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ABSTRACT Owing to the increased worldwide awareness regarding pollution caused by the consumption

of fossil fuels, Battery-powered vehicles are bound to take over the conventional Internal Combustion

Engine. Keeping the difficulties faced by the economy of the city and the populace of adapting to an

entirely grid-run charging infrastructure in mind, a framework incorporating electric vehicles to everything

(EV2X) communication and Charge Slot booking based on data got from a survey conducted has been

developed in this literature. The conclusions drawn from the survey develop key insights into developing

statisticorating the use of LTE to support the conventional OCPP and promote user controlal models that

are further explored in this context. Algorithms and strategies to implement next-generation efficient EV2X

communications have been implemented and developed for the city. Further, we have established a priority

order for slot booking and incorp over charge-cycles. Introducing IPMUs using an LTE connection to act as

a supplement to the conventional OCPP is explored in this context. Besides that, we have built the M/M/m

queuing model of EVs in the charging station and its optimisation. We have done the exhaustive evaluation

of the robustness of the proposed system in a fairly large-scale network in a discrete-time event simulator.

The proposed system’s results (simulation, analytical, and comparison) show the reduction of waiting time,

good accuracy, and saving of charging time and costs. These performances measures improve shows the

real-time applicability of the proposed system.

INDEX TERMS Electric Vehicles, Charging Stations; Charging Slots Booking, EV2X, Queuing Model.

I. INTRODUCTION

As we move towards a smarter world, with a better under-

standing of our surroundings and resources, the conservation

thereof is a widespread thought prevailing in the minds of the

masses. The shift towards an all-Electric powered vehicle is

no longer a possibility, but an eventuality. When measured

against their predecessors, EV’s are limited by the range they

can traverse in one charge cycle and the output power that

they can generate, limiting their use in heavy-duty automo-

tive in the immediate future. For most second and third world

countries, the concept of EVs comprising most of the on-road

traffic is still synonymous with a pipe dream. By definition, a

city-wide infrastructure alteration to meet the demands of an

entirely grid-run electric-powered traffic will cause a major

shock to not only the economic state of the city but will also

adversely affect the portion of the population still operating

on conventional source-powered vehicles.

According to the 2019 survey report by the National Au-
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tomotive Board, India has around 278691 EVs (2-wheelers,

e-rickshaws, buses, and 4-wheelers) on the road. By 2030,

India takes overall fossil fuel vehicles into EVs and AVs for

transportation, to realize the environment-friendly transporta-

tion system. Successful adoption of EVs might help India

save up to 300 Bn (INR 20 Lakh Cr.) in oil imports and

nearly 1 gigaton of Carbon Dioxide emissions, as per a recent

report by FICCI and Rocky Mountain Institute. Besides, EVs

can become a stepping stone towards designing an intelligent,

futuristic transport infrastructure in India that can cater to the

mobility needs of the country’s vast population. The main

idea of adoption of EVs is to replace the existing fossil fuel-

powered vehicles, which reduces GHG emission into the air.

In the urban cities, most of the time (i.e., 90-95%) vehicles

be parked in the house, malls, office, public places, etc.

Owing to the adoptation of EVs in urban territories, there

will be a rise in need of charging stations. Also, the mass

adoption of EVs mandates a robust charging infrastruc-

ture, communication infrastructure between EVs [3]–[5] and

charging stations [3]–[5], and highlights the necessity to

build a communication infrastructure between a dedicated

aggregator and grid [6], [7]. Managing power transaction

processes of EVs because of the varying demands and highly

intermittent renewable energy sources penetration at different

periods will be a major challenge [22], [25].

Managing the charging profiles of EVs, power profiles of

charge stations, handling different renewable sources [13],

[16], [24] because of its randomness and timely management

of demands and responses of power and EVs are few more

issues involved in the dynamic nature of metropolitan cities

[18]. Hence, there is a need for efficient techniques to anal-

yse the urban city demands, identify the potential charging

station and charging points, and provide seamless commu-

nication connectivity between EVs and charging station for

power transaction along with the intelligent transport system

in smart cities.

GA(Global Aggregator), as discussed in [1], controls and

manages the slot booking in a localized group of charg-

ers. Whenever an EV reaches in an area which generates

a request to book a slot, the request will be transmitted

via the RoadSide Unit (RSU) to the GA. Therefore, GA

addresses the request based on the present conditions of

charging stations. The IPMU is registered with the vehicle

for checking the battery statistics with the help of OBD and

can access the charge broadcasts made by the GA. The IPMU

periodically provides to the user with more rigorous control

over the vehicle statistics and consecutively allow them to

schedule a charge based on their preferred time. Where the

RSU malfunctions or cannot communicate to the vehicle, the

connection between the vehicle and IPMU can be utilized

by the vehicle to access charge broadcasts and subsequently

make reserve charging slots if needed, immediate utilizing

the mobile connection as an alternative route to communicate

with the GA.

The main contribution of this paper can be outlined as

follows:

1) Conducted the real time survey to collect the necessary

data relevant to the study and drawn the conclusions

from the collected data.

2) Developed the Framework and Architecture of the

Next-Generation Communication based Online EVs

Charging Slot Booking at Charging Station

3) We demonstrated the Communication Model of the

EVs, RSUs, IMPU, GA and CSs with the algorithm

4) We built the stochastic queuing model for EVs in the

charging station and derived the necessary equations.

5) We formulated the objective function of EV’s charging

at charging points in charging stations to determine

the optimal charging time, minimal charging cost, least

distance, minimal queuing delay and optimal duration

for particular charging slots.

6) The proposed system has been tested in a fairly large

scale network in the developed discrete-time event

simulatior.

The rest of the paper is organized as follows: Section II

comprehensively discusses the few related works; Section III

presents the real time survey of current perception of EVs

in the eyes of general public; Using the inferences drawn

from the survey, Section IV focuses on the proposed next

generation communication based online EVs charging slot

booking architecture; Section V addresses the issue of traffic

management at a charging station by introducing a stochastic

queueing model to address charging time; Section VI focuses

on the formulation of the optimisation problem and analysis

of the results is presented in Section VII. Section VIII con-

cludes the paper along with future work opportunities.

II. RELATED WORKS
A. CHARGE SCHEDULING AND V2V COMMUNICATION

Authors in [1] proposed a scheme to manage EV charg-

ing that minimizes the charging waiting period (with pre-

empted charging service) for heterogeneous EVs. Based on

the knowledge of those EVs parked locally at CS’s as well

as those who make reservations for charging remotely. This

detail helps plan charging schedules for EVs that will take

place early with waiting time.V2V coordination flexibility

(with DTN (Delay Tolerant Network) nature) to transmit

the charging reservation of the EVs. Our research tackles

this issue for a broader period and utilizes low-charge V2V

contact to meet traffic conditions of heavy networks that

impede the scope and service capabilities of RSUs.

B. VEHICLE TO INFRASTRUCTURE

Authors in [2] proposed a model to evaluate the through-

put performance of multiple vehicles sharing the wireless

resources of 802.11-based AP in a given mobility scenario

to capture the impact of road capacity, vehicle density, and

vehicle relative speed differences on the V2I communications

throughput performance. The model incorporates this design
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method to allow vehicle density network as the scenario is

one of transformation to a completely grid-run EV network.

Authors in [3] further elaborate the usage of V2I contact

to collaboratively assess optimal speeds for EVs and other

necessary measures to be performed with minimum delays

while preventing threats to power grid components caused

due to variation in Spatio-temporal EV demand patterns.

C. DETERMINATION OF OPTIMAL CHARGING STATION

AND PRICING MODEL SETUP

Authors in [4] proposed a set of criteria to be exchanged over

the contact network for the EV and the charging stations. This

approach analyzed the effect of standardized and competitive

pricing models on EV users’ preferred range of charging

sites, which further depended on distance of charging from

the CS. A study was performed in this literature to quantify

the gap between charging stations that can be scaled up based

on population density, as well as economic conditions that fit

various accessibility scenarios. Such frameworks can then be

capitalised to exploit peak time payment prices by the state

government to improve finances.

D. COMMUNICATION TECHNOLOGIES USED IN V2X

AND EFFECTS ON POWER GRID

Authors in [5] discuss the significance of the possibility that

the introduction of EVs would present risks to the current

power system in the absence of two-way communications

and provide a detailed collection of tools and methods to

be included for the same. They makes use of a survey to

generate a forecast market for EVs. Instabilities of the power

grid and patterns of load demand profile can be estimated by

the inferences drawn in the survey and subsequent action plan

can be developed on the same.

E. WAITING TIME OPTIMISATION

Authors in [6] develop a theoretical model to reduce waiting

period of charging by intelligently arranging spatially and

momentarily charging tasks. It focuses on a theoretical

analysis to formulate the question of decreased waiting time

in charging scheduling and extract an upper bound efficiency.

Our research emphasizes the scheduling of slot bookings

which, by reducing charge time and collision scheduling,

facilitates this operation.

III. SURVEY REPORT
The survey included questions about the present and upcom-

ing scenarios for Electric Vehicles in the world from the eyes

of final consumers. The survey was conducted in a typical

form filling fashion with the sample audience being selected

at random, thereby minimizing sample selection bias. The

questions were designed by keeping in mind the facts that

the individual remembers to the utmost clarity and thus aims

at minimizing assumptions made by the subject.

Keeping in mind the wide distribution of the types of

subjects and their driving habits, including but not limited

to the number of days driven in a week and the distance

travelled each day, an algorithm was developed to weigh

the responses based on the time spent by the subject on the

road. The following algorithm yields the statistics produced

by an “average” individual. This model matches the average

distance commuted in a day by 4 wheeler in Delhi[7] within

the error range of 1.16 percent. The raw data input fields

chosen here were selected by keeping in mind which facts the

subject was most likely to remember with the most accuracy.

A corresponding data field containing the estimated

monthly expenditure on fuel was used to cross-reference the

distance travelled with an average of fuel prices for the past

month. The entries with more than 40 percent of deviation

were scraped from the final calculations. As a result, a total

of 150 data entries were evaluated.

Variable definition

• Number of entries in a field is n
• Davg indicates average distance travelled in a week

• UDavg denotes mean deviation from average distance

travelled

• Mu indicates average distance travelled

• i = 1 to n
• MAX(X) is the maximum value in field X

Algorithm 1 Calculation of Modified Weighted Deviation

1: Extract the “Number of Days Travelled in a Week” and

the “Average Distance Travelled in a Day” into A and B
respectively to serve as the raw input data.

2: Calculate the “Total Distance Travelled in a Week” by

multiplying the fields AandB and storing the result in

field C.

3: Calculate Davg and UDavg from field C.

4: Compute Mu for entries within range (Davg −

UDavg) ≤ Xi ≤ (Davg + UDavg) from C.

5: Compute absolute deviation for each entry from Mu and

store the result in field D.

6: Convert the entries of D by Ei = 100 −

(Di/MAX(D)X100) and store the result in field E.

7: Return E

A. INFERENCES

The following conclusions were drawn from the data col-

lected:

• The majority of subjects own 2 vehicles, very few

subjects own 1 vehicle and a minority possess more than

3 vehicles. The general trend follows that the number of

subjects decreases with an increase in vehicles owned.

• Most subjects possess petrol-powered vehicles over

diesel, CNG, and electric.

• More than 65 out of 150 subjects are likely to buy an EV

as their next vehicle. The following plot demonstrates

the probability distribution as shown in Figure 1. This,

when coupled with the fact that over 63 percent of

the subjects intend to purchase new vehicle within 5
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FIGURE 1. Probability distribution of subjects likely to purchase EV as their
next vehicle

years, highlights the urgency of the need to develop an

architecture capable of sustaining the change.

• It was observed that almost 23 percent of subjects drive

all 7 days in a week, on the other hand, more than 17

percent of subjects drive only 1 day in a week

• Subjects are more biased towards a normal distance

on an EV i.e. they are not likely to go for very long

journeys. They account for more than 38.7 percent.

• 49.3 percent of the subjects have a refuelling station

situated within 1 Km radius from their residence and

8 percent of subjects have it within a 3-5 Km radius.

The remaining subjects are situated within 1 to 3 Km of

radius of a refuelling station.

• A majority of subjects wish for very little distance

between refueling stations with almost 41 percent of

subjects wishing for at most a 1 km distance. 43.3

percent of the subjects are comfortable with 1-3 Km

radius and others are satisfied with a 3-5 Km deviation,

they account for roughly 14 percent as shown in Figure

2. This is a potential indicator to the number of charging

stations to be installed in a city.

• When it comes to charging preferences then 46.7 per-

cent of subjects want a balance in charging cost and

waiting time at charging stations. More than 58 percent

of subjects are comfortable with charging their EV at

night i.e. 8 PM – 12 AM, as shown in Figure 3. This

serves to indicate the traffic density as well as the load

on grid at different times of the day.

The broad conclusions from the above-discussed points sug-

gest that subjects wish to own an EV, they seem to be

interested in buying or replacing their conventional vehicle

with the EV. As evident from the outcome that 64.7 percent of

subjects wish to opt for EV as an advantage over conventional

vehicles. 32.7 percent of subjects consider that EVs will

comprise of the majority of vehicles within the next 10-15

years. Moreover, over 56 percent think that EVs can save

money for car buyers.
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FIGURE 2. Maximum distance a subject is willing to traverse for the sole
purpose of refueling

FIGURE 3. Preferred time interval for charging an EV

IV. PROPOSED ARCHITECTURE
Utilising the observations made in Section III, we developed

next generation communication based online EVs charging

slot booking architecture as shown in Figure 4. The model

proposed utilizes a basic version of a GA, as presented in

[1][8][9], to manage the charge request/reply in real-time.

Road Side Units serve as a communication point between

the EV and the GA. Immediate Proximity Mobile Units or

IPMUs are introduced as smart devices registered with the

EV, typically in the form of a smartphone or smart tablet

which can work parallel to or substitute for RSUs in the case

when RSUs are unavailable.

A. PARAMETERS IN COMMUNICATION MODEL USED

BETWEEN EV, RSU, GA AND CS’S.

Before the drive begins, a connection is established to IPMU

via the 802.11ah protocol which allows the connection to

be established from a distance. This has the added ben-

efit of functionality and safety checks. ECU is prompted

for static parameters. Static Parameters include Battery

SOC/percentage, Temperature, Average distance travelled

per day, amongst others. Using these, estimations on average
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FIGURE 4. Proposed Next-Generation Communication based Online EVs
Charging Slot Booking Architecture

daily travel time and distance could be made which can be

used to prompt the user for a suggested time of charging.

Once the destination coordinates are received from the driver,

the charging station suggestions(if required) can be made

which best suite the route with maximum time efficiency

using the dynamic parameters. During traversal, after a set

number of observations are made from the ECU, the earlier

prompts can be updated dynamically.

Dynamic Parameters include Traffic conditions, Average

speed, Current output, Temperature, Charging Rates, Peak

Time, Time taken to charge, Availability of Ports, Type of

charging available and charging stations present in route.

The Control Area Network (CAN) bus is an ISO industry

norm for on-board vehicle communications.[10] Built to

provide reliable connectivity with large rates of electrical

noise in the very rugged automotive operating environment.

A two-wire serial bus built to network smart sensors and

actuators; can run at two rates: high speed (e.g. 1 M Baud) —

used for essential operations such as engine monitoring, car

stabilization, motion control; and low speed (e.g. 100 kBaud)

— used for basic switching and illumination control, mirrors,

mirror modifications, and instrument screens, etc. The proto-

col defines the method of addressing the devices connected to

the Data format bus, speed of transmission, priority settings,

error detection sequence, and control signals handling. The

data frames are sequentially distributed through the bus.

RSUs always broadcast data and always receive data from

GA. The 24 × 7 broadcast is useful as it will provide imme-

diate information to EV users and hence drivers can select

the CS best suited. RSU data packet contains CS available

and their ID, location along with which mode of charging

available. Since RSUs support 2-way communication/data

flow, whenever an EV transmits a charging request it will be

sent to nearby RSU via 802.11ah and the 802.11X protocols

[2]. In case, when RSU is not present in that area where

EV is present then request can be sent via IPMU to GA or

data to EV can be sent via IPMU. RSUs send/receive data

from and to the GA via LTE. This would enable extremely

long-range data communications. The placement of RSU

will be dependent on traffic statistics of the region and will,

therefore, vary locally. In areas experiencing consistently

high traffic, deployment of RSU’s with exceptional high-

speed data transfer and sustaining capabilities will be nec-

essary. To overcome this, three methods are suggested: 1.

The communication process can be supplemented by mo-

bile networks and the gateway between the EV and the

associated IPMUs be utilized to serve as a supplement on-

demand accessible data set. This method makes use of the

associated cellular bandwidth and therefore reduces RSU

network traffic. 2. An array of high capability and broad-

spectrum enabled RSUs to be equipped in areas sustaining

high traffic conditions consistent periods. This will increase

the overall system cost and will not prove to be beneficial in

the long run unless the RSUs are designed to be mobile or can

change the deployed location without extensive assets being

utilized to change according to the changing trends in traffic

experienced. 3. Use of V2V communication utilizing 802.15

( ZigBee protocol)[11] to serve as temporary servers in an

arrangement similar to peer-peer data transmission can be

utilized in conjunction with modern-day collision avoidance

and speed limiting to maintain traffic conditions[12].

GA monitors each charging station in a particular limited

area and also serves the local RSUs falling within the limits

of its reach. At regular intervals, the GA prompts the charging

stations for a charge broadcast. The Charge Broadcast is a

data package comprising of available charging types, and

possible slots and sends this information to RSUs. A GA

also receives charge requests from RSUs and handles them

on FIFO(First In First Out) basis[8][9]. When a request is

received, the GA checks the Charge broadcasts corresponds

to that timestamp and the estimated charge time, then sends a

recommendation as a reply to the request which consists of a

list of CS’s available: their IDs, location and recommendation

ID. The recommendation can be sent via RSUs or IPMU (if

the request is sent from an IPMU).

The charge request contains EV ID which is unique for

each EV, type, and mode of charge for that EV, Request ID

which will be generated new each time as of a One-Time

Password (OTP). IDs are necessary for traversal of data to

and forth, whenever recommendation received it will be sent

to the ID only for which it is generated. Hence flow can

be secured and reliable. Figure 5 demonstrates a pictorial

summary of the Data Flow, representing the data format and

transfer.

B. CHARGE REQUEST GENERATION

An EV, with sufficient energy above the SOC threshold,

travelling on the road can access available time of charge

information from aggregated Charging Stations via oppor-

tunistically encountered roadside units. If the driver opts for

charging or if the EV reaches its SOC threshold, the EV

generates a request to the GA.

Algorithm 2 has been developed focusing on driver in-

puts and the type of charging to be selected at the destina-
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FIGURE 5. Interactions, Data Flow and Protocols to be used between EVs,
RSUs, IPMU, GA and Charing Stations

tion charging station, namely Battery Swapping and Wired

Charging. These requests are then filtered to obtain optimum

charging time and location most convenient to the driver.

Variable Definition

DD : Destination Distance

ED : Estimated Distance

RSU : Road Side Unit

RR : Recommendation Received

IPMU : Immediate Proximity Mobile Unit

C. CHARGE BROADCAST GENERATION AND SLOT

BOOK REQUEST HANDLING

For managing charge broadcasts and the process of slot

booking, an entry-level algorithm (Algorithm 3) was devel-

oped. The GA periodically prompts all the charging stations

under its jurisdiction at a set frequency and prompts for

charging requests, if made. The proposed algorithm assumes

the following :

• The Charging Station’s time distributed port availability

is a two-dimensional matrix of the order MXN , where

M depends on the broadcast frequency and N is the

total number of ports in the charging station. The ma-

Algorithm 2 Request Generation and Processing

1: Input: DD

2: Output: Return ED on the basis of current SoC

3: if DD > ED then

4: Suggest Shorter path to conserve charge

5: if User deny the suggested shorter path then

6: Prompt user to book slot for charging

7: else if Shortest path cannot be suggested then

8: Prompt user to book slot for charging

9: else if User Interacts then

10: Go to book slot

11: end if

12: else

13: Go to check SoC

14: end if

15: Check SoC

16: if Current SoC ≤ Limit SoC then

17: Switch to ’Power Saving’ mode

18: while User Interact with Book Slot 6= 1 do

19: Prompt user at continuous interval to book a slot

20: end while

21: end if

22: Book Slot

23: if Book Slot == 1 then

24: Prompt for type of charging

25: if Wired Charging == -1 then

26: Generate Wired Charging Request

27: else if Battery Swapping then

28: Generate Battery Swapping Request

29: if RSU Nearby == 1 then

30: Send above generated request

31: else if IPMU Nearby == 1 then

32: Send above generated request

33: end if

34: end if

35: end if

36: while RR==1 do

37: Sort the list of charging station on the basis of location

and waiting time

38: Suggest shortest path to user for sorted charging sta-

tion

39: end while

40: End

trix follows column-wise traversal, which changes the

starting point with every update in system time. Table 1

shows a sample port matrix.

• A certain number of Swap Batteries are kept aside for

Emergency services, therefore the total number of Swap

Batteries is calculated by computing the subtotal and the

battery count is updated after each swap.

• The algorithm takes an input matrix of the order 1X3
with default value [0, 0, 0]. The first element is the

charging preferred, the second element is the estimated

amount of time required for charging, and the third
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element is the preferred time slot for charging.

• The algorithm returns two values, The Station Port

Matrix, and the Acceptance status for each prompt.

TABLE 1. Charge Port Matrix of a Charging Station with 5 ports for 5 time
intervals

Ports/ Time

Intervals

P1 P2 P3 P4 P5

T1 0 0 0 0 0

T1 0 1 0 0 0

T1 0 1 0 0 0

T4 0 1 0 0 0

T5 0 0 0 0 0

Table 1 shows the sample charge port matrix of a charging

station with 5 ports for 5-time intervals. Initial states of all

the ports are 0 showing availability. Time slot T2 to T4 for

P2 hold the value 1 indicating their reserved status.

Algorithm 3 Real-Time Charge Broadcast and Slot Booking

1: Input: In[3]

2: Station Port Matrix, , Acv
3: Data: C, pol1, ξ1,2,...j(pol1).
4: if In[i] == 0 then

5: Update system time

6: Return Station Port Matrix, , Acv
7: else if In[i] ==Battery Swap then

8: Update system time

9: Check if battery is available for swapping

10: if available then

11: Avc = Swap Request Accepted

12: Update Available Battery count

13: else if Avc = Request Denied then

14: Return Station Port Matrix, , Acv
15: end if

16: else if In[i]==Battery Charge then

17: Update system time

18: i++
19: est.time = In[i]
20: i++
21: time.slot = In[i]
22: if Slot is available then

23: Avc = Charge Request Accepted

24: Update Station Port Matrix

25: else if Avc =Request Denied then

26: Return Station Port Matrix, , Acv
27: end if

28: end if

29: End

V. STOCHASTIC QUEUING MODEL FOR ELECTRIC
VEHICLES IN THE CHARGING STATION
In the above section, we discussed the real time charge

broadcasting and slot booking. Once the charging slot is

booked and the vehicles arrive at the charging station, in

this section, we discuss the EVs queuing delay, service rates,

arrival rates, and average number of EVs (getting service

and waiting in the queue). In addition, we will present the

optimisation of waiting time and charging model.

As the market share of EVs increases results in on-road

numbers of them grows which creates problems like how

to manage and schedule them at charging stations. Figure 6

shows the conceptual framework of EVs queuing model at a

charging station. Figure 7 shows the state transition diagram

of EVs at the charging station. The stochastic model is based

on "M/M/m" queuing model, where first M denotes the

Poisson arrival with memory-less property, second M shows

the Exponential service rate with memory-less property and

m denotes the number of charging slots at a charging station.

"M/M/m" queuing model is suitable for modelling the

charging stations since the number of charging points (m)
in a charging station can be changed based on that charging

station’s arrival and service rate. Therefore, the developed

model describes that there are arrivals in the system which

follow the Poisson process and the service rates are exponen-

tially distributed. In the queuing model, the arrival is the EVs

entry to the charging station, the service time is the time taken

by a charging slot to full charge EV. In this model, we have

assumed that the length of the queue is infinity and queue

access or service is based on first come first out.

The steady-state probabilities of EVs at charging stations

are denoted as pn and are given as follows:

pn =







p0
(mρ)n

n! , n ≤ m

p0
mmρn

m! , n > m

(1)

Where ρ is utilization factor of charging points and is given

as

ρ =
λ

nµ
< 1 (2)

p0 is calculated by using above expression and the condi-

tion
∑

∞

n=0 pn = 1.
We obtain,

p0 =

[

1 +

n−1
∑

m=1

(nρ)m

m!
+

∞
∑

m=n

(nρ)m

m!
.

1

nm −m

]−1

(3)

Probability of EVs queuing delay in charging station is

given as

P (queuing) = PQ =
∞
∑

m=n

pm (4)

PQ =
∞
∑

m=n

p0n
nρm

n!
=

p0(nρ)
n

n!

∞
∑

m=n

ρm−n (5)

The expected number of EVs waiting in queue at charging

stations is given as

NQ =
∞
∑

m=0

mpn+m (6)
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FIGURE 6. Conceptual Framework of EVs queuing model at Charging Station

FIGURE 7. Stochastic EVs queuing model at Charging Station: Discrete Time Markov Chain M/M/m Model

Above equation can be re-written as

NQ =
∞
∑

m=0

np0
nnρm+n

n!
=

p0(nρ)
n)

n!

∞
∑

m=0

mρm (7)

NQ = PQ ρ

1− ρ
(8)

From Little’s Theorem, the average waiting time W of

EVs in a queue is given as

W =
NQ

λ
=

ρPQ

λ(1− ρ)
(9)

Average delay per EV at queue is given as

T =
1

µ
+W =

1

µ
+

PQ

mµ− λ
(10)

By using Little’s Theorem, the average number of EVs in the

charging station is given as

N = mρ+
ρPQ

1− ρ
(11)

VI. OPTIMISATION PROBLEM FORMULATION
In the above sections, we have presented the real-time charg-

ing station identification, booking charging slots and analyti-

cal queuing model of EVs in charging station. In this section,

we will discuss after the slot booking once the EV comes

for the charging at charging station, how to use the charge,

reduce the waiting time and cost of the charge at peak and

non-peak hour.

Consider an utility function which comprises of EV travel

time EV τ , distance from EV i to charging station j (Di,j(t)),
EV’s SoC of battery SoCi(t), queuing (average delay) time

in a queue at charging station i (T i(t)), EV charging time at

charging slot in a charging station i (QT i(t)), charging cost

at charging station i (Ci
Q(t)). Energy of the EVi is denoted

by Ei and is given as

Ei =
∑

t∈τi

Pi(t).∆ti (12)

where τi is allowable charge time duration, Pi(t) is charging

power of the EVi and ∆ts is the time slot s duration for EV

charging. An EVi may charge only on the booked slot and

upto an allowable charge time duration τi, therefore,

Pi(t) = 0, ∀t /∈ τi (13)

Charging power of the EV should be within some permissible

limits that is

Pmin(t) ≤ Pi(t) ≤ Pmax(t) (14)

Load power of charging station (LP = m kW ), Maximum

power capacity of the battery (BP = n kW ), Time taken to

charge the EV at time t is denoted as QT i(t) and is given as
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follows

QT i(t) =
LP

BP
(15)

Percentage of final charge level of battery is the amount of

charge extracted from the EV’s battery which is denoted as

SoCfinal. The charge extracted from the EV’s battery is a

sum of simple integration of the current flowing into or out

of the main branch of battery circuit and the initial charge

level of EV’s battery. The SOCfinal is given as

SoCfinal = SoCinit +
1

BP

∫

I(t)dt (16)

where SoCinit is the initial charge level of battery, BP is

the maximum power capacity of the battery and I(t) is the

battery current in Amps. Every EVs charges at the charging

station is estimated using BP and I(t) and is given as

1

BP

∫

I(t)dt = SoCfinal − SoCinit (17)

EVi charge acceptance rate is V i
R and CPR is charging points

charging rate, optimal transaction of power between EV and

charge points should satisfy the following condition

V i
R ≤ CPR (18)

Consider v = [α, β, γ, δ] be the vector comprising of

waiting factors with values belonging to [0,1] and their sum

being equal to 1. These waiting factors provides the priority

and importance to the QT i(t), Ci
Q(t), D

i,j(t), and T i(t). Let

I be the set of available charging stations when EV asks for

charging at time t for w kWh.

The objective function of electric vehicle’s charging at

charging points in charging stations determines the optimal

charging time, minimal charging cost, least distance, minimal

queuing delay at the queue and optimal duration for charging

slot s. The function will be constrained with the above

mentioned parameters. Hence, the objective function of EVi

is formulated as follows:

F = minimize αQT i(t) + βCi
Q(t) + γDi,j(t) + δT i(t) + ∆ts subject to:

i ∈ I(Charging Stations) (19)

N(Avg. # EV s in i) ≤ m(CPs in i) (20)

1

BP

∫

I(t)dt ≤ SoCfinal − SoCinit (21)

V i
R ≤ CPR (22)

Ei =
∑

t∈τi

Pi(t).∆ti (23)

Pmin(t) ≤ Pi(t) ≤ Pmax(t) (24)

QT i(t) ≤ QTT,i(t) (25)

VII. SIMULATION AND RESULTS ANALYSIS
To test the robustness of the proposed system in a fairly large-

scale network, we developed a discrete-time event simula-

tor, using which tests have been conducted. The simulation

parameters and assumptions are given in the subsequent

subsection.

A. PARAMETERS AND ASSUMPTIONS

1) City dimensions: 200 km × 200 km.

2) Number of charging stations deployed: 50

3) Number of chargers at each station: 10, randomly

deployed within the city boundaries.

4) Vehicles are generated following a Poisson’s distribu-

tion at each grid point.

5) SoC level of each vehicle varies randomly in a range of

20% to 100%.

6) The battery specifications are kept constant.

7) Each generated vehicle randomly selects a destination

point within the city limits and traverses the shortest

distance between them.

8) The maximum number of vehicles allowed in a charg-

ing station at any point of time is 25 to keep the traffic

at the charging station in check

9) The traffic pattern of each route randomly falls into one

of four categories: low-traffic, moderate-traffic, and

high-traffic, where the average vehicle arrival rates are

90%, 95% and 100% of λ, respectively.

10) Vehicles that do not need an additional charge to get

to their destinations can decide to visit the nearest

charging station based on a reverse probabilistic scale

which increases the probability to go for a charge as

the vehicle’s SoC decreases to roughly emulate human

behavior.

B. RESULTS ANALYSIS

The observations were recorded for each charging station and

the results were obtained for a charging station at different

number of vehicles present at the station.
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FIGURE 8. Distribution of average delay per customer waiting in Queue

Figure 8 shows the average delay per customer waiting

in a queue at the charging station. The total time a vehicle

has to spend at the charging station includes the time spent

in the queue and the time taken to charge the vehicle. This

time remains nearly constant until the number of vehicles at

the station is equal to or less than the number of chargers
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at the station. In the event of a charger being booked, the

waiting time spikes due to the reduction in the number of

chargers. The total waiting time increases when the number

of vehicles crosses the number of chargers available at the

station. The observed time further varies from 0.1 Hr to 0.2

Hr depending on the battery SoC at the time of entering the

charging station. An increase up to 0.4 Hr is observed after

the number of vehicles crosses the number of stations. This

time is further compounded up to 0.9 Hr when the number of

vehicles is increased to 21 and beyond.
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FIGURE 9. Distribution of total time an EV has to spend at the charging
station.

Figure 9 shows the total time an EV has to spend at

the charging station. The queue forms when the number of

vehicles in the station is greater than the number of chargers

available. The waiting time in queue increases when the

number of vehicles cross 20 at the charging station and is

capped at 25. In the event of a charger being booked, the

waiting time spikes.
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FIGURE 10. Distribution of the Queue size depending on the number of EV in
the station

Figure 10 shows the queue size depending on the number

of EVs in the station. The queue forms when the number of

vehicles crosses the number of chargers available at the sta-

tion. The flats in the curve are observed whenever a charger

has been booked at the station which reduces the number of

chargers, increasing the number of vehicles waiting in the

queue.

FIGURE 11. Probability that all the chargers are in use.

Figure 11 shows system capacity utilisation. The opera-

tional capacity depicts the capacity of the charging station

under operation. The sharp dips in the curve represent a

charger being booked, which reduces the overall dynamic

capacity of the charging station.
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FIGURE 12. Average Charging Time with different power grid load levels.

According to the EVs, platoon charging rates requirements

they are classified into 4 different types that are Type I

(low charging rate), Type II (medium charging rate), Type

III (fast charging rate) and Type IV (fast charging rate).

Figure 12 shows the different electric vehicles’ (Type I to

IV) average charging time with varying power load levels at

the charging station. Figure 12 shows that the low charging
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rates EV platoon (Type I and II) requires more charging time

at various load levels (from 30% to 90%). The fast charging

rates EV platoon (Type III and IV) requires less charging

time when the load level is above 50% then the charging time

exponentially reduces and after 60% load level the charging

time will be zero.
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FIGURE 13. Charging rates of different types of EVs with different power grid
load levels.

Figure 13 shows the different EV platoons charging rates

by varying the load levels from (30% to 90%). To make the

stable and smooth operation of the power grid and reduce

the consumption of charging power, the charging rates of EV

platoons are reduced. In Figure 13 we can see that when

the Type IV and III power grid load level crosses 60% and

70%, respectively then their charging rates are zero. As the

reduction EV platoons charging rates, definitely there will

be an increase of charging times. In order to guarantee the

quality of service of the EV platoons charging requirements,

the EVs which are having least tolerance and waiting for the

charging may not charge in the charging station and their

services need to suspend.
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FIGURE 14. Utilization of Charging Stations.

Comparative analysis of the dynamic and static cost and

rate to utilize charging stations as shown in Figure 14. In

the simulation, 14.4 kW charging rate and fixed cost under

different grid load level were considered. Fixed-Rate and

costs are compared with the variable rate and costs, the

cost of EVs charge is directly proportional to the charging

rates and the scaling factor depends upon the grid load.

The proposed system makes a platoon of electric vehicles

determine optimal charging rates.

TABLE 2. Cost Savings After optimisation of EVs Charging at Charging
Stations

EVs Charging

Demand

(kWh)

Cost before

optimi-

sation

(Rs/kWh)

Cost after

optimi-

sation

(Rs./kWh)

Cost

Savings

EV 1 5.04 0.83 0.77 7.23%

EV 2 6.13 1.53 0.93 93.3%

EV 3 8.48 1.61 1.32 18%

TABLE 3. Time Conservation After optimisation of EVs Charing Time at
Charging Stations

Charging

Stations

Charging

Time before

optimisation (in

minutes)

Charging Time

after optimisation

(in minutwa)

Time

Savings

CS 1 30 25 5

CS 2 80 65 15

CS 3 120 80 40

Table 2 and 3 shows the savings of costs and charging time

before and after the optimisation of the proposed model. It

clearly shows that the proposed model saves both money and

as well as time at charging station.

VIII. CONCLUSION
In this paper, we discussed the next generation of smart

electric vehicles cyber-physical system framework for cities

transitioning to an entirely grid-run EV network. The con-

ducted survey figured out the preferences of the masses

regarding their current driving pattern and their expectation

of an EV based traffic, which is an advancement to the current

conventional engine-run traffic. An algorithm was developed

to optimise the survey response by assigning a weight to in-

crease the accuracy of the data from a relatively smaller data-

sets. The proposed communication framework for EVs and

charging station to generate and handle the online charging

requests and booking the charging slots. The stochastic queu-

ing model developed for EV platoons in the charging station

and derived the average waiting time, utilisation factor, delay

and number of EVs in the charging stations. In addition,

we have developed an optimisation model where we have

minimised the charging times, cost, the distance between

EVs and stations, queuing and booked time slot duration.

We have tested the robustness of the proposed system in

a fairly large scale network in the developed discrete-time

event simulator. The proposed system’s performance analysis
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justified the improvement in the performance measures: cost

savings (93.3%), time-saving (40%), etc.
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