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Abstract: This article aims to study theoretically the com-
binedmagneto hydrodynamic �ows of casson viscoplastic
nano�uid from a horizontal isothermal circular cylinder
in non-Darcy porous medium. The impacts of Brownian
motion and thermophoresis are consolidated and studied.
The governing partial di�erential equations are converted
into nonlinear ordinary di�erential equations using suit-
able non-similarity transformation and are solved numer-
ically using Keller-Box �nite di�erence technique. The nu-
merical method is validatedwith previous publishedwork
and the results are found to be in excellent agreement.
Numerical results for velocity, temperature, concentration
alongwith skin friction coe�cient, heat andmass transfer
rate are discussed for various values of physical param-
eters. It is observed that velocity, heat and mass transfer
rate are increased with increasing casson �uid parame-
ter whereas temperature, concentration and skin friction
are decreased. Velocity is reduced with increasing Forch-
heimer parameter whereas temperature and nano-particle
concentration are both enhanced. An increase inmagnetic
parameter is seen to increase temperature and concentra-
tion whereas velocity, skin friction heat and mass transfer
rate aredecreased. Thepresentmodel �nds applications in
electric-conductive nano-materials of potential use in avi-
ation and di�erent enterprises, energy systems and ther-
mal enhancement of industrial �ow processes.
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1 Introduction
The convection transport study of nano�uid has gained
interest in the recent years due to its wide spread appli-
cation in industry, transportation, electronics, fuel cells,
incorporate andmedical applications. Usually, base �uids
like ethylene glycol, kerosene,water, etc. have low thermal
conductivity [1, 2]. The suspension of nano-sized metallic
or non-metallic particles into the base �uids, enhances the
thermal conductivity of the base �uids. Choi [3] was the
�rst researcher to use the term Nano�uid, in order to rep-
resent the engineered colloids. He observed that on addi-
tion of 1% of nanoparticles to the normal �uid, the �uid
thermal conductivity increases twice. Flow, heat andmass
transfer of Nano�uids has attracted many researchers due
to its prominent role in industry and technology such as
electronics, transportation, biomedical (cancer therapy,
drug delivery, etc.), micro-electronics, fuel cells, hybrid-
powered engines, etc. [1, 2]. The heat transfer enhance-
ment technology has beenwidely used in refrigerators, au-
tomobiles, process and chemical industry, etc. The con-
tinuous collision of nanoparticles and molecules of the
base �uid is called Brownian motion. The nanoparticle
concentration and size of the particle are the most im-
portant parameter for enhancing the heat transfer of
nano�uid as discussed by Buongiorno [4]. In Buongiorno
model [4] the nanoparticle concentration is considered
to vary and incorporates the e�ects of Brownian motion
and thermophoresis. Sheikholeslami et al. [5] presented
an experimental analysis of hydrothermal behavior of
nano-refrigerant duty condensation. Sheikholeslami and
Rokni [6] used control volumebased�nite elementmethod
to simulate the e�ects of Lorentz forces on nano�uid �ow
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in porous media. Shrivan et al. [7] utilized the �nite ele-
ment method to study the in�uence of wavy surface char-
acteristics on natural convection �ows in a cosine corru-
gated square cavity �lledwith Cu-water nano�uid. Rashidi
et al. [8] used the volume of �uid model to investigate the
nano�uid �owand entropy generation in a single slope so-
lar still using �nite volume method. Sheikholeslami and
Shehzad [9] considered convective �owof nano�uid inside
a porous enclosure by means of two-temperature model
taking into account the e�ects of Lorentz forces. Sheik-
holeslami [10] numerically investigated the electrohydro-
dynamic radiative free convection �ow of nano�uid in a
porousmedia. Shirvan et al. [11] explored the response sur-
face methodology and two phase mixture model to exam-
ine the heat exchanger e�ectiveness in a double pipe heat
exchanger �lled with nano�uid. Esfahani et al. [12] used
�nite volume technique to analyze the entropy generation
of nano�uid �ow through a wavy channel over heat ex-
changer plat.

In many �uids the �ow properties are di�cult to ex-
plain by a single constitutive equation like Newtonian
model. Geological materials and polymer solutions used
in di�erent industries and engineering processes are such
�uids which cannot be explained by Newtonian model.
The materials that cannot be explained using Newtonian
model are called Non-Newtonian �uid models. In past
few decades, due to the applications in industries, engi-
neering and technology, non-Newtonian �uid �ows has
gained interest in researchers [13, 14]. In such �uids the
shear stress and strain rate relation is non-linear. Exam-
ples of such�uids include china clay, coal inwater, sewage
sludge, oil-water emulsions, gas-liquid dispersions, coal-
oil slurries, detergent and paint production, smart coat-
ing and suspension fabrication, pharmacology, cosmetic
creams, physiological transport processes (blood, bile
and synovial �uid), slurry conveyance, polymer synthe-
sis and food processing. Themathematical models in non-
Newtonian �uids are more complicated and relate the
shear stresses to the velocity �eld [15]. Fewnon-Newtonian
transportmodeling include obliquemicropolar stagnation
�ows [16], Walter’s-B viscoelastic �ows [17], Je�rey’s vis-
coelastic boundary layers [18],magnetizedWilliamson�u-
ids [19], nano�uid transport from a sphere [20], Maxwell
�uids [21], Eyring-Powell �uid [22], Tangent Hyperbolic
�uid [23], Oldroyd-B �uid [24] and Power-law model [25].
Of the di�erent non-Newtonian �uids discussed in the lit-
erature, the Casson’s viscoplastic �uid model [26] is sim-
ple and a realistic �uid model that exhibits shear thinning
characteristics, yield stress and high shear viscosity [27].
This particular �uid model has in�nite viscosity at zero
shear rate. TheCasson�uidbehaves like solid elasticwhen

the shear stress is less than the yield stress and deforms
when the shear stress is greater than yield stress. The study
of Casson �uid by di�erent researchers include Kumaran
and Sandeep [28], Khan et al. [29], Nawaz et al. [30], Kahsif
et al. [31], Ahmed et al. [32], Mahanthesh and Gireesh [33]
and Rehman et al. [34].

The presence of magnetic �eld in natural convec-
tion �ows plays an important role and has many applica-
tions like nuclear reactor cooling, magnetohydrodynamic
(MHD) generators, geophysics, astrophysics, aerodynam-
ics, plasma engineering, exploration of oil, etc. [35]. Ah-
mad and Ishak [36] considered an implicit �nite di�er-
ence scheme to study the MHD convection �ow of Je�rey
�uid over a stretched sheet immersed in porous medium.
Sheikholeslami and Houman [37] investigated the convec-
tive heat transfer �ow of nano�uid in a porous cavity in
the existence of Lorentz forces. Sheikholeslami [38] inves-
tigated theMHD forced convection�owof nano�uid inside
a porous cavity. He employed CVFEM to simulate the vor-
ticity stream function. Hassan et al. [39] employed homo-
topy analysis method to examine the nanoparticle shapes
behavior on heat and mass transfer �ow of ferro�uid over
a rotating disk in the presence of low oscillating magnetic
�eld. Ellahi et al. [40] discussed the in�uence of nano-
ferroliquid under the low oscillating magnetic �eld over
a stretchable rotating disk. Xie and Jian [41] studied the
entropy analysis of magnetohydrodynamic electroosmotic
�ow. Zeeshan et al. [42] used homotopy analysis method
to explore the MHD radiative Couette-Ooiseuille �ow of
nano�uid in horizontal channel with convective boundary
conditions. Recent studies include Abdul Ga�ar et al. [43–
45] and Beg et al. [46].

Flows in �uid saturated porous media has a wide
range of applications in di�erent areas of engineering
and industry like food processing, fuel cell technologies,
geothermics, trickle bed chromatography, etc. Most of
studies utilize the Darcy model which is valid for low
Reynolds number �ows [47]. Srinivasacharya et al. [48]
explored the mixed convection �ow of viscous �uid past
a vertical porous plate with the �ow in porous medium
is characterized by Darcy-Forchheimer model. Gireesh et
al. [49] attempted to analyze the unsteady MHD �ow of
dusty �uid over stretching surface in non-Darcy porous
medium. Natalia et al. [50] presented the mixed convec-
tion �ow of nano�uid over a vertical �at plate embedded
in �uid saturated non-porous medium. Recent studies in-
clude Hady et al. [51], V.R. Prasad et al. [52], Som et al. [53],
Nazir et al. [54], Abdul ga�ar et al. [55, 56].

To the authors’ knowledge no studies have been com-
municated with regard to viscoplastic nano�uid MHD con-
vection �ow of isothermal horizontal circular cylinder in
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non-Darcy porous media. The heat transfer with nano-
particles is analyzed by employing Buongiorno model [4].
In the present study a non-similarity mathematical anal-
ysis is developed for steady double-di�usive magnetohy-
drodynamic �ows in Casson nano�uid saturated in non-
Darcy porous media from a permeable horizontal circu-
lar cylinder. The Keller-box di�erence scheme is used to
solve the normalized boundary layer equations and the ef-
fects of Forchheimer parameter (Λ), Brownianmotion (Nb),
thermophoresis (Nt), buoyancy ratio (Nr) andDarcy number
(Da) on the relevant �ow variables are described in detail.
The present study �nds application in solar �lm collec-
tors, heat exchanger technology, geothermal energy stor-
age systems, etc.

Fig. 1: Physical Model and Coordinate

2 Viscoplastic Casson Nanofluid
Mathematical Model

The steady-state, laminar, double-di�usive, incompress-
ible, electrically-conducting, MHD convection �ows of vis-
coplastic Nano�uid past a horizontal circular permeable
cylinder embedded in fully-saturated porous medium is
considered, as shown in Figure 1. An induced magnetic
�eld, B0 is assumed to be uniform and acts normal to the
surface of the cylinder. A non-Darcy drag force model is
employed to simulate porous media and also inertial ef-
fects. The x - & y – coordinates are measured along the
circumference and normal to the surface of the cylinder
respectively, with a denoting the radius of the cylinder.
Φ = x/a represent the angle of the y – axis with respect
to the vertical 0 ≤ Φ ≤ π.The gravitational acceleration g,
acts downwards. We assume that the Oberbeck-Boussineq
approximation holds. Let Tw and Cwbe the constant tem-

perature of the cylinder and viscoplastic nano�uid and
T∞and C∞be the ambient temperature and concentration
of the �uid. The governing boundary layer equations in
line with Casson [26] & Buongiorno [4] are:

Fig. 2: Keller box computational cell

∂u
∂x + ∂v∂y = 0. (1)

u ∂u∂x + v ∂u∂y = ν
(
1 + 1

β

)
∂2u
∂y2 + g[(1 − C∞)ρf∞β1(T − T∞)

− (ρp − ρf∞)(C − C∞)] sin(x/a) −
ν
K u − Γu

2 − σB
2
0
ρ u. (2)

u ∂T∂x + v ∂T∂y = αm
∂2T
∂y2 + τ

[
DB
∂C
∂y

∂T
∂y +

(
DT
T∞

)(
∂T
∂y

)2
]
.

(3)

u ∂C∂x + v ∂C∂y = DB
∂2C
∂y2 +

(
DT
T∞

)
∂2T
∂y2 . (4)

Where αm = km
(ρc)f

and τ = (ρc)p
(ρc)f

. Where ρp is the
density of the particle, and is the e�ective heat capacity.
The boundary conditions are de�ned as:

At y = 0, u = v = 0, T = Tw , C = Cw
As y →∞, u = 0, T → T∞, C → C∞.

(5)

De�ning the stream function, ψ as u = ∂(ψ)
∂y , v =

− ∂(ψ)∂x , Eq. (1) is satis�ed. We now introduce the following
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dimensionless variables:

ξ = x
a , η = y

a
4√Gr, ψ(ξ , η) = ν 4√Grξf ,

θ(ξ , η) = T − T∞
Tw − T∞

, ϕ(ξ , η) = C − C∞
Cw − C∞

Gr = (1 − C∞) ρf∞gβ(Tw − T∞)a3

ν2 , Pr = ν
α ,

Le = ν
Dm

, Da = K
√
Gr

a2 , Λ = Γa,M = σB20a2

νρ
√
Gr

,

Nb = τDB(Cw − C∞)ν , Nt = τDT(Tw − T∞)νT∞
(6)

Using Eq. (6) into Eqs. (2 – 4), reduce as follows:(
1 + 1

β

)
f ′′′ + � ′′ − (1 + Λξ ) f ′2 + sin ξ

ξ (θ − Nrϕ)

−
(

1
Da +M

)
f ′ = ξ

(
f ′ ∂f

′

∂ξ − f
′′ ∂f
∂ξ

)
. (7)

θ′′
Pr + fθ

′ + Nb θ′ ϕ′ + Nt θ′2 = ξ
(
f ′ ∂θ∂ξ − θ

′ ∂f
∂ξ

)
. (8)

ϕ′′

Le + fϕ′ + 1
Le

Nt
Nb θ

′′ = ξ
(
f ′ ∂ϕ∂ξ − ϕ

′ ∂f
∂ξ

)
. (9)

And the transformed non-dimensional boundary con-
ditions are:

At η = 0, f ′ = 0, f = 0, θ = 1, ϕ = 1
As η →∞, f ′ → 0, θ → 0, ϕ → 0

(10)

Here primes denote the di�erentiation with respect to
η. The skin-friction coe�cient, Nusselt number and Sher-
wood number, which are given by:

1
2CfGr

−3/4 =
(
1 + 1

β

)
ξf ′′ (ξ , 0) . (11)

Nu
4√Gr

= −θ′ (ξ , 0) . (12)

Le
4√Gr

= −ϕ′ (ξ , 0) . (13)

3 Computational Solution With
Keller Box Method (KBM)

The Keller-Box method (KBM), an implicit di�erence
method is implemented to solve the non-linear bound-
ary layer eqns. (7) – (9) subject to the boundary condi-
tions (10). This technique has remained extremely popu-
lar and maintained comparable e�ciency to other numer-
ical methods such as �nite element, boundary elements,

spectralmethods etc. thedisadvantageof themethodhow-
ever is that the computational e�ort per time step is expen-
sive due to its step which has to replace the higher deriva-
tive by �rst derivatives, so that the second-order equa-
tions can be written as a system of two �rst-order equa-
tions. Also laborious algebraic expressions must be gen-
erated for the discretized equations. However KBM has a
second order accuracy with arbitrary spacing and attrac-
tive extrapolation features. It is unconditionally stable and
achieves exceptional accuracy. It converges quickly and
provides stable numerical meshing features. KBM pro-
vides an improvement in accuracy on explicit or semi-
implicit schemes and utilizes customizable stepping in a
fully implicit approach. Relevant details are provided in
Keller [57].KBM has been employed extensively in compu-
tational non-Newtonian transport modelling. The Keller-
Box discretization is fully coupled at each step which re-
�ects the physics of parabolic systems – which are also
fully coupled. Discrete calculus associated with the Keller-
Box scheme has also been shown to be fundamentally dif-
ferent from all other mimetic (physics capturing) numeri-
calmethods. TheKeller BoxSchemecomprises four stages.

1. Decomposition of the Nth order partial di�erential
equation system to N �rst order equations.

2. Finite Di�erence Discretization
3. Quasilinearization of Non-Linear Keller Algebraic

Equations and �nally.
4. Block-tridiagonal Elimination solution of the Lin-

earized Keller Algebraic Equations.

Step1: Reduction of the Nth order partial di�erential
equation system to N �rst order equations

New variables are introduced to Eqns. (7) – (9) and
(10), to render the boundary value problem as a multiple
system of �rst order equations. A set of eight simultaneous
�rst order di�erential equations are therefore generated by
introducing the new variables:

u(x, y) = f ′, v(x, y) = f ′′, g(x, y) = ϕ, g′(x, y) = p,
s(x, y) = θ, t(x, y) = θ′. (14)

f ′ = u. (15)

u′ = v. (16)

g′ = p. (17)

s′ = t. (18)
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(
1 + 1

β

)
v′ + fv − (1 + Λξ ) u2 −

(
1
Da +M

)
u + B (s − Nr g)

= ξ
[
u ∂u∂ξ − v

∂f
∂ξ

]
. (19)

t′
Pr + � + Nb tp + Nt t

2 = ξ
(
u ∂s∂ξ − t

∂f
∂ξ

)
. (20)

p′
Le + fp +

1
Le

Nt
Nb t

′ = ξ
(
u ∂g∂ξ − p

∂f
∂ξ

)
. (21)

where primes denote di�erentiation with respect to η. In
termsof the dependent variables, the boundary conditions
become:

At η = 0, f = 0, u = 0, s = 1, g = 1
As η →∞, u → 0, s → 0, g → 0.

(22)
Step 2: Finite Di�erence Discretization

A two-dimensional computational grid is imposed on
the ξ-η plane as sketched in Fig. 2 The stepping process is
de�ned by:

η0 = 0, ηj = ηj−1 + hj , j = 1, 2, . . . , J, ηJ ≡ η∞ (23)

ξ0 = 0, ξ n = ξ n−1 + kn , n = 1, 2, . . . , N (24)

where kn is the ∆ξ - spacing and hjis the ∆η - spacing.
If gnj denotes the value of any variable at

(
ηj , ξ n

)
, then

the variables and derivatives of Equations (15) – (21) at(
ηj−1/2, ξ n−1/2

)
are replaced by:

gn−1/2j−1/2 = 1
4

(
gnj + gnj−1 + gn−1j + gn−1j−1

)
. (25)

(
∂g
∂η

)n−1/2
j−1/2

= 1
2hj

(
gnj − gnj−1 + gn−1j − gn−1j−1

)
. (26)

(
∂g
∂ξ

)n−1/2
j−1/2

= 1
2kn

(
gnj − gnj−1 + gn−1j − gn−1j−1

)
. (27)

The resulting �nite - di�erence approximation of
equations (15) – (21) for the mid - point

(
ηj−1/2, ξ n

)
, are:

h−1j
(
f nj − f nj−1

)
= unj−1/2. (28)

h−1j
(
unj − unj−1

)
= vnj−1/2. (29)

h−1j
(
vnj − vnj−1

)
= qnj−1/2. (30)

h−1j
(
gnj − gnj−1

)
= pnj−1/2. (31)

h−1j
(
snj − snj−1

)
= tnj−1/2. (32)

(
1 + 1

β

)(
vj − vj−1

)
+
hj (1 + α)

4
(
fj + fj−1

) (
vj + vj−1

)
− (1 + α + Λξ )

hj
16
(
uj + uj−1

)2 −( 1
Da +M

) hj
2
(
uj + uj−1

)
+
Bhj
2
(
sj + sj−1 − Nr

(
gj + gj−1

))
−
αhj
2 f n−1j−1/2

(
vj + vj−1

)
+
αhj
2 vn−1j−1/2

(
fj + fj−1

)
= [R1]n−1j−/12 . (33)

1
Pr
(
tj − tj−1

)
+ (1 + α) hj

4
(
fj + fj−1

) (
tj + tj−1

)
+
Nb hj
4

(
tj + tj−1

) (
pj + pj−1

)
+
Nt hj
4
(
tj + tj−1

)2
−
α hj
4
(
uj + uj−1

) (
sj + sj−1

)
+
αhj
2 sn−1j−1/2

(
uj + uj−1

)
−
αhj
2 un−1j−1/2

(
sj + sj−1

)
−
αhj
2 f n−1j−1/2

(
tj + tj−1

)
+
αhj
2 tn−1j−1/2

(
fj + fj−1

)
= [R2]n−1j−1/2 . (34)

1
Le (pj − pj−1) +

(1 + α)hj
4 (fj + fj−1)(pj + pj−1)

+ 1
Le

Nt
Nb (tj − tj−1) −

αhj
4 (uj + uj−1)(gj + gj−1)

+
αhj
2 gn−1j−1/2(uj + uj−1) −

αhj
2 un−1j−1/2(gj + gj−1)

−
αhj
2 f n−1j−1/2(pj + pj−1) +

αhj
2 pn−1j−1/2(fj + fj−1) = [R3]n−1j−1/2.

(35)

where we have used the abbreviations

α = ξ
n−1/2

kn
, B = sin(ξ n−1/2)

ξ n−1/2
(36)

[R1]n−1j−1/2 =

− hj

[(
1 + 1

β

)
(v′)n−1j−1/2 + (1 − α)(fv)

n−1
j−1/2 − (1 − α − Λξ )(u

n−1
j−1 )2

−
( 1
Da +M

)
un−1j−1 + B(sn−1j−1/2 − Nrg

n−1
j−1/2)

]
.

(37)

[R2]n−1j−1/2 = −hj
[
1
Pr
(
t′
)n−1
j−1/2 + (1 − α) (�)

n−1
j−1/2

+Nb (tp)n−1j−1/2 + Nt
(
t2
)n−1
j−1/2

+ α (us)n−1j−1/2

]
. (38)

[R3]n−1j−1/2 = −hj
[
1
Le
(
p′
)n−1
j−1/2 + (1 − α) (fp)

n−1
j−1/2

+ 1
Le

Nt
Nb

(
t′
)n−1
j−1/2 + α (ug)n−1j−1/2

]
. (39)

Brought to you by | York University Libraries
Authenticated

Download Date | 12/8/18 1:19 PM



6 | V. Ramachandra Prasad et al., Non-Similar Comutational Solutions

The boundary conditions are:

f n0 = un0 = 0, sn0 = 1, gn0 = 1, unJ = 0, snJ = 0, gnJ = 0.
(40)

Stage 3: Quasilinearization of Non-Linear Keller Alge-
braic Equations

If we assume f n−1j , un−1j , vn−1j , gn−1j , pn−1j , sn−1j , tn−1j
to be known for 0 ≤ j ≤ J, this leads to a system
of 8J+8 equations for the solution of 8J+8 unknowns
f nj , unj , vnj , gnj , pnj , snj , tnj , j = 0, 1, 2, ..., J. This non-linear
system of algebraic equations is linearized by means of
Newton’s method.
Stage 4: Block-tridiagonal Elimination Solution of Lin-
ear Keller Algebraic Equations

The linearized system is solved by the block-
elimination method, since it possess a block-tridiagonal
structure. The bock-tridiagonal structure generated con-
sists of block matrices. The complete linearized system is
formulated as a block matrix system, where each element
in the coe�cient matrix is a matrix itself, and this sys-
tem is solved using the e�cient Keller-box method. The
numerical results are strongly in�uenced by the number
of mesh points in both directions. After some trials in the
η-direction (radial coordinate) a larger number of mesh
points are selected whereas in the ξ-direction (tangen-
tial coordinate) signi�cantly less mesh points are utilized.
ηmax has been set at 16.0 and this de�nes an adequately
large value at which the prescribed boundary conditions
are satis�ed. ξmax is set at 3.0 for this �ow domain. Mesh
independence is achieved in the present computations.
The numerical algorithm is executed inMATLAB on a PC.
The method demonstrates excellent stability, convergence
and consistency, as elaborated by Keller [57].

4 Interpretation of Results
The system of Eqs. (7 – 9) subject to Eq. (10) are numeri-
cally solved using an implicit �nite di�erence Keller-Box
technique and is programmed using MATLAB. The accu-
racy present code is validated and presented in Table 1 by
comparing the present results of heat transfer rate with
those of Merkin [58] and Yih [59] for di�erent values of ξ .
It has been found that the present results are in good cor-
relation. In Tables 2 and 3 we present the e�ects of β, Λ
and Pr on Cf , Nu and Sh along with a variation in ξ . With
increasing β, the Cf is reduced whereas Nu is enhanced. A
small increment in Sh is observedwith increasing β. An in-
creasing Pr is found to increase Cf slightly whereas Nu is
reduced. However, Sh is strongly increased with Pr. With
increasing Λ, a signi�cant decrease in Cf , Nu and Sh is ob-

served. This trend is sustained for ξ > 0. Tables 4 and 5
present the impact of Da and Le on Cf , Nu and Sh along
with a variation in ξ . An increasing Da is seen to increase
Cf signi�cantly. Also an increase in Da is observed to in-
crease bothNu and Sh. An increasingDa is seen to increase
Cf signi�cantly. In these Tables we also present the results
of Cf , Nu and Sh for di�erent values of Le. Also an increas-
ing Le is observed to increase Cf signi�cantly.Whereas,Nu
is reduced with increasing Le values. The Sh is strongly in-
creased with increasing Le. This trend is sustained for ξ >
0.

(a)

(b)

(c)

Fig. 3: (a) Influence of β on Velocity Pro�les; (b) Influence of β on
Temperature Pro�les; (c) Influence of β on Concentration Pro�les
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Table 1: The values of the Local heat transfer coe�cient (Nu) for di�erent values of ξ with Pr = 0.71, β→ ∞, Λ = 0, Da→ ∞ and Nb = Nr =
Nt = 0, Le = 0.6,M = 0.5

ξ Nu Gr− 1/4 = −θ′ (ξ , 0)
Merkin [58] Yih [59] Present

0.0 0.4212 0.4214 0.4211
0.2 0.4204 0.4207 0.4206
0.4 0.4182 0.4184 0.4185
0.6 0.4145 0.4147 0.4146
0.8 0.4093 0.4096 0.4095
1.0 0.4025 0.4030 0.4027
1.2 0.3942 0.3950 0.3947
1.4 0.3843 0.3854 0.3852
1.6 0.3727 0.3740 0.3735
1.8 0.3594 0.3608 0.3598
2.0 0.3443 0.3457 0.3448
2.2 0.3270 0.3283 0.3280
2.4 0.3073 0.3086 0.3076
2.6 0.2847 0.2860 0.2852
2.8 0.2581 0.2595 0.2592
3.0 0.2252 0.2267 0.2255
π 0.1963 0.1962 0.1961

Table 2: Values of Cf , Nu and Sh for various values of β, Pr, Sc and ξ (Nb = Nt = 0.2, Nr = 0.1, Da = 1.0,M = 0.5, Le = 0.6)

β Λ Pr ξ = 00 ξ = 300 ξ = 600
Cf Nu Sh Cf Nu Sh Cf Nu Sh

0.1

1.0

0.71

0 0.1791 0.1012 0.6901 0.1745 0.0981 1.2171 0.1638 0.0912
0.15 0 0.1902 0.1042 0.6067 0.1850 0.1008 1.0678 0.1732 0.0934
0.35 0 0.2111 0.1086 0.4699 0.2046 0.1048 0.8236 0.1907 0.0961
0.65 0 0.2235 0.1103 0.3995 0.2161 0.1058 0.6383 0.2007 0.0970
1.0 0 0.2303 0.1110 0.3634 0.2223 0.1063 0.6341 0.2061 0.0973
2.0 0 0.2383 0.1114 0.3234 0.2295 0.1066 0.5632 0.2123 0.0974

1.0

0.01 0 0.2303 0.1109 0.3682 0.2253 0.1081 0.6497 0.2113 0.1004
5 0 0.2303 0.1109 0.3473 0.2122 0.1002 0.5880 0.1905 0.0886
10 0 0.2303 0.1109 0.3322 0.2024 0.0947 0.5506 0.1775 0.0820
15 0 0.2303 0.1109 0.3207 0.1948 0.0907 0.5242 0.1683 0.0778
20 0 0.2303 0.1109 0.3116 0.1887 0.0876 0.5041 0.1612 0.0748
30 0 0.2303 0.1109 0.2980 0.1795 0.0834 0.4749 0.1509 0.0708

1.0

0.5 0 0.3246 0.3722 0.3156 0.3214 0.3711 0.5458 0.3141 0.3683
1 0 0.3157 0.3808 0.3159 0.3105 0.3816 0.5491 0.2986 0.3834
2 0 0.2976 0.3981 0.3163 0.2904 0.4009 0.5534 0.2735 0.4075
3 0 0.2795 0.4153 0.3167 0.2715 0.4193 0.5561 0.2526 0.4282
5 0 0.2448 0.4488 0.3176 0.2364 0.4532 0.5600 0.2168 0.4631
7 0 0.2128 0.4796 0.3187 0.2048 0.4838 0.5632 0.1862 0.4930

Figs. 3 – 12 illustrate the pro�les of velocity and tem-
perature for di�erent values of the thermophysical param-
eters, viz., β, Nb, Nt, Nr, Le, Da, Λ, Pr and M. The default
values of for these parameters are: β = Da = Λ = 1.0, Pr =
0.71, Nb = Nt = 0.2, Nr = 0.1, Le = 0.6, M = 0.5 and ξ = 1.0.

Figs. 3(a) – 3(c) present the impact of β on velocity
(f

′
), temperature (θ) and concentration (φ). It is observed

that increasing β values increases velocity near the cylin-
der surface but decreases it further away i.e., the viscoplas-
tic �uid behaves as Newtonian �uid as β increases. It is ob-

served that an increase in β decreases the yield stress and
hencedecreases themomentumboundary layer thickness.
This contraction in boundary layer thickness is caused
due to the tensile stress. Whereas, the temperature and
spices concentration are decreased slightly throughout the
boundary layer regime. The viscoplastic �uid parameter
β appears only in the momentum boundary layer Eq. (7)
via the shear term (1+1/β) f

′′′
. The momentum equation

couples strongly with the energy and species concentra-
tion equations via the thermal and species buoyancy force
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Table 3: Values of Cf , Nu and Sh for various values of β, Pr, Sc and ξ (Nb = Nt = 0.2, Nr = 0.1, Da = 1.0,M = 0.5, Le = 0.6)

β Λ Pr ξ = 900 ξ = 1200 ξ = 1800
Cf Nu Sh Cf Nu Sh Cf Nu Sh

0.1

1.0

0.71

1.4624 0.1464 0.0804 1.3511 0.1213 0.0652 0.1059 0.0246 0.0074
0.15 1.2793 0.1544 0.0819 1.1771 0.1273 0.0653 0.0898 0.0249 0.0078
0.35 0.9813 0.1689 0.0835 0.8957 0.1378 0.0657 0.0645 0.0250 0.0083
0.65 0.8292 0.1770 0.0838 0.7534 0.1435 0.0658 0.0533 0.0252 0.0090
1.0 0.7516 0.1813 0.0839 0.6812 0.1465 0.0659 0.0474 0.0254 0.0102
2.0 0.6661 0.1892 0.0840 0.6020 0.1498 0.0661 0.0413 0.0255 0.0108

1.0

0.01 0.7771 0.1878 0.0875 0.7087 0.1531 0.0689 0.0482 0.0258 0.0093
5 0.6831 0.1635 0.0748 0.6128 0.1299 0.0582 0.0452 0.0218 0.0085
10 0.6325 0.1503 0.0689 0.5651 0.1184 0.0542 0.0433 0.0201 0.0081
15 0.5985 0.1414 0.0656 0.5336 0.1110 0.0521 0.0418 0.0189 0.0077
20 0.5731 0.1348 0.0633 0.5103 0.1056 0.0509 0.0405 0.0181 0.0075
30 0.5367 0.1254 0.0606 0.4772 0.0980 0.0497 0.0381 0.0169 0.0071

1.0

0.5 0.6337 0.3036 0.3646 0.5524 0.2911 0.3608 0.0291 0.2731 0.3570
1 0.6429 0.2805 0.3870 0.5676 0.2573 0.3932 0.0310 0.2134 0.4121
2 0.6551 0.2470 0.4195 0.5888 0.2103 0.4375 0.0351 0.1101 0.5021
3 0.6627 0.2225 0.4432 0.6020 0.1801 0.4656 0.0382 0.0499 0.5471
5 0.6721 0.1857 0.4790 0.6174 0.1419 0.5014 0.0407 0.0127 0.5618
7 0.6784 0.1578 0.5073 0.6266 0.1161 0.5259 0.0412 0.0061 0.5569

Table 4: Values of Cf , Nu and Sh for di�erent Da, Le and ξ (β = 1.0, Nb = Nt = 0.2, Nt = 0.1, Λ = 1.0,M = 0.5, Pr = 0.71)

Da Le ξ = 00 ξ = 300 ξ = 600
Cf Nu Sh Cf Nu Sh Cf Nu Sh

1.0

0.25 0 0.2313 -0.0192 0.3584 0.2234 -0.0171 0.6263 0.2074 -0.0129
0.75 0 0.2299 0.1543 0.3650 0.2218 0.1481 0.6368 0.2057 0.1362
1.0 0 0.2292 0.2133 0.3672 0.2211 0.2053 0.6403 0.2050 0.1895
2.0 0 0.2274 0.3683 0.3721 0.2193 0.3558 0.6485 0.2033 0.3308
3.0 0 0.2264 0.4692 0.3749 0.2183 0.4540 0.6531 0.2023 0.4230
5.0 0 0.2252 0.6101 0.3780 0.2171 0.5912 0.6585 0.2012 0.5522

0.1

0.6

0 0.1287 0.0713 0.1832 0.1244 0.0699 0.3164 0.1130 0.0662
0.15 0 0.1481 0.0738 0.2159 0.1431 0.0719 0.3733 0.1304 0.0671
0.2 0 0.1625 0.0771 0.2402 0.1571 0.0749 0.4161 0.1435 0.0692
0.25 0 0.1736 0.0807 0.2594 0.1679 0.0781 0.4499 0.1538 0.0718
0.3 0 0.1826 0.0841 0.2750 0.1765 0.0813 0.4774 0.1620 0.0745
0.35 0 0.1899 0.0873 0.2880 0.1836 0.0842 0.5003 0.1688 0.0771

Table 5: Values of Cf , Nu and Sh for di�erent Da, Le and ξ (β = 1.0, Nb = Nt = 0.2, Nt = 0.1, Λ = 1.0,M = 0.5, Pr = 0.71)

Da Le ξ = 900 ξ = 1200 ξ = 1800
Cf Nu Sh Cf Nu Sh Cf Nu Sh

1.0

0.25 0.7435 0.1826 -0.0072 0.6753 0.1477 -0.0009 0.0474 0.0248 0.0000
0.75 0.7544 0.1809 0.1181 0.6835 0.1461 0.0932 0.0475 0.0245 0.0129
1.0 0.7583 0.1802 0.1656 0.6865 0.1456 0.1324 0.0475 0.0244 0.0206
2.0 0.7475 0.1787 0.2922 0.6942 0.1444 0.2379 0.0477 0.0242 0.0429
3.0 0.7727 0.1779 0.3751 0.6986 0.1437 0.3073 0.0478 0.0241 0.0581
5.0 0.7789 0.1770 0.4913 0.7040 0.1430 0.4048 0.0480 0.0240 0.0801

0.1

0.6

0.3645 0.0948 0.0593 0.3137 0.0791 0.0479 0.0162 0.0059 0.0035
0.15 0.4318 0.1099 0.0602 0.3739 0.0819 0.0484 0.0197 0.0060 0.0035
0.2 0.4829 0.1217 0.0603 0.4203 0.0916 0.0485 0.0225 0.0072 0.0039
0.25 0.5235 0.1311 0.0620 0.4579 0.0996 0.0494 0.0250 0.0095 0.0049
0.3 0.5569 0.1388 0.0640 0.4892 0.1064 0.0507 0.0272 0.0098 0.0078
0.35 0.5850 0.1452 0.0660 0.5158 0.1121 0.0517 0.0291 0.0112 0.0181
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(a)

(b)

(c)

Fig. 4: (a) Influence of Nb on Velocity Pro�les; (b) Influence of Nb on
Temperature Pro�les; (c) Influence of Nb on Concentration Pro�les

terms and hence the e�ect of casson parameter is indi-
rectly transmitted to both temperature and concentration
�led. The similar trends are observed by Subba Rao et
al. [60].

Figs. 4(a) – 4(c) presents the pro�les of velocity (f /),
temperature (θ) and concentration (φ) for di�erent values
ofNb. An increase in velocity is observed for various values
ofNb throughout the boundary layer regime. Also, a slight
increase in temperature is observedwhich is due to the col-
lision between the random motions of the nanoparticles.
Whereas, the species concentration is found to decrease
with an increase in Nb. Keblinski et al. [61] has elaborated

(a)

(b)

(c)

Fig. 5: (a) Influence of Nt on Velocity Pro�les; (b) Influence of Nt on
Temperature Pro�les; (c) Influence of Nt on Concentration Pro�les

various mechanisms which may contribute to enhance-
ment in temperatures via augmentation of the thermal
conductivity with nano-particles. These include Brownian
motionof nanoparticles, ballistic transport of energy carri-
ers within individual nanoparticles and between nanopar-
ticles that are in contact, nanoparticle distribution and
also the interfacial ordering of liquid molecules on the
surface of nanoparticles. Brownian motion elevates ther-
mal conduction viananoparticles carrying thermal energy.
However it has been seen that the direct contribution of
Brownian motion is less signi�cant as the time scale of
the Brownian motion is about two orders of magnitude
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(a)

(b)

(c)

Fig. 6: (a) Influence of Nr on Velocity Pro�les; (b) Influence of Nr on
Temperature Pro�les; (c) Influence of Nr on Concentration Pro�les

larger than that for the thermal di�usion of the base liquid.
Nanoparticles frequently are in the form of agglomerates
and/or aggregates. For small particles, Brownian motion
is strong and the parameter Nb will have high values; the
opposite will apply for large particles.

Figs. 5(a) – 5(c) illustrates the impact of Nt on ve-
locity (f /), temperature (θ) and concentration (φ). A de-
crease in velocity is seen for various values of Nt through-
out the boundary layer regime. A signi�cant increase in
both temperature and nano-particle concentration is gen-
erated as Nt increases. Thermophoresis heats the bound-
ary layer and assists in particle deposition away from the

(a)

(b)

(c)

Fig. 7: (a) Influence of Λ on Velocity Pro�les; (b) Influence of Λ on
Temperature Pro�les; (c) Influence of Λ on Concentration Pro�les

�uid regime, thereby accounting for the elevated concen-
tration (nano-particle) as shown in Fig. 5(c). For Nt = 0.1, a
monotonic decay in nano-particle concentration from the
wall of the cylinder into the free stream. However, for Nt >
0.1, a concentration peak is observed further from the sur-
face of the cylinder.

Figs. 5(a) - 5(c) depicts the pro�les for velocity (f /),
temperature (θ) and concentration (φ) for di�erent values
ofNr. By de�nition,Nr represents the ratio of nanoparticle
concentration to the thermal buoyancy force. The parame-
ter Nr, arises only in the momentum boundary layer equa-
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(a)

(b)

(c)

Fig. 8: (a) Influence of M on Velocity Pro�les; (b) Influence of M on
Temperature Pro�les; (c) Influence of M on Concentration Pro�les

tion in the term (sinξ /ξ) (θ - Nrφ) and couples themomen-
tum equation to the thermal and concentration boundary
layer equations respectively. With increasing Nr values,
the velocity is decreased throughout the boundary layer.
A slight increase in both temperature and concentration
is observed. Hence, the buoyancy forces aid in the di�u-
sion of heat and species (nano-particles) in the regime,
whereas they induce a deceleration in the �ow regime.
Similar trends have been recently observed for other free
convection nano�uid boundary layer �ows by Gorla and
Kumari [62].

(a)

(b)

(c)

Fig. 9: (a) Influence of Nb on Skin Friction; (b) Influence of Nb on
Nusselt Number; (c) Influence of Nb on Sherwood Number

Figs. 7(a) – 7(c) presents the impact of Forchheimer pa-
rameter, Λ on velocity (f /), temperature (θ) and concentra-
tion (φ). The parameter Λ is associatedwith the second or-
der Forchheimer resistance term, -ξΛ

(
f ′
)2 in the momen-

tum equation. The Forchheimer drag is directly propor-
tional to Λ. As shown in Fig. 7(a), the �ow is markedly
decelerated with increasing values of Λ. As indicated by
Kaviany [63], the Forchheimer e�ects are associated with
higher velocities in porous media transport. A signi�cant
elevation in both temperature and nano-particel species
di�usion concentration is seen with an increase in Λ.
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(a)

(b)

(c)

Fig. 10: (a) Influence of Nt on Skin Friction; (b) Influence of Nt on
Nusselt Number; (c) Influence of Nt on Sherwood Number

Figs. 8(a) – 8(c) depict the pro�les for velocity (f /),
temperature (θ) and concentration (φ) for increasing val-
ues ofmagnetic parameter,M. TheparameterM represents
the ratio of magnetic Lorentzian drag force to viscous hy-
drodynamic force in the �ow. For M < 1, the viscous force
dominates the magnetic force and the magnetohydrody-
namic e�ect is weak. However, Fig. 8a shows that even
a small increase in M induces a marked deceleration in
velocity. This reveals that the magnetic �eld resists the
�uid transport due to rise in M lends an enhancement in
the Lorentz force, which resist the �uid �ow. This concurs
with many other studies of magnetized nano�uid convec-

(a)

(b)

(c)

Fig. 11: (a) Influence of Nr on Skin Friction; (b) Influence of Nr on
Nusselt; (c) Influence of Nb on Sherwood Number

tion since the radial magnetic �eld acts to generate a per-
pendicular drag force which acts to decelerate the �ow.
Figs. 8b and 8c indicate that the dominant e�ect of greater
magnetic parameter is to elevate both temperatures and
nano-particle concentrations. The supplementary work
expended in dragging the viscoplastic nano�uid against
the action of the magnetic �eld manifests in kinetic en-
ergy dissipation. This energizes the boundary layer since
the kinetic energy is dissipated as thermal energy and this
further serves to agitate improved species di�usion. As a
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(a)

(b)

(c)

Fig. 12: (a) Influence of M on Skin Friction; (b) Influence of M on
Nusselt Number; (c) Influence of M on Sherwood Number

result both thermal and nano-particle (species) concentra-
tion boundary layer thicknesses are increased.

Figs. 9(a) – 9(c) presents the e�ects of Nb on skin fric-
tion (Cf ), heat transfer rate (Nu) andmass transfer rate (Sh)
at the cylinder surface. Cf is observed to increase slightly
for di�erent values of Nb. Conversely, Nu is decreased sig-
ni�cantly with increasing Nb. There is also a progressive
depletion in heat transfer rate with increasing transverse
coordinate i.e. x–value. This agrees with the correspond-
ing enhancement in temperature in the boundary layer

owing to the nano�uid properties as represented by the
Brownian di�usion e�ect. A decrease in heat transfer rate
at thewall implies that less heat is convected from the�uid
regime to the cylinder, thereby heating the boundary layer.
Dimensionless mass transfer rate (local Sherwood num-
ber) is boosted up with increasing Nb.

Figs. 10(a) – 10(c) depicts the pro�les for on skin fric-
tion (Cf ), heat transfer rate (Nu) and mass transfer rate
(Sh) at the cylinder surface for increasingNt values. Clearly
from Fig. 11(a) a very slight increase in Cf is observed with
an increase in Nt whereas, an increase in Nt decreases
both heat transfer rate andmass transfer rate. Hence, ther-
mophoresis exerts a signi�cant e�ect on both heat and
mass transfer characteristics at the cylinder surface.

Figs. 11(a) – 11(c) illustrate the responses of buoyancy
ratio Nr, on skin friction (Cf ), heat transfer rate (Nu) and
mass transfer rate (Sh) at the cylinder surface. For Nr > 0,
theCf at the cylinder surface is observed to decrease for in-
creasing values ofNr. Also, the heat transfer rate andmass
transfer rates are found to reduce with increasing Nr val-
ues.

Figs. 12(a) – 12(c) presents the responses of magnetic
parameter M, on skin friction (Cf ), heat transfer rate (Nu)
and mass transfer rate (Sh) at the cylinder surface. A sig-
ni�cant decrease in Cf is observed at the cylinder surface
for increasing values of M. Similar trends are observed in
the case of heat andmass transfer rates i.e., bothNu and Sh
are found to be strongly reducedwith increasingM values.

5 Conclusions
A numerical analysis is developed to study the lami-
nar MHD convection �ows of Casson nano�uid from an
isothermal horizontal circular cylinder in �uid-saturated
non-Darcy porous medium. An implicit �nite di�erence
Keller-Box technique is used to solve the non-dimensional
boundary layer equations with prescribed boundary con-
ditions. A comprehensive assessment of the impact of Cas-
son �uid parameter (β), Brownian motion parameter (Nb),
Thermophoresis parameter (Nt), Buoyancy ratio parameter
(Nr), Darcy number (Da), Magnetic parameter (M), Forch-
heimer parameter (Λ), Prandtl number (Pr) and Schmidt
number (Sc). Very stable and accurate solutions are ob-
tained with the present code. The present has been vali-
dated with the earlier Newtonian study. The present nu-
merical code is able to solve the nonlinear rheological
boundary layer �ow problems very e�ciently and hence
presents excellent promise in simulating transport phe-
nomena in other non-Newtonian �uids.
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Nomenclature

a Radius of the cylinder u, v Dimensionless velocity components in X and Y direction
respectively

B0 Constant imposed magnetic �eld x Stream wise coordinate
C Fluid concentration y Transverse coordinate
Cf Skin Friction Coe�cient Greek Symbols
Da Darcy Parameter α Thermal di�usivity
DB Brownian di�usion coe�cient β Casson fluid parameter
Dm Mass di�usion β1 Coe�cient of thermal expansion
DT Thermophoretic di�usion coe�cient Φ Azimuthal coordinate
f Dimensionless stream function σ Electric conductivity of the fluid
g Gravitational acceleration η Non-dimensional radial coordinate
K Thermal di�usivity Γ Inertial drag coe�cient
k Thermal conductivity of the fluid µ Dynamic viscosity
Gr Grashof number ξ Non-dimensional tangential coordinate
M Magnetic Parameter ψ Non-dimensional stream function
Nb Brownian motion parameter ν Kinematic viscosity
Nt Thermophoresis parameter φ Dimensionless concentration
Nr Buoyancy ratio parameter θ Dimensionless temperature
Nu Heat transfer coe�cient ρ Fluid density
Pr Prandtl number Λ Forchheimer parameter (local inertial drag coe�cient)
T Fluid temperature
S Cauchy stress tensor Subscripts
Le Lewis number w Conditions on the wall
Sh Sherwood number ∞ Free stream condition

References
[1] Schaefer HE., Nanoscience. The science of the small in

physics, engineering, chemistry, biology and medicine, Hei-
delberg: Springer; 2010. DOI: 10.1007/978-3-642-10559-3.

[2] Kleinstrauer C., Microfluidics and Nanofluidics, Theory and
selected applications, New Jersey: Wiley; 2013.

[3] Choi S., Enhancing thermal conductivity of fluids with
nanoparticles”. ASME-Publ. Fluids Engineering Division, 1995,
231, 99-106.

[4] Buongiorno J., Convective transport in Nanofluids, ASME J Heat
Trans., 2006, 128(3), 240-250. Doi:10.1115/1.2150834.

[5] M. Sheikholeslami, Milad Darzi, M.K. Sodaughi, Heat trans-
fer improvement and pressure drop during condensation of
refrigerant-based nanofluid; an experimental procedure, Int. J.
Heat and Mass Trans., 2018, 122, 643-650.

[6] M. Sheikholeslami, Houman B. Rokni, CVFEM for e�ect of
Lorentz forces on nanofluid flow in a porous complex shaped
enclosure by means of non-equilibrium model, J. Molecular
Liquids, 2018, 254, 446-462.

[7] K. M. Shirvan, R. Ellahi, Mojtaba Mamourian, Mohammad
Mamourian, E�ect of Wavy Surface Characteristics on natural
convection heat transfer in a cosine corrugated square cavity
�lled with Nanofluid, Int. J. Heat and Mass Trans., 2017, 107,
1110-1118.

[8] Saman Rashidi, Shima Akar, Masoud Bovand, Rahmat Ellahi,
Volume of fluid model to simulate the nanofluid flow and en-
tropy generation in a single slope solar still, Renewable En-
ergy, 2018, 115, 400-410.

[9] Sheikholeslami M. and S.A. Shehzad, Simulation of water
based nanofluid convective flow inside a porous enclosure
via non-equilibrium model, Int. J. Heat and Mass Trans., 2018,
120, 1200-1212.

[10] Sheikholeslami, Numerical investigation of nanofluid free
convection under the influence of electric �led in a porous
enclosure, J. Molecular Liquids, 2018, 249, 1212-1221.

[11] K. M. Shirvan, Mojtaba Mamourian, Soroush Mirzakhanlari,
R. Ellahi, Numerical Investigation of Heat Exchanger E�ective-
ness in a Double Pipe Heat Exchanger Filled With Nanofluid: A
Sensitivity Analysis by Response Surface Methodology, Power
Techn., 2017, 313, 99-111.

[12] J. A. Esfahani, M. Akbarzadeh, S. Rashidi, M.A. Rosen, R. El-
lahi, Influences of wavy wall and nanoparticles on entropy
generation over heat exchanger plat, Int. J. Heat and Mass
Trans., 2017, 109, 1162-1171.

[13] Nasir Ali, Hayat T., Saleem Asghar, Peristaltic Flow
of a Maxwell fluid in a channel with compliant walls,
Chaos Solitons & Fractals, 2009, 39(1), 407-416.
DOI:10.1016/j.chaos.2007.04.010.

[14] Hayat T., Qasim Muhammad, Abbas Zaheer, Hendi Awatif A.,
Magnetohydrodynamic flow and mass Transfer of a Je�rey
Fluid over a Nonlinear Stretching surface, Zeitschrift für Natur-
forschung A, 2014, 65(12), 1111-1120. DOI:10.1515/zna-2010-
1216.

[15] T. F. Irvine, J. Karni, Non-Newtonian fluid flow and heat trans-
fer, Handbook of Single-Phase Convective heat transfer, Chap-
ter 20,Wiley New York, 1987, 20.1-20.57.

[16] Y. Y. Lok, I. Pop, D. B. Ingham, Oblique stagnation slip flow of a
micropolar fluid,Meccanica, 2010, 45(2), 187-198.

Brought to you by | York University Libraries
Authenticated

Download Date | 12/8/18 1:19 PM



V. Ramachandra Prasad et al., Non-Similar Comutational Solutions | 15

[17] Azad Hussain, Anwar Ullah, Boundary layer flow of a Walter’s B
fluid due to a stretching cylinder with temperature dependent
viscosity, Alex. Eng. J., 2016, 55(4), 3073-3080.

[18] S. Abdul Ga�ar, V. Ramachandra Prasad, E. Keshava Reddy,
Computational study of Je�rey’s non-Newtonian fluid past a
semi-in�nite vertical plate with thermal radiation and heat
generation/absorption, Ain Shams Eng. J., 2017, 8(2), 277-294.

[19] A. Subba Rao, C.H. Amanulla, N. Nagendra, O. Anwar Beg, A.
Kadir, Hydromagnetic flow and heat transfer in a Williamson
Non-Newtonian fluid from a Horizontal circular cylinder with
Newtonian Heating, Int. J. Appl. Comp.. Math., 2017, 3(4),
3389-3409. DOI: 10.1007/s40819-017-0304-x

[20] Ramachandra Prasad V., S. Abdul ga�ar and O. Anwar Bég,
Non-Similar computational solutions for free convection
boundary layer flow of a nanofluid from an isothermal sphere
in a Non-Darcy porous medium, J. Nanofluids, 2015, 4(2), 203-
213.

[21] Huicui Li, Yongjun Jian, Dispersion for periodic electro-osmotic
flow of Maxwell fluid through a microtube, Int. J. Heat and
Mass Trans., 2017, 115A, 703-713.

[22] S. Abdul Ga�ar, V. Ramachandra Prasad, O. Anwar Beg, Com-
putational study of non-Newtonian Eyring-Powell fluid from
a vertical porous plate with Biot number e�ects, J. Braz. Soc.
Mech. Sci. Eng., 2017, 39(7), 2747-2765.

[23] S. Abdul Ga�ar, V. Ramachandra Prasad, E. Keshava Reddy,
Computational Study of MHD free convection flow of non-
Newtonian Tangent Hyperbolic fluid from a vertical surface in
porous media with Hall/Ionslip current and Ohmic dissipation,
Int. J. Appl. Comp. Math, 2017, 3(2), 859-890.

[24] R. Mehmood, S. Rana, S. Nadeem, Transverse thermophoretic
MHD Oldroyd-B fluid with Newtonian heating, Results in
Physics, 2018, 8, 686-693.

[25] N. Ijaz, A. Zeeshan, M. M. Bhatti, R. Ellahi, Analytical study on
liquid-solid particles interaction in the presence of heat and
mass transfer through a wavy channel, J. Molecular Liquids,
Vol. 250, 2018, 80–87.

[26] Casson, N., A Flow Equation for Pigment Oil-Suspensions of
the Printing Ink Type, in: C.C. Mill Ed., Rheology of Disperse
Systems, London: Pergamon Press, 1959, 84-102.

[27] Bird, R.B., Dai, G.C., and Yarusso, B.J., The Rheology and Flow
of Viscoplastic Materials, Rev. Chem. Eng, 1983, 1, 1-83.

[28] G. Kumaran, N. Sandeep, Thermophoresis and Brownian mo-
ment e�ects on parabolic flow of MHD Casson and Williamson
fluids with cross di�usion, J. Molecular Liquids, 2017, 233,
262-269. doi: 10.1016/j.molliq.2017.03.031.

[29] M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, Colloidal study
of Casson fluid with homogeneous-heterogeneous reac-
tions, J. Colloid and Interface Science, 2017, 498, 89-90.
http://dx.doi.org/10.1016/j.jcis.2017.03.024

[30] M. Nawaz, Rahila Naz, M. Awais, Magnetohydrodynam-
ics Axisymmetric flow of Casson fluid with variable ther-
mal conductivity and free stream, Alex. Eng. J., 2017.
http://dx.doi.org/10.1016/j.aej.2017.05.016

[31] Kashif Ali Khan, Asma Rashid Butt, Nauman Raza, E�ects of
heat and mass transfer on unsteady boundary layer flow of a
chemical reacting Casson fluid, Results in Physics, 2018, 8,
610-620. https://doi.org/10.1016/j.rinp.2017.12.080

[32] Sameh E. Ahmed, M.A. Mansour, A. Mahdy, Shadia S. Mo-
hamed, Entropy generation due to double di�usive convective
flow of Casson fluids over nonlinearity stretching sheets with

slip conditions, Eng. Sci. Tech., an Int. J., Vol. 20, Issue 6,
pp.1553-1562, 2017.

[33] B. Mahanthesh, B. J, Gireesh, Scrutinization of thermal ra-
diation, viscous dissipation and Joule heating e�ects on
Marangoni convective two-phase flow of Casson fluid with
fluid-particle suspension, Results in Physics, 2018, 8, 869-
878.

[34] Khalil Ur Rehman, Aqeela Qaiser , M.Y. Malik , U. Ali ,
Numerical communication for MHD thermally strati�ed
dual convection flow of Casson fluid yields by stretch-
ing cylinder, Chinese Journal of Physics, 2017, 55(4), doi:
10.1016/j.cjph.2017.05.002.

[35] A. Kumar and A. K. Singh, E�ect of induced magnetic �eld on
natural convection in vertical concentric annuli heated/cooled
asymmetrically, J. Appl. Fluid Mech., 2013, 6(1), 15-26.

[36] Kartini Ahmad, Anuar Ishak, Magnetohydrodynamic (MHD)
Je�rey fluid over a stretching vertical surface in a porous
medium, Propulsion and Power Research, 2017, 6(4), 269-276.
http://dx.doi.org/10.1016/j.jppr.2017.11.007

[37] Sheikholeslami and Houman B. Rokni, Magnetic nanofluid
flow and convective heat transfer in a porous cavity consid-
ering Brownian motion e�ects, Physics of Fluids, 2018, 30(1).
https://doi.org/10.1063/1.5012517.

[38] Sheikholeslami, CuO-water nanofluid flow due to magnetic
�eld inside a porous media considering Browinian motion, J.
Mole. Liquids, 2018, 249, 921-929.

[39] Mohsan Hassan, Ahmad Zeeshan, Aaqib Majeed, Rahmat El-
lahi, Particle shape e�ects on ferrofuids flow and heat transfer
under influence of low oscillating magnetic �eld, J. Magnetism
and Magnetic Materials, 2017, 443, 36-44.

[40] R. Ellahi, M.H. Tariq, M. Hassan, K. Vafai, On boundary layer
nano-Ferroliquid flow under the influence of low oscillating
stretchable rotating disk, J. Mole. Liquids, 2017, 229, 339-345.

[41] Zhi-Yong Xie, Yong-Jun Jian, Entropy generation of
two-layer magnetohydrodynamic electoosmotic flow
through microparallel channels, Energy, 2017. doi:
10.1016/j.energy.2017.08.038.

[42] A. Zeeshan, N. Shehzad, R. Ellahi, Ananlysis of activation en-
ergy in Couette-Poiseuille flow of nanofluid in the presence
of chemical reaction and convective boundary conditions,
Results in Physics, 2018, 8, 502-512.

[43] S. Abdul Ga�ar, V. Ramachandra Prasad, E. Keshava Reddy,
Magnetohydrodynamics flow of Non-Newtonian fluid from a
vertical permeable cone in the presence of thermal radiation
and heat generation/absorption, Int. J. Appl. Comput. Math.,
2017, 3(4), 2849-2872.

[44] S. Abdul Ga�ar, V. Ramachandra Prasad, E. Keshava Reddy,
Magnetohydrodynamic free Convection flow and heat transfer
of non-Newtonian Tangent Hyperbolic fluid from horizontal
circular cylinder with Biot number e�ects, Int. J. Appl. Comput.
Math., 2017, 3(2), 721-743.

[45] S. Abdul Ga�ar, V. Ramachandra Prasad, E. Keshava Reddy, O.
Anwar Beg, Magnetohydrodynamic free convection boundary
layer flow of non-Newtonian Tangent Hyperbolic fluid from a
vertical permeable cone with variable surface temperature, J.
Braz. Soc. Mech. Sci. Eng., 2017, 39(1), 101-116.

[46] O. Anwar Beg, S. Abdul ga�ar, V. Ramachandra Prasad, M.J.
Uddin, Computational solutions for non-isothermal, nonlinear
magneto-convection in porous media with hall/ionslip cur-
rents and ohmic dissipation, Eng. Sci. Tech., an Int. J., 2016,

Brought to you by | York University Libraries
Authenticated

Download Date | 12/8/18 1:19 PM

http://dx.doi.org/10.1016/j.jcis.2017.03.024
http://dx.doi.org/10.1016/j.aej.2017.05.016
https://doi.org/10.1016/j.rinp.2017.12.080
http://dx.doi.org/10.1016/j.jppr.2017.11.007
https://doi.org/10.1063/1.5012517


16 | V. Ramachandra Prasad et al., Non-Similar Comutational Solutions

19(1), 377-394.
[47] Bear, J., Dynamics of Fluids in Porous Media, Dover, New York

1988.
[48] D. Srinivasacharya, Ch. RamReddy, P. Naveen, O. Surender,

Non-Darcy Mixed convection flow past a vertical porous me-
dia plate with Joule Heal, Hall and Ion-Slip E�ects, Procedia
Engineering, 2015, 127, 162-169.

[49] B. J. Gireesh, B. Mahanthesh, P. T. Manjunatha, R.S.R. Gorla,
Numerical solution for hydromagnetic boundary layer flwo
and heat transfer past a stretching surface embedded in
non-Darcy porous medium with fluid-particle suspension,
J. Nigerian Mathematical Society, 2015 34(3), 267-285.
https://doi.org/10.1016/j.jnnms.2015.07.003

[50] Natalia c. Rosca, Alin V. Roşca, Teodor Groşan, Ioan Pop,
Mixed convection boundary layer flow past a vertical flat
plate embedded in a non-Darcy porous medium saturated
by a nanofluid, Int. J. Numerical Methods for Heat & Fluid Flow,
2014, 24(5), 970-987. https://doi.org/10.1108/HFF-09-2012-
0199

[51] Hady, F. M.; Mohamed, R. A.; Mahdy, A.; Abo Zaid, Omima
A., Non-Darcy natural convection boundary layer flow over
a vertical cone in porous media saturated with a nanofluid
containing Gyrotactic microorganisms with a convective
boundary condition, J. Nanofluids, 2016, 5(5), 765-773. DOI:
https://doi.org/10.1166/jon.2016.1256

[52] V. Ramachandra Prasad, S. Abdul Ga�ar, O. Anwar Beg, Non-
similar computational solutions for free convection boundary-
layer flow of a Nanofluid from an isothermal sphere in a non-
Darcy porous medium, J Nanofluids, 2015, 4(2), 1-11.

[53] Som, N. M., Ari�n, N. M., Ali, F. M., & Nazar, R., Boundary layer
flow over a permeable stretching sheet embedded in a Non-
Darcian porous medium with thermal radiation and ohmic
dissipation. Int. J. Math. Models and Methods in Appl. Sci.,
2014, 8(1), 91-94.

[54] Ahmad Nazri Mohd Som, Norihan Md Ari�n, Fadzilah Md Ali,
Nor�fah Bachok, Roslinda Nazar, Slip E�ects on MHD Non-
Darcy Boundary layer Flow over a Stretching Sheet in a Porous
Medium with radiation and Ohmic Dissipation. Int. Theor.
Appl. Mech., 2016, 1, 13-18.

[55] S. Abdul Ga�ar, V. Ramachandra Prasad E. Keshava Reddy,
MHD free convection flow of non-Newtonian Eyring-Powell
fluid from vertical surface in porous media with Hall/Ionslip
currents and Ohmic dissipation, Alex. Eng. J., 2016, 55, 875-
905.

[56] S. Abdul Ga�ar, V. Ramachandra Prasad, E. Keshava Reddy, O.
Anwar Beg, Numerical study of non-Newtonian Je�rey’s fluid
from a permeable horizontal isothermal cylinder in non-Darcy
porous medium, J. Braz. Soc. Mech. Sci. Eng., 2015, 37(6),
1765-1783.

[57] Keller, H.B., A new di�erence method for parabolic problems,
J. Bramble (Editor), Numerical Methods for Partial Di�erential
Equations, Academic Press, New York, USA, 1970.

[58] J.H. Merkin, Free convection boundary layers on cylinders of
elliptic cross section, J. Heat Transfer, 1977, 99, 453-457.

[59] K.A. Yih, E�ect of blowing/suction on MHD-natural convection
over horizontal cylinder: UWT or UHF, Acta Mech., 2000, 144,
17-27.

[60] A. Subba Rao, V.R. Prasad, V. Naga Radhika, O. Anwar Beg,
Heat Transfer in viscoplastic boundary-layer flow from a ver-
tical permeable cone with momentum and thermal wall slip:
numerical study, Heat Transfer Research, 2018, 49(1), 1-16.
DOI:10.1615/HeatTransRes.2017018153

[61] Keblinski, P., Phillpot S.R., Choi S.U.S. and Eastman J.A.,
Mechanisms of heat flow in suspensions of nanosized par-
ticles (nanofluids), Int. J. Heat Mass Trans., 2002, 45, 855-863.

[62] Gorla, R.S.R. and M. Kumari, Free convection along a vertical
wavy surface in a nanofluid Proc. ImechE- Part N: J. Nanoengi-
neering and Nanosystems, 2011, 225, 133-142.

[63] Kaviany, M., Principles of Heat Transfer in Porous Media,
MacGraw-Hill, New York 1992.

Brought to you by | York University Libraries
Authenticated

Download Date | 12/8/18 1:19 PM

https://doi.org/10.1016/j.jnnms.2015.07.003
https://doi.org/10.1108/HFF-09-2012-0199
https://doi.org/10.1108/HFF-09-2012-0199

	Non-Similar Comutational Solutions for Double-Diffusive MHD Transport Phenomena for Non-Newtnian Nanofluid From a Horizontal Circular Cylinder
	1 Introduction 
	2 Viscoplastic Casson Nanofluid Mathematical Model
	3 Computational Solution With Keller Box Method (KBM)
	4 Interpretation of Results
	5 Conclusions


