

Ri

Ω,α

(E) ∩
m

∑
i=1

Ri

Ω,α

(F),
m

∑
i=1

Ri

Ω,β

(E ∪ F) ⊇
m

∑
i=1

Ri

Ω,β

(E) ∪
m

∑
i=1

Ri

Ω,β

(F).

Proof.

1.
m

∑
i=1

Ri

Ω,α

(∅) = {Ω

m
∑

i=1
Ri

∅
(x) ≥ α |x ∈ U } = {

m
max
i=1

∑y∈V Ri(x,y)∅

∑y∈V Ri(x,y)
≥ α |x ∈ U } = ∅,

m

∑
i=1

Ri

Ω,β

(V) =

{Ω

m
∑

i=1
Ri

V (x) > β |x ∈ U } = {
m

max
i=1

∑y∈V Ri(x,y)V

∑y∈V Ri(x,y)
> β |x ∈ U } = U. Thus,

m

∑
i=1

Ri

Ω,α

(∅) = ∅ and

m

∑
i=1

Ri

Ω,β

(V) = U can be obtained.

2. Since α1 ≤ α2, we have
m

∑
i=1

Ri

Ω,α2

(E) = {Ω

m
∑

i=1
Ri

E (x) ≥ α2 |x ∈ U } ⊆ {Ω

m
∑

i=1
Ri

E (x) ≥ α1 |x ∈ U } =

m

∑
i=1

Ri

Ω,α1

(E). Thus, α1 ≤ α2 ⇒
m

∑
i=1

Ri

Ω,α2

(E) ⊆
m

∑
i=1

Ri

Ω,α1

(E) can be concluded. In a similar

manner, we can also prove β1 ≤ β2 ⇒
m

∑
i=1

Ri

Ω,β2

(E) ⊆
m

∑
i=1

Ri

Ω,β1

(E).



Mathematics 2020, 8, 223 8 of 21

3. Since E ⊆ F, we have
m

∑
i=1

Ri

Ω,α

(E) = {Ω

m
∑

i=1
Ri

E (x) ≥ α |x ∈ U } =

{
m

max
i=1

∑y∈V Ri(x,y)E(y)

∑y∈V Ri(x,y)
≥ α |x ∈ U } ⊆ {Ω

m
∑

i=1
Ri

F (x) ≥ α |x ∈ U } =

{
m

max
i=1

∑y∈V Ri(x,y)F(y)

∑y∈V Ri(x,y)
≥ α |x ∈ U } =

m

∑
i=1

Ri

Ω,α

(F). Thus, E ⊆ F ⇒
m

∑
i=1

Ri

Ω,α

(E) ⊆
m

∑
i=1

Ri

Ω,α

(F)

can be deduced. Similarly, E ⊆ F ⇒
m

∑
i=1

Ri

Ω,β

(E) ⊆
m

∑
i=1

Ri

Ω,β

(F) can also be proved.

4.
m

∑
i=1

Ri

Ω,α

(E ∪ F) = {
m

max
i=1

∑y∈V Ri(x,y)(E∪F)(y)

∑y∈V Ri(x,y)
≥ α |x ∈ U } ≥ {

m
max
i=1

∑y∈V Ri(x,y)E(y)

∑y∈V Ri(x,y)
≥ α |x ∈ U },

m

∑
i=1

Ri

Ω,α

(E ∪ F) = {
m

max
i=1

∑y∈V Ri(x,y)(E∪F)(y)

∑y∈V Ri(x,y)
≥ α |x ∈ U } ≥ {

m
max
i=1

∑y∈V Ri(x,y)F(y)

∑y∈V Ri(x,y)
≥ α |x ∈ U }.

Thus,
m

∑
i=1

Ri

Ω,α

(E ∪ F) ⊇
m

∑
i=1

Ri

Ω,α

(E) ∪
m

∑
i=1

Ri

Ω,α

(F) can be concluded. Similarly, we can also

prove
m

∑
i=1

Ri

Ω,β

(E ∩ F) ⊆
m

∑
i=1

Ri

Ω,β

(E) ∩
m

∑
i=1

Ri

Ω,β

(F).

5. According to the above conclusions,
m

∑
i=1

Ri

Ω,α

(E ∩ F) ⊆
m

∑
i=1

Ri

Ω,α

(E) ∩
m

∑
i=1

Ri

Ω,α

(F) and

m

∑
i=1

Ri

Ω,β

(E ∪ F) ⊇
m

∑
i=1

Ri

Ω,β

(E) ∪
m

∑
i=1

Ri

Ω,β

(F) can be deduced analogously.

3.2. Pessimistic IN MG-PRSs over Two Universes

According to previous definitions, starting from minimal IN membership degrees,

pessimistic multigranulation probabilistic models can be established in a similar way.

Definition 9. Suppose Ri is an IN relation over two universes over U × V. For any E ∈ IN (V), x ∈ U,

y ∈ V, the two IN thresholds are represented by α and β with α > β, then the lower and upper approximations

of E in pessimistic multigranulation probabilistic models are provided as the following mathematical expressions:

m

∑
i=1

Ri

Ψ,α

(E) = {Ψ

m
∑

i=1
Ri

E (x) ≥ α |x ∈ U };

m

∑
i=1

Ri

Ψ,β

(E) = {Ψ

m
∑

i=1
Ri

E (x) > β |x ∈ U },

the pair (
m

∑
i=1

Ri

Ψ,α

(E) ,
m

∑
i=1

Ri

Ψ,β

(E)) is named a pessimistic IN MG-PRS over two universes of E.

Next, some key properties of lower and upper approximations for pessimistic multigranulation

probabilistic models are presented, and we can prove them according to above-mentioned proofs for

Proposition 1.

Proposition 2. Suppose Ri is an IN relation over two universes over U × V. For any E, F ∈ IN (V), x ∈ U,

y ∈ V, the two IN thresholds are denoted by α and β with α > β, then the lower and upper approximations for

pessimistic multigranulation probabilistic models own the following properties:

1.
m

∑
i=1

Ri

Ψ,α

(∅) = ∅,
m

∑
i=1

Ri

Ψ,β

(V) = U;
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2. α1 ≤ α2 ⇒
m

∑
i=1

Ri

Ψ,α2

(E) ⊆
m

∑
i=1

Ri

Ψ,α1

(E), β1 ≤ β2 ⇒
m

∑
i=1

Ri

Ψ,β2

(E) ⊆
m

∑
i=1

Ri

Ψ,β1

(E);

3. E ⊆ F ⇒
m

∑
i=1

Ri

Ψ,α

(E) ⊆
m

∑
i=1

Ri

Ψ,α

(F) ,
m

∑
i=1

Ri

Ψ,β

(E) ⊆
m

∑
i=1

Ri

Ψ,β

(F);

4.
m

∑
i=1

Ri

Ψ,α

(E ∪ F) ⊇
m

∑
i=1

Ri

Ψ,α

(E) ∪
m

∑
i=1

Ri

Ψ,α

(F),
m

∑
i=1

Ri

Ψ,β

(E ∩ F) ⊆
m

∑
i=1

Ri

Ψ,β

(E) ∩
m

∑
i=1

Ri

Ψ,β

(F);

5.
m

∑
i=1

Ri

Ψ,α

(E ∩ F) ⊆
m

∑
i=1

Ri

Ψ,α

(E) ∩
m

∑
i=1

Ri

Ψ,α

(F),
m

∑
i=1

Ri

Ψ,β

(E ∪ F) ⊇
m

∑
i=1

Ri

Ψ,β

(E) ∪
m

∑
i=1

Ri

Ψ,β

(F).

3.3. Adjustable IN MG-PRSs over Two Universes

Starting from two mathematical formulations of optimistic and pessimistic multigranulation

probabilistic models, the former one utilizes maximal IN membership degrees Ω

m
∑

i=1
Ri

E (x) to establish

related IN approximations, which indicates a risk-seeking information fusion tactic in MAGDM issues.

On the contrary, the latter one utilizes minimal IN membership degrees Ψ

m
∑

i=1
Ri

E (x) to establish related IN

approximations, which indicates a risk-averse information fusion tactic in MAGDM issues. However,

it is noted that both optimistic and pessimistic information fusion tactics are qualitative and static,

they lack the ability of expressing risks of information fusion tactics from quantitative and dynamic

standpoints. In order to quantitatively and dynamically describe the risk preference of information

fusion tactics, adjustable IN membership degrees should be put forward by introducing the notion of

risk coefficients, then adjustable IN MG-PRSs over two universes can be developed conveniently.

In what follows, adjustable IN membership degrees are defined by means of Ω

m
∑

i=1
Ri

E (x) and

Ψ

m
∑

i=1
Ri

E (x).

Definition 10. Suppose Ri is an IN relation over two universes over U × V, λ (λ ∈ [0, 1]) is a risk coefficient.

For any E ∈ IN (V), x ∈ U, y ∈ V, the adjustable IN membership degrees of x in E with regard to Ri are

provided as the following mathematical expressions:

Ξ

m
∑

i=1
Ri

E (x) = λΩ

m
∑

i=1
Ri

E (x)⊞ (1 − λ)Ψ

m
∑

i=1
Ri

E (x) .

Next, adjustable multigranulation probabilistic models can be designed similarly.

Definition 11. Suppose Ri is an IN relation over two universes over U × V. For any E ∈ IN (V), x ∈ U,

y ∈ V, the two IN thresholds are represented by α and β with α > β, then the lower and upper approximations

of E in adjustable multigranulation probabilistic models are provided as the following mathematical expressions:

m

∑
i=1

Ri

Ξ,α

(E) = {Ξ

m
∑

i=1
Ri

E (x) ≥ α |x ∈ U };

m

∑
i=1

Ri

Ξ,β

(E) = {Ξ

m
∑

i=1
Ri

E (x) > β |x ∈ U },

the pair (
m

∑
i=1

Ri

Ξ,α

(E) ,
m

∑
i=1

Ri

Ξ,β

(E)) is named an adjustable IN MG-PRS over two universes of E.
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In what follows, some key properties of lower and upper approximations for adjustable

multigranulation probabilistic models are presented, and we can also prove them according to

above-mentioned proofs for Proposition 1.

Proposition 3. Suppose Ri is an IN relation over two universes over U × V. For any E, F ∈ IN (V), x ∈ U,

y ∈ V, the two IN thresholds are denoted by α and β with α > β, then the lower and upper approximations for

adjustable multigranulation probabilistic models own the following properties:

1.
m

∑
i=1

Ri

Ξ,α

(∅) = ∅,
m

∑
i=1

Ri

Ξ,β

(V) = U;

2. α1 ≤ α2 ⇒
m

∑
i=1

Ri

Ξ,α2

(E) ⊆
m

∑
i=1

Ri

Ξ,α1

(E), β1 ≤ β2 ⇒
m

∑
i=1

Ri

Ξ,β2

(E) ⊆
m

∑
i=1

Ri

Ξ,β1

(E);

3. E ⊆ F ⇒
m

∑
i=1

Ri

Ξ,α

(E) ⊆
m

∑
i=1

Ri

Ξ,α

(F) ,
m

∑
i=1

Ri

Ξ,β

(E) ⊆
m

∑
i=1

Ri

Ξ,β

(F);

4.
m

∑
i=1

Ri

Ξ,α

(E ∪ F) ⊇
m

∑
i=1

Ri

Ξ,α

(E) ∪
m

∑
i=1

Ri

Ξ,α

(F),
m

∑
i=1

Ri

Ξ,β

(E ∩ F) ⊆
m

∑
i=1

Ri

Ξ,β

(E) ∩
m

∑
i=1

Ri

Ξ,β

(F);

5.
m

∑
i=1

Ri

Ξ,α

(E ∩ F) ⊆
m

∑
i=1

Ri

Ξ,α

(E) ∩
m

∑
i=1

Ri

Ξ,α

(F),
m

∑
i=1

Ri

Ξ,β

(E ∪ F) ⊇
m

∑
i=1

Ri

Ξ,β

(E) ∪
m

∑
i=1

Ri

Ξ,β

(F).

3.4. Relationships between Optimistic, Pessimistic, and Adjustable IN MG-PRSs over Two Universes

In previous sections, three types of multigranulation probabilistic models with IN Information

are investigated in detail. The following section aims to discuss relationships between optimistic,

pessimistic, and adjustable multigranulation probabilistic models.

Proposition 4. Suppose Ri is an IN relation over two universes over U × V. For any E, F ∈ IN (V), x ∈ U,

y ∈ V, the two IN thresholds are denoted by α and β with α > β; then, we have:

1.
m

∑
i=1

Ri

Ψ,α

(E) ⊆
m

∑
i=1

Ri

Ξ,α

(E) ⊆
m

∑
i=1

Ri

Ω,α

(E);

2.
m

∑
i=1

Ri

Ψ,α

(E) ⊆
m

∑
i=1

Ri

Ξ,α

(E) ⊆
m

∑
i=1

Ri

Ω,α

(E).

Proof.

1.
m

∑
i=1

Ri

Ω,α

(E) = {Ω

m
∑

i=1
Ri

E (x) ≥ α |x ∈ U } = {
m

max
i=1

η
Ri
E (x) ≥ α |x ∈ U } ≥

{(λ
m

max
i=1

η
Ri
E (x)⊞ (1 − λ)

m
min
i=1

η
Ri
E (x)) ≥ α |x ∈ U } =

m

∑
i=1

Ri

Ξ,α

(E) ≥

{
m

min
i=1

η
Ri
E (x) ≥ α |x ∈ U } =

m

∑
i=1

Ri

Ψ,α

(E). Thus,
m

∑
i=1

Ri

Ψ,α

(E) ⊆
m

∑
i=1

Ri

Ξ,α

(E) ⊆
m

∑
i=1

Ri

Ω,α

(E) can

be obtained.

2. Likewise,
m

∑
i=1

Ri

Ψ,α

(E) ⊆
m

∑
i=1

Ri

Ξ,α

(E) ⊆
m

∑
i=1

Ri

Ω,α

(E) can also be proved.

4. IN MAGDM Based on Multigranulation Probabilistic Models

In the following section, we aim to sum up a viable and effective MAGDM approach by using the

newly developed theoretical models. As pointed out in Section 1, multigranulation probabilistic models

can manage the three challenges of typical MAGDM situations well—to be specific, the overall study

context of IN MG-PRSs over two universes is IN information, which excels in depicting indeterminate
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and incomplete information at the same time. In addition, the development of multigranulation

probabilistic models provide decision makers with an effective strategy in MAGDM information

fusion and analysis by taking superiorities of MGRSs and PRSs, and the proposed IN MG-PRSs over

two universes are also equipped with the ability of describing risk preferences of information fusion

quantitatively and dynamically. Hence, IN MG-PRSs over two universes play a significant role in

solving MAGDM problems, and it is necessary to put forward corresponding MAGDM methods.

Next, for the sake of exploring MAGDM methods in a real-world scenario, we put the following

discussions in the background of M&A TSs. We first let the universe U = {x1, x2, . . . , xj} be a

set containing selectable M&A targets, whereas universe V = {y1, y2, . . . , yk} is a set containing

assessment criteria. Then, we also let E ∈ IN (V) be a standard set containing several needs of

corporate acquirers from the aspect of assessment criteria. Afterwards, m decision makers in a group

provide several relations Ri ∈ INR (U × V) (i = 1, 2, . . . , m) between the above-mentioned universes.

Finally, an information system (U, V, Ri, E) for M&A TSs can be established as the input for the

following MAGDM algorithm based on multigranulation probabilistic models.

Remark 1. In what follows, we intend to interpret the scheme of selecting the parametric value λ. According to

Definition 10, the adjustable IN membership degrees of x in E with regard to Ri are provided as Ξ

m
∑

i=1
Ri

E (x) =

λΩ

m
∑

i=1
Ri

E (x)⊞ (1 − λ)Ψ

m
∑

i=1
Ri

E (x). It is not difficult to see Ξ

m
∑

i=1
Ri

E (x) = Ω

m
∑

i=1
Ri

E (x) when λ = 1, whereas

Ξ

m
∑

i=1
Ri

E (x) = Ψ

m
∑

i=1
Ri

E (x) when λ = 0. Hence, maximal IN membership degrees Ω

m
∑

i=1
Ri

E (x) and minimal

IN membership degrees Ψ

m
∑

i=1
Ri

E (x) are two extreme cases of adjustable IN membership degrees Ξ

m
∑

i=1
Ri

E (x).

In light of the standpoint of risk decision-making with uncertainty from classical operational research [1],

Ξ

m
∑

i=1
Ri

E (x) = Ω

m
∑

i=1
Ri

E (x) can be seen as the "completely risk-seeking" strategy, Ξ

m
∑

i=1
Ri

E (x) = Ψ

m
∑

i=1
Ri

E (x) can be

seen as the "completely risk-averse" strategy, and Ξ

m
∑

i=1
Ri

E (x) = 0.5Ω

m
∑

i=1
Ri

E (x)⊞ (1 − 0.5)Ψ

m
∑

i=1
Ri

E (x) can be

seen as the "risk-neutral" strategy. Moreover, Ξ

m
∑

i=1
Ri

E (x) can be seen as the "somewhat risk-seeking" strategy

when λ ∈ (0.5, 1), and Ξ

m
∑

i=1
Ri

E (x) can be seen as the "somewhat risk-averse" strategy when λ ∈ (0, 0.5).

According to the above-stated theoretical explanations, the parametric value λ represents the risk preference of

different decision makers in M&A TSs. In specific, the larger of the parametric value λ when all decision makers

are more risk-seeking, whereas the smaller of the parametric value λ when all decision makers are more risk-averse.

In general, the parametric value λ is determined by all decision-makers’ risk preference or the empirical studies

and inherent knowledge in advance. In practical MAGDM situations, suppose there are m decision makers in a

group, each decision maker provides his or her risk preference λi (λi ∈ [0, 1], i = 1, 2, . . . , m), and then the final

risk preference when computing Ξ

m
∑

i=1
Ri

E (x) can be determined as λ =

m
∑

i=1
λi

m .

In what follows, an algorithm for M&A TSs by virtue of adjustable IN MG-PRSs over two

universes is established.

5. An Illustrative Example

For the sake of making an efficient comparative analysis with existing similar IN MAGDM

approaches, we plan to utilize the case study that was previously investigated in [28]. In what follows,

we first present the general context of M&A TSs and show basic steps of obtaining the optimal M&A

target by means of the newly proposed algorithm developed in Section 4.
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Remark 2. Section 4 acts as a transition part which links between the theoretical models proposed in Section 3

and the application case presented in Section 5. To be specific, we first put forward two special theoretical models

named optimistic and pessimistic IN MG-PRSs over two universes. Then, we further generalize these two special

theoretical models to adjustable IN MG-PRSs over two universes. All the proposed three theoretical models

are foundations for addressing MAGDM problems. Next, we propose a novel algorithm for M&A TSs in light

of adjustable IN MG-PRSs over two universes in Section 4. Finally, in order to show the reasonability and

effectiveness of the proposed algorithm, the following section plans to conduct several quantitative and qualitative

analysis via an illustrative example.

5.1. MAGDM Procedures

In this illustrative example, we use the case study that was previously investigated

in [28]. The detailed case descriptions and datasets can be found at the webpage

(https://www.mdpi.com/2073-8994/9/7/126/htm).

According to Algorithm 1, we aim to obtain the optimal M&A target by means of IN MG-PRSs

over two universes. First, we calculate single IN membership degrees as follows.

Algorithm 1 An algorithm for M&A TSs in light of adjustable IN MG-PRSs over two universes.

Require: An information system (U, V, Ri, E) for M&A TSs.

Ensure: The optimal alternative.

Step 1. Calculate single IN membership degrees η
Ri
E (x) =

∑y∈V Ri(x,y)E(y)

∑y∈V Ri(x,y)
;

Step 2. Calculate maximal IN membership degrees Ω

m
∑

i=1
Ri

E (x) =
m

max
i=1

η
Ri
E (x) and minimal IN

membership degrees Ψ

m
∑

i=1
Ri

E (x) =
m

min
i=1

η
Ri
E (x);

Step 3. Calculate the risk coefficient λ =

m
∑

i=1
λi

m ;

Step 4. Calculate adjustable IN membership degrees Ξ

m
∑

i=1
Ri

E (x) = λΩ

m
∑

i=1
Ri

E (x)⊞ (1 − λ)Ψ

m
∑

i=1
Ri

E (x);

Step 5. Determine score values of Ξ

m
∑

i=1
Ri

E (x) for all selectable M&A targets;

Step 6. The best alternative is the one with the largest score value for Ξ

m
∑

i=1
Ri

E (x).

With regard to the relation presented in R1, we obtain

η
R1
E (x1) =

∑y∈V R1 (x1, y) E (y)

∑y∈V R1 (x1, y)
= 〈[0.8477, 0.9207] , [0.0378, 0.1345] , [0.1771, 0.316]〉 .

In a similar manner, we also obtain

η
R1
E (x2) = 〈[0.7672, 0.894] , [0.0459, 0.1677] , [0.3197, 0.5164]〉 ;

η
R1
E (x3) = 〈[0.8212, 0.9314] , [0.05, 0.1497] , [0.2351, 0.3925]〉 ;

η
R1
E (x4) = 〈[0.8493, 0.9465] , [0.0232, 0.101] , [0.2147, 0.4122]〉 ;

η
R1
E (x5) = 〈[0.8774, 0.9643] , [0.0466, 0.1559] , [0.07, 0.1923]〉 .



Mathematics 2020, 8, 223 13 of 21

With regard to the relation presented in R2, we also obtain

η
R2
E (x1) = 〈[0.8185, 0.9419] , [0.033, 0.1355] , [0.17, 0.3418]〉 ;

η
R2
E (x2) = 〈[0.7728, 0.9177] , [0.04, 0.1423] , [0.285, 0.4756]〉 ;

η
R2
E (x3) = 〈[0.8217, 0.9407] , [0.038, 0.1294] , [0.1799, 0.3357]〉 ;

η
R2
E (x4) = 〈[0.8327, 0.9548] , [0.022, 0.097] , [0.2434, 0.4106]〉 ;

η
R2
E (x5) = 〈[0.8591, 0.9645] , [0.031, 0.1583] , [0.096, 0.2316]〉 .

With regard to the relation presented in R3, we also obtain

η
R3
E (x1) = 〈[0.844, 0.9472] , [0.03, 0.1422] , [0.2104, 0.3615]〉 ;

η
R3
E (x2) = 〈[0.799, 0.91] , [0.0336, 0.1571] , [0.3151, 0.5472]〉 ;

η
R3
E (x3) = 〈[0.8388, 0.9368] , [0.0424, 0.1466] , [0.1803, 0.3484]〉 ;

η
R3
E (x4) = 〈[0.8362, 0.9366] , [0.0188, 0.1069] , [0.206, 0.3834]〉 ;

η
R3
E (x5) = 〈[0.8739, 0.9581] , [0.029, 0.1351] , [0.075, 0.2316]〉 .

Next, maximal and minimal IN membership degrees can be calculated in light of Definition 7.

For maximal IN membership degrees, we have

Ω

3
∑

i=1
Ri

E (x1) = 〈[0.8477, 0.9472] , [0.0378, 0.1422] , [0.2104, 0.3615]〉 ;

Ω

3
∑

i=1
Ri

E (x2) = 〈[0.799, 0.9177] , [0.0459, 0.1677] , [0.3197, 0.5472]〉 ;

Ω

3
∑

i=1
Ri

E (x3) = 〈[0.8388, 0.9407] , [0.05, 0.1497] , [0.2351, 0.3925]〉 ;

Ω

3
∑

i=1
Ri

E (x4) = 〈[0.8493, 0.9548] , [0.0232, 0.1069] , [0.2434, 0.4122]〉 ;

Ω

3
∑

i=1
Ri

E (x5) = 〈[0.8774, 0.9645] , [0.0466, 0.1583] , [0.096, 0.2316]〉 .

Similarly, for minimal IN membership degrees, we also have

Ψ

3
∑

i=1
Ri

E (x1) = 〈[0.8185, 0.9207] , [0.03, 0.1345] , [0.17, 0.316]〉 ;

Ψ

3
∑

i=1
Ri

E (x2) = 〈[0.7672, 0.894] , [0.0336, 0.1423] , [0.285, 0.4756]〉 ;

Ψ

3
∑

i=1
Ri

E (x3) = 〈[0.8212, 0.9314] , [0.038, 0.1294] , [0.1799, 0.3357]〉 ;

Ψ

3
∑

i=1
Ri

E (x4) = 〈[0.8327, 0.9366] , [0.0188, 0.097] , [0.206, 0.3834]〉 ;

Ψ

3
∑

i=1
Ri

E (x5) = 〈[0.8591, 0.9581] , [0.029, 0.1351] , [0.07, 0.1923]〉 .

In order to make an efficient comparison with the MAGDM method proposed in [28], the risk

coefficient λ = 0.6 is noted in [28]; then, we also take the risk coefficient λ = 0.6 in this case study. In
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what follows, adjustable IN membership degrees can be calculated. To be specific, for M&A target x1,

we have

Ξ

3
∑

i=1
Ri

E (x1) = 0.6Ω

3
∑

i=1
Ri

E (x1)⊞ (1 − 0.6)Ψ

3
∑

i=1
Ri

E (x1) = 〈[0.8366, 0.9379] , [0.0345, 0.1391] , [0.1932, 0.3426]〉 .

In what follows, we also have

Ξ

3
∑

i=1
Ri

E (x2) = 〈[0.7868, 0.9089] , [0.0405, 0.157] , [0.3054, 0.5173]〉 ;

Ξ

3
∑

i=1
Ri

E (x3) = 〈[0.832, 0.9371] , [0.0448, 0.1412] , [0.2112, 0.3687]〉 ;

Ξ

3
∑

i=1
Ri

E (x4) = 〈[0.8429, 0.9482] , [0.0213, 0.1028] , [0.2277, 0.4004]〉 ;

Ξ

3
∑

i=1
Ri

E (x5) = 〈[0.8705, 0.9621] , [0.0385, 0.1486] , [0.0846, 0.215]〉 .

Finally, we calculate score values of Ξ

3
∑

i=1
Ri

E (x) for each xi, and the best xi is the one with the largest

score value for Ξ

3
∑

i=1
Ri

E (x); the final ranking result shows x5 ≻ x1 ≻ x4 ≻ x3 ≻ x2, i.e., the supreme

alternative is x5.

5.2. Sensitivity Analysis

In the previous section, we obtain the optimal M&A target by using adjustable multigranulation

probabilistic models with the risk coefficient λ = 0.6. The following sensitivity analysis aims to

investigate the influence of the risk coefficient by changing the value of λ. To be specific, supposing

the value of λ is taken as 0, 0.4, 0.5, 0.6, and 1, respectively, then we can obtain the final ranking orders

in Table 1 below.

Table 1. Ranking orders of M&A targets with changing values of λ.

Different λ Information Fusion Risks Ranking Results of M&A Targets

λ = 0 completely pessimistic (completely risk-averse) x5 ≻ x1 ≻ x3 ≻ x4 ≻ x2

λ = 0.4 somewhat pessimistic (somewhat risk-averse) x5 ≻ x1 ≻ x4 ≻ x3 ≻ x2

λ = 0.5 neutral (risk-neutral) x5 ≻ x1 ≻ x4 ≻ x3 ≻ x2

λ = 0.6 somewhat optimistic (somewhat risk-seeking) x5 ≻ x1 ≻ x4 ≻ x3 ≻ x2

λ = 1 completely optimistic (completely risk-seeking) x5 ≻ x1 ≻ x4 ≻ x3 ≻ x2

According to the final ranking orders in Table 1, it is easy to see that the best xi is insensitive to

changing values of λ, that is, all results show the best xi is x5. Thus, the best alternative is reliable and

stable. The only difference lies in the ranking order of x3 and x4 when λ = 0, i.e., x3 is superior to x4

when λ = 0, whereas x3 is inferior to x4 in other situations. The cause of this phenomenon is that the

changing values of λ may affect the ranking order of x3 and x4 when the risk preferences is completely

risk-averse.

5.3. Comparative Analysis

In what follows, we aim to compare with the MAGDM method proposed in [28] to present the

merits of the proposed MAGDM algorithm. In [28], the authors put forward an algorithm for M&A
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TSs via IN MGRSs over two universes without the support of PRSs. The mathematical structures of

optimistic and pessimistic IN MGRSs over two universes are presented below:

m

∑
i=1

Ri

O

(E) ={〈x, [µL
m
∑

i=1
Ri

O

(E)
(x) , µU

m
∑

i=1
Ri

O

(E)

(x)], [νL
m
∑

i=1
Ri

O

(E)
(x) , νU

m
∑

i=1
Ri

O

(E)

(x)],

[ωL
m
∑

i=1
Ri

O

(E)
(x) , ωU

m
∑

i=1
Ri

O

(E)

(x)]〉 |x ∈ U };

m

∑
i=1

Ri

O

(E) ={〈x, [µL
m
∑

i=1
Ri

O

(E)

(x) , µU
m
∑

i=1
Ri

O

(E)

(x)], [νL
m
∑

i=1
Ri

O

(E)

(x) , νU
m
∑

i=1
Ri

O

(E)

(x)],

[ωL
m
∑

i=1
Ri

O

(E)

(x) , ωU
m
∑

i=1
Ri

O

(E)

(x)]〉 |x ∈ U };

m

∑
i=1

Ri

P

(E) ={〈x, [µL
m
∑

i=1
Ri

P

(E)
(x) , µU

m
∑

i=1
Ri

P

(E)

(x)], [νL
m
∑

i=1
Ri

P

(E)
(x) , νU

m
∑

i=1
Ri

P

(E)

(x)],

[ωL
m
∑

i=1
Ri

P

(E)
(x) , ωU

m
∑

i=1
Ri

P

(E)

(x)]〉 |x ∈ U };

m

∑
i=1

Ri

P

(E) ={〈x, [µL
m
∑

i=1
Ri

P

(E)

(x) , µU
m
∑

i=1
Ri

P

(E)

(x)], [νL
m
∑

i=1
Ri

P

(E)

(x) , νU
m
∑

i=1
Ri

P

(E)

(x)],

[ωL
m
∑

i=1
Ri

P

(E)

(x) , ωU
m
∑

i=1
Ri

P

(E)

(x)]〉 |x ∈ U },

where

µL
m
∑

i=1
Ri

O

(E)

(x) =
m
∨

i=1
∧y∈V{ωL

Ri
(x, y) ∨ µL

E (y)}, µU
m
∑

i=1
Ri

O

(E)

(x) =
m
∨

i=1
∧y∈V{ωU

Ri
(x, y) ∨ µU

E (y)},

νL
m
∑

i=1
Ri

O

(E)

(x) =
m
∧

i=1
∨y∈V{(1 − νU

Ri
(x, y)) ∧ νL

E (y)},

νU
m
∑

i=1
Ri

O

(E)

(x) =
m
∧

i=1
∨y∈V{(1 − νL

Ri
(x, y)) ∧ νU

E (y)},

ωL
m
∑

i=1
Ri

O

(E)

(x) =
m
∧

i=1
∨y∈V{µL

Ri
(x, y) ∧ ωL

E (y)}, ωU
m
∑

i=1
Ri

O

(E)

(x) =
m
∧

i=1
∨y∈V{µU

Ri
(x, y) ∧ ωU

E (y)},

µL
m
∑

i=1
Ri

O

(E)

(x) =
m
∧

i=1
∨y∈V{µL

Ri
(x, y) ∧ µL

E (y)}, µU
m
∑

i=1
Ri

O

(E)

(x) =
m
∧

i=1
∨y∈V{µU

Ri
(x, y) ∧ µU

E (y)},

νL
m
∑

i=1
Ri

O

(E)

(x) =
m
∨

i=1
∧y∈V{νL

Ri
(x, y) ∨ νL

E (y)}, νU
m
∑

i=1
Ri

O

(E)

(x) =
m
∨

i=1
∧y∈V{νU

Ri
(x, y) ∨ νU

E (y)},

ωL
m
∑

i=1
Ri

O

(E)

(x) =
m
∨

i=1
∧y∈V{ωL

Ri
(x, y) ∨ ωL

E (y)}, ωU
m
∑

i=1
Ri

O

(E)

(x) =
m
∨

i=1
∧y∈V{ωU

Ri
(x, y) ∨ ωU

E (y)}.

µL
m
∑

i=1
Ri

P

(E)

(x) =
m
∧

i=1
∧y∈V{ωL

Ri
(x, y) ∨ µL

E (y)}, µU
m
∑

i=1
Ri

P

(E)

(x) =
m
∧

i=1
∧y∈V{ωU

Ri
(x, y) ∨ µU

E (y)},
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νL
m
∑

i=1
Ri

P

(E)

(x) =
m
∨

i=1
∨y∈V{(1 − νU

Ri
(x, y)) ∧ νL

E (y)},

νU
m
∑

i=1
Ri

P

(E)

(x) =
m
∨

i=1
∨y∈V{(1 − νL

Ri
(x, y)) ∧ νU

E (y)},

ωL
m
∑

i=1
Ri

P

(E)

(x) =
m
∨

i=1
∨y∈V{µL

Ri
(x, y) ∧ ωL

E (y)}, ωU
m
∑

i=1
Ri

P

(E)

(x) =
m
∨

i=1
∨y∈V{µU

Ri
(x, y) ∧ ωU

E (y)},

µL
m
∑

i=1
Ri

P

(E)

(x) =
m
∨

i=1
∨y∈V{µL

Ri
(x, y) ∧ µL

E (y)}, µU
m
∑

i=1
Ri

P

(E)

(x) =
m
∨

i=1
∨y∈V{µU

Ri
(x, y) ∧ µU

E (y)},

νL
m
∑

i=1
Ri

P

(E)

(x) =
m
∧

i=1
∧y∈V{νL

Ri
(x, y) ∨ νL

E (y)}, νU
m
∑

i=1
Ri

P

(E)

(x) =
m
∧

i=1
∧y∈V{νU

Ri
(x, y) ∨ νU

E (y)},

ωL
m
∑

i=1
Ri

P

(E)

(x) =
m
∧

i=1
∧y∈V{ωL

Ri
(x, y) ∨ ωL

E (y)}, ωU
m
∑

i=1
Ri

P

(E)

(x) =
m
∧

i=1
∧y∈V{ωU

Ri
(x, y) ∨ ωU

E (y)}.

The pair (
m

∑
i=1

Ri

O

(E) ,
m

∑
i=1

Ri

O

(E)) is named an optimistic IN MGRS over two universes of E,

whereas the pair (
m

∑
i=1

Ri

P

(E) ,
m

∑
i=1

Ri

P

(E)) is named a pessimistic IN MGRS over two universes of E.

More concretely, the optimistic and pessimistic IN multigranulation rough approximations

in terms of an information system (U, V, Ri, E)(i = 1, 2, 3) for M&A TSs are calculated at first,

which are denoted by
3

∑
i=1

Ri

O

(E),
3

∑
i=1

Ri

O

(E),
3

∑
i=1

Ri

P

(E) and
3

∑
i=1

Ri

P

(E). Then, we further synthesize

lower and upper versions of optimistic IN multigranulation rough approximations, which is

denoted by
3

∑
i=1

Ri

O

(E)⊞
3

∑
i=1

Ri

O

(E), whereas lower and upper versions of pessimistic counterparts

can also be synthesized, which is denoted by
3

∑
i=1

Ri

P

(E) ⊞
3

∑
i=1

Ri

P

(E). Let the risk coefficient

λ = 0.6 when integrating
3

∑
i=1

Ri

O

(E)⊞
3

∑
i=1

Ri

O

(E) with
3

∑
i=1

Ri

P

(E)⊞
3

∑
i=1

Ri

P

(E), i.e., the synthesized

set 0.6(
3

∑
i=1

Ri

O

(E)⊞
3

∑
i=1

Ri

O

(E)) ⊞ (1 − 0.6) (
3

∑
i=1

Ri

P

(E)⊞
3

∑
i=1

Ri

P

(E)) should be further obtained.

The above-stated sets are obtained as follows:

3

∑
i=1

Ri

O

(E)⊞
3

∑
i=1

Ri

O

(E) = {〈x1, 〈[0.82, 0.90] , [0.15, 0.24] , [0.24, 0.35]〉〉 ,

〈x2, 〈[0.70, 0.80] , [0.15, 0.35] , [0.42, 0.56]〉〉 , 〈x3, 〈[0.85, 0.92] , [0.08, 0.18] , [0.30, 0.42]〉〉 ,

〈x4, 〈[0.82, 0.90] , [0.10, 0.18] , [0.30, 0.42]〉〉 , 〈x5, 〈[0.76, 0.86] , [0.15, 0.24] , [0.14, 0.24]〉〉};

3

∑
i=1

Ri

P

(E)⊞
3

∑
i=1

Ri

P

(E) = {〈x1, 〈[0.82, 0.90] , [0.10, 0.21] , [0.24, 0.35]〉〉 ,

〈x2, 〈[0.70, 0.85] , [0.15, 0.28] , [0.40, 0.54]〉〉 , 〈x3, 〈[0.85, 0.92] , [0.08, 0.18] , [0.24, 0.35]〉〉 ,

〈x4, 〈[0.79, 0.88] , [0.10, 0.21] , [0.28, 0.40]〉〉 , 〈x5, 〈[0.76, 0.86] , [0.15, 0.28] , [0.16, 0.27]〉〉};

0.6(
3

∑
i=1

Ri

O

(E)⊞
3

∑
i=1

Ri

O

(E))⊞ (1 − 0.6) (
3

∑
i=1

Ri

P

(E)⊞
3

∑
i=1

Ri

P

(E)) =

{〈x1, 〈[0.82, 0.90] , [0.13, 0.23] , [0.24, 0.35]〉〉 , 〈x2, 〈[0.70, 0.82] , [0.15, 0.32] , [0.41, 0.55]〉〉 ,

〈x3, 〈[0.85, 0.92] , [0.08, 0.18] , [0.28, 0.39]〉〉 , 〈x4, 〈[0.81, 0.89] , [0.10, 0.19] , [0.29, 0.41]〉〉 ,

〈x5, 〈[0.76, 0.86] , [0.15, 0.25] , [0.15, 0.25]〉〉}.
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Finally, score values of 0.6(
3

∑
i=1

Ri

O

(E)⊞
3

∑
i=1

Ri

O

(E)) ⊞ (1 − 0.6) (
3

∑
i=1

Ri

P

(E)⊞
3

∑
i=1

Ri

P

(E)) are

calculated, and it is convenient to determine the ranking orders of five M&A targets via the above

score values and obtain the optimal M&A target, which is x3, and x5 is ranked second. The reason

for the difference with the result obtained by using the proposed method lies in IN MGRSs over two

universes lacking the ability of error tolerance; the MAGDM result is sensitive to outlier values from

original information for M&A TSs.

5.4. Discussion

In order to address complicated MAGDM problems effectively, three key challenges are focused

on at first. Then, under the guidance of multigranulation probabilistic models, we utilize the model

of INSs, MGRSs and PRSs to handle the above-mentioned challenges. Moreover, compared with

existing popular nonlinear modeling approaches, such as formal concept analysis [33,34,58,64–67],

control systems [59,60] and sentiment analysis [61–63,68,69], which neither effectively handle

indeterminate and incomplete information in complicated MAGDM problems, nor reasonably fuse

and analyze multi-source information with incorrect and noisy data, it is necessary to combine INSs,

MGRSs with PRSs to develop some meaningful hybrid models along with corresponding MAGDM

approaches. In light of MAGDM procedures in the current section, we sum up the merits of the

proposed MAGDM algorithm below:

1. INSs act as a viable and effective tool for depicting various uncertainties in typical MAGDM

situations. By dividing the notion of membership degrees into three different parts, indeterminate

and incomplete MAGDM information can be described precisely.

2. In MAGDM information fusion procedures, with the support of MGRSs, the computational

efficiency of information fusion can be enhanced to a large extent. Moreover, decision risks of

information fusion strategies can also be modeled well.

3. Compared with [28], the proposed MAGDM algorithm excels in fusing the superiorities of PRSs

in the construction of hybrid models. To be specific, IN MG-PRSs over two universes own the

fault-tolerance ability when coping with incorrect and noisy data.

Hence, the developed IN MG-PRSs over two universes perform outstandingly in MAGDM

information representation, information fusion, and information analysis; they provide a beneficial

tool for addressing complicated MAGDM problems.

6. Conclusions

This work mainly presents a general framework for dealing with complicated IN MAGDM

problems by virtue of multigranulation probabilistic models. At first, three different types of

multigranulation probabilistic models are put forward, that is, the optimistic version, the pessimistic

version, and the adjustable version, and both definitions and key properties are discussed in detail.

Then, relationships between optimistic, pessimistic, and adjustable multigranulation probabilistic

models are further explored. Afterwards, corresponding IN MAGDM approaches are proposed in

the background of M&A TSs. Finally, a practical example of M&A TSs is presented with several

quantitative and qualitative analysis.

In the future, it is meaningful to generalize IN MG-PRSs over two universes to more extended

neutrosophic contexts such as neutrosophic duplets, triplets and multisets. Furthermore, establishing

efficient IN MAGDM approaches for problems with dynamic situations, high-dimensional attributes

and large-scale of alternatives are also necessary. Another future interesting study option is to apply the

presented theoretical models to other areas such as clustering, feature selections, compressed sensing,

image processing, etc.
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