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1 Introduction

Nonlinear analysis is a remarkable confluence of topology, analysis and appliedmathemat-

ics. The fixed point theory is one of themost rapidly growing topics of nonlinear functional

analysis. It is a vast and inter-disciplinary subject whose study belongs to several mathe-

matical domains such as classical analysis, differential and integral equations, functional

analysis, operator theory, topology and algebraic topology etc. Most important nonlin-

ear problems of applied mathematics reduce to finding solutions of nonlinear functional

equations (e.g., nonlinear integral equations, boundary value problems for nonlinear or-

dinary or partial differential equations, the existence of periodic solutions of nonlinear

partial differential equations). They can be formulated in terms of finding the fixed points

of a given nonlinear mapping on an infinite dimensional function space into itself.

In , Banach’s contraction mapping principle appeared [] and it was known for its

simple and elegant proof by using the Picard iteration. If (X,d) is a complete metric space

and T : X → X is a contraction, that is, there exists k ∈ (, ) such that

d(Tx,Ty) ≤ kd(x, y), ∀x, y ∈ X, (.)

the conclusion is that T has a fixed point, in fact, exactly one of them.

The simplicity of its proof and the possibility of attaining the fixed point by using suc-

cessive approximations let this theorem become a very useful tool in analysis and its ap-

plications. There is a great number of generalizations of the Banach contraction principle

in the literature (see, e.g., [] and the references cited therein).

It is important to note that the inequality (.) implies the continuity of T . A natural

question is whether we can find contractive conditions which will imply the existence
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of a fixed point in a complete metric space but will not imply continuity. The question

was answered by Kirk et al. [] and turned the area of investigation of fixed points by

introducing cyclic representations and cyclic contractions, which can be stated as follows.

Definition  [] Let (X,d) be a metric space. Let p be a positive integer,A,A, . . . ,Ap be

subsets of X, Y =
⋃p

i=Ai and T : Y → Y . Then Y is said to be a cyclic representation of Y

with respect to T if

(i) Ai, i = , , . . . ,p are nonempty closed sets, and

(ii) T(A) ⊆A, . . . , T(Ap–) ⊆Ap, T(Ap) ⊆A.

Moreover, T is called a cyclic contraction if there exists k ∈ (, ) such that d(Tx,Ty) ≤

kd(x, y) for all x ∈Ai and y ∈Ai+, with Ap+ =A.

Notice that although a contraction is continuous, a cyclic contraction need not to be.

This is one of the important gains of this notion. Kirk et al. obtained, among others, cyclic

versions of the Banach contraction principle [], of the Boyd and Wong fixed point the-

orem [] and of the Caristi fixed point theorem []. Following the paper [], a number

of fixed point theorems on cyclic representation with respect to a self-mapping have ap-

peared (see, e.g., [–]).

On the other hand, in , Mustafa and Sims [, ] introduced the notion of gener-

alized metric spaces or simply G-metric spaces. Several authors studied these spaces a lot

and obtained several fixed and common fixed point theorems (see, e.g., [–]).

Khan et al. [] introduced the concept of an altering distance function.

Definition [] A functionψ : [, +∞) → [, +∞) is called an altering distance function

if the following properties are satisfied:

(i) ψ is continuous and non-decreasing,

(ii) ψ(t) =  if and only if t = .

They proved the following theorem.

Theorem  [] Let (X,d) be a complete metric space, let ϕ be an altering distance func-

tion, and let T : X → X be a self-mapping which satisfies the following inequality:

ϕ
(

d(Tx,Ty)
)

≤ cϕ
(

d(x, y)
)

(.)

for all x, y ∈ X and for some  < c < . Then T has a unique fixed point.

Putting ϕ(t) = t in the previous theorem, (.) reduces to (.).

Rhoades [] extended Banach’s principle by introducing weakly contractive mappings

in complete metric spaces.

Definition  [] Let (X,d) be a metric space. A mapping T : X → X is called weakly

contractive if

d(Tx,Ty) ≤ d(x, y) – ϕ
(

d(x, y)
)

, ∀x, y ∈ X, (.)

where ϕ is an altering distance function.

He proved the following result.
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Theorem [] Let (X,d) be a complete metric space. If T : X → X is a weakly contractive

mapping, then T has a unique fixed point.

If one takes ϕ(t) = ( – k)t, where  < k < , then (.) reduces to (.).

Dutta andChoudhury obtained in [] the following generalization of Theorems  and .

Theorem  [] Let (X,d) be a complete metric space and let T : X → X satisfy

ψ
(

d(Tx,Ty)
)

≤ ψ
(

d(x, y)
)

– ϕ
(

d(x, y)
)

for all x, y ∈ X, where ψ and ϕ are altering distance functions. Then T has a unique fixed

point.

Weak inequalities of the above type have been used to establish fixed point results in a

number of subsequent works, some of which are noted in [, –] and the references

cited therein.

In the present paper, we introduce nonlinear cyclic contraction mappings under a gen-

eralized weakly contraction condition in G-metric spaces. It is followed by the proof of

existence and uniqueness of fixed points for such mappings. The obtained result gener-

alizes and improves many existing theorems in the literature. Some examples are given

in support of our results. In conclusion, we apply accomplished fixed point results for

generalized cyclic contraction type mappings to the study of existence and uniqueness of

solutions for a class of second-order periodic boundary value problems for ODEs.

2 Preliminaries

For more details on the following definitions and results, we refer the reader to [].

Definition  Let X be a nonempty set and letG : X×X×X →R
+ be a function satisfying

the following properties:

(G) G(x, y, z) =  if x = y = z;

(G)  <G(x,x, y) for all x, y ∈ X with x �= y;

(G) G(x,x, y)≤ G(x, y, z) for all x, y, z ∈ X with z �= y;

(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · (symmetry in all three variables);

(G) G(x, y, z) ≤ G(x,a,a) +G(a, y, z) for all x, y, z,a ∈ X (rectangle inequality).

Then the function G is called a G-metric on X and the pair (X,G) is called a G-metric

space.

Note that it can be easily deduced from (G) and (G) that

∣

∣G(x, y, y) –G(x, z, z)
∣

∣ ≤ G(y, z, z) (.)

holds for all x, y, z ∈ X.

Definition  Let (X,G) be a G-metric space and let (xn) be a sequence of points in X.

. A point x ∈ X is said to be the limit of the sequence (xn) if limn,m→∞ G(x,xn,xm) = ,

and one says that the sequence (xn) is G-convergent to x.

http://www.fixedpointtheoryandapplications.com/content/2012/1/227
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. The sequence (xn) is said to be a G-Cauchy sequence if for every ε > , there is a

positive integer N such that G(xn,xm,xl) < ε for all n,m, l ≥ N ; that is, if

G(xn,xm,xl) →  as n,m, l → ∞.

. (X,G) is said to be G-complete (or a complete G-metric space) if every G-Cauchy

sequence in (X,G) is G-convergent in X .

Thus, if xn → x in a G-metric space (X,G), then for any ε > , there exists a positive

integerN such thatG(x,xn,xm) < ε for all n,m ≥ N . It was shown in [] that theG-metric

induces a Hausdorff topology and that the convergence, as described in the above defini-

tion, is relative to this topology. The topology being Hausdorff, a sequence can converge

to at most one point.

Lemma  Let (X,G) be a G-metric space, (xn) be a sequence in X and x ∈ X. Then the

following are equivalent:

() (xn) is G-convergent to x.

() G(xn,xn,x)→  as n → ∞.

() G(xn,x,x)→  as n→ ∞.

Lemma  If (X,G) is a G-metric space, then the following are equivalent:

() The sequence (xn) is G-Cauchy.

() For every ε > , there exists a positive integer N such that G(xn,xm,xm) < ε for all

n,m ≥ N .

Lemma  Let (X,G), (X ′,G′) be two G-metric spaces. Then a function f : X → X ′ is

G-continuous at a point x ∈ X if and only if it is G-sequentially continuous at x, that is, if

(fxn) is G
′-convergent to fx whenever (xn) is G-convergent to x.

Definition  A G-metric space (X,G) is said to be symmetric if

G(x,x, y) =G(x, y, y)

holds for arbitrary x, y ∈ X. If this is not the case, the space is called asymmetric.

To every G-metric on the set X, a standard metric can be associated by

dG(x, y) =G(x,x, y) +G(x, y, y).

If G is symmetric, then obviously dG(x, y) = G(x, y, y), but in the case of an asymmetric

G-metric, only




G(x, y, y) ≤ dG(x, y) ≤ G(x, y, y)

holds for all x, y ∈ X.

The following are some easy examples of G-metric spaces.

Example  () Let (X,d) be an ordinary metric space. Define Gs by

Gs(x, y, z) = d(x, y) + d(y, z) + d(x, z)

for all x, y, z ∈ X. Then it is clear that (X,Gs) is a symmetric G-metric space.

http://www.fixedpointtheoryandapplications.com/content/2012/1/227
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() Let X = {a,b}. Define

G(a,a,a) =G(b,b,b) = , G(a,a,b) = , G(a,b,b) = ,

and extend G to X × X × X by using the symmetry in the variables. Then it is clear that

(X,G) is an asymmetric G-metric space.

3 Main results

First, we define the notion of a generalized weakly cyclic contraction in a G-metric space.

Definition  Let (X,G) be a G-metric space. Let p be a positive integer,A,A, . . . ,Ap be

nonempty subsets of X and Y =
⋃p

i=Ai. An operator T : Y → Y is a generalized weakly

cyclic contraction if

(I) Y =
⋃p

i=Ai is a cyclic representation of Y with respect to T ;

(II) for any (x, y, z) ∈Ai ×Ai+ ×Ai+, i = , , . . . ,p (with Ap+ =A),

ψ
(

G(Tx,Ty,Tz)
)

≤ ψ
(

�(x, y, z)
)

– ϕ
(

θ (x, y, z)
)

, (.)

where

�(x, y, z) = max

{

G(x, y, z),G(x,Tx,Tx),G(y,Ty,Ty),G(z,Tz,Tz),





[

G(x,Ty,Ty) +G(y,Tx,Tx)
]

,




[

G(y,Tz,Tz) +G(z,Ty,Ty)
]

,





[

G(x,Tz,Tz) +G(z,Tx,Tx)
]

,





[

G(x,Ty,Ty) +G(y,Tz,Tz) +G(z,Tx,Tx)
]

}

(.)

and

θ (x, y, z) = max
{

G(x, y, z),G(x,Tx,Tx),G(y,Ty,Ty),G(z,Tz,Tz)
}

; (.)

ψ : [, +∞) → [, +∞) is an altering distance function and ϕ : [, +∞) → [, +∞) is a

continuous function with ϕ(t) =  if and only if t = .

Our main result is the following.

Theorem  Let (X,G) be a complete G-metric space, p ∈ N, A,A, . . . ,Ap be nonempty

closed subsets of X and Y =
⋃p

i=Ai. Suppose T : Y → Y is a generalized weakly cyclic

contraction. Then T has a unique fixed point. Moreover, the fixed point of T belongs to
⋂p

i=Ai.

Proof Let x ∈A (such a point exists sinceA �= ∅). Define the sequence (xn) in X by

xn+ = Txn, n = , , , . . . .

http://www.fixedpointtheoryandapplications.com/content/2012/1/227
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Without loss of the generality, we can assume that

xn �= xn+, ∀n ∈N∪ {}. (.)

We shall prove that

lim
n→∞

G(xn,xn+,xn+) = . (.)

By the assumption,G(xn,xn+,xn+) >  for all n. From the condition (I), we observe that for

all n, there exists i = i(n) ∈ {, , . . . ,p} such that (xn,xn+,xn+) ∈Ai ×Ai+ ×Ai+. Putting

x = xn and y = xn+ = z in the condition (II), we have

�(xn,xn+,xn+)

= max

{

G(xn,xn+,xn+),G(xn,Txn,Txn),G(xn+,Txn+,Txn+),

G(xn+,Txn+,Txn+),




[

G(xn,Txn+,Txn+) +G(xn+,Txn,Txn)
]

,





[

G(xn+,Txn+,Txn+) +G(xn+,Txn+,Txn+)
]

,





[

G(xn,Txn+,Txn+) +G(xn+,Txn,Txn)
]

,





[

G(xn,Txn+,Txn+) +G(xn+,Txn+,Txn+) +G(xn+,Txn,Txn)
]

}

= max

{

G(xn,xn+,xn+),G(xn+,xn+,xn+),



G(xn,xn+,xn+),





[

G(xn,xn+,xn+) +G(xn+,xn+,xn+)
]

}

.

By (G) we have

G(xn,xn+,xn+) ≤ G(xn,xn+,xn+) +G(xn+,xn+,xn+).

Thus,

�(xn,xn+,xn+) = θ (xn,xn+,xn+) = max
{

G(xn,xn+,xn+),G(xn+,xn+,xn+)
}

.

From (.) we have

ψ
(

G(xn+,xn+,xn+)
)

= ψ
(

G(Txn,Txn+,Txn+)
)

≤ ψ
(

�(xn,xn+,xn+)
)

– ϕ
(

θ (xn,xn+,xn+)
)

= ψ
(

max
{

G(xn,xn+,xn+),G(xn+,xn+,xn+)
})

– ϕ
(

max
{

G(xn,xn+,xn+),G(xn+,xn+,xn+)
})

. (.)

We claim that

G(xn+,xn+,xn+) ≤ G(xn,xn+,xn+) (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/227
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for all n ≥ . Suppose this is not true, that is, there exists an n ≥  such that G(xn+,

xn+,xn+) >G(xn ,xn+,xn+). By the inequality (.), for these elements, we have

ψ
(

G(xn+,xn+,xn+)
)

≤ ψ
(

max
{

G(xn ,xn+,xn+),G(xn+,xn+,xn+)
})

– ϕ
(

max
{

G(xn ,xn+,xn+),G(xn+,xn+,xn+)
})

= ψ
(

G(xn+,xn+,xn+)
)

– ϕ
(

G(xn+,xn+,xn+)
)

.

This implies that ϕ(G(xn+,xn+,xn+)) =  and by the property of ϕ, we have G(xn+,

xn+,xn+) = , which contradicts the condition (.). Therefore, (.) is true and so the

sequence (G(xn,xn+,xn+)) is non-increasing and bounded below. Thus, there exists ρ ≥ 

such that

lim
n→∞

G(xn,xn+,xn+) = ρ. (.)

Now suppose that ρ > . Taking n → ∞ in (.), then using (.) and the continuity of ψ

and ϕ, we obtain

ψ(ρ)≤ ψ(ρ) – ϕ(ρ).

Therefore, ϕ(ρ) =  and hence ρ = . Thus,

lim
n→∞

G(xn,xn+,xn+) = .

Next, we show that (xn) is a G-Cauchy sequence in X. Suppose the contrary, that is, (xn)

is not G-Cauchy. Then there exists ε >  for which we can find two subsequences (xm(k))

and (xn(k)) of (xn) such that n(k) is the smallest index for which

n(k) >m(k) > k, G(xm(k),xn(k),xn(k)) ≥ ε. (.)

This means that

G(xm(k),xn(k)–,xn(k)–) < ε. (.)

From (.), (.) and (G), we get

ε ≤ G(xm(k),xn(k),xn(k))

≤ G(xm(k),xn(k)–,xn(k)–) +G(xn(k)–,xn(k),xn(k))

< ε +G(xn(k)–,xn(k),xn(k)).

Passing to the limit as k → ∞ and using (.), we get

lim
k→∞

G(xm(k),xn(k),xn(k)) = ε. (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/227


Nashine et al. Fixed Point Theory and Applications 2012, 2012:227 Page 8 of 17

http://www.fixedpointtheoryandapplications.com/content/2012/1/227

On the other hand, for all k, there exists j(k) ∈ {, . . . ,p} such that n(k) –m(k) + j(k) ≡ [p].

Then xm(k)–j(k) (for k large enough, m(k) > j(k)) and xn(k) lie in different adjacently labeled

sets Ai and Ai+ for certain i ∈ {, . . . ,p}. Using (.) and (G), we have

∣

∣G(xm(k)–j(k),xm(k)–j(k),xn(k)) –G(xn(k),xm(k),xm(k))
∣

∣

≤ G(xm(k)–j(k),xm(k)–j(k),xm(k))

≤ 

j(k)–
∑

l=

G(xm(k)–j(k)+l,xm(k)–j(k)+l,xm(k)–j(k)+l+)

≤ 

p–
∑

l=

G(xm(k)–j(k)+l,xm(k)–j(k)+l,xm(k)–j(k)+l+) –→ 

as k → ∞ (from (.)), which, by (.), implies that

lim
k→∞

G(xm(k)–j(k),xm(k)–j(k),xn(k)) = ε. (.)

Using (.), we have

lim
k→∞

G(xm(k)–j(k)+,xm(k)–j(k)+,xm(k)–j(k)) = 

and

lim
k→∞

G(xn(k)+,xn(k)+,xn(k)) = . (.)

Again, using (.), we get

∣

∣G(xm(k)–j(k),xm(k)–j(k),xn(k)+) –G(xm(k)–j(k),xn(k),xn(k))
∣

∣

≤ G(xn(k),xn(k)+,xn(k)+).

Passing to the limit as k → ∞ in the above inequality, and using (.) and (.), we get

lim
k→∞

G(xm(k)–j(k),xm(k)–j(k),xn(k)+) = ε.

Similarly, we have

∣

∣G(xn(k),xm(k)–j(k)+,xm(k)–j(k)+) –G(xm(k)–j(k),xm(k)–j(k),xn(k))
∣

∣

≤ G(xm(k)–j(k),xm(k)–j(k)+,xm(k)–j(k)+).

Passing to the limit as k → ∞ and using (.) and (.), we obtain

lim
k→∞

G(xn(k),xm(k)–j(k)+,xm(k)–j(k)+) = ε.

Similarly, we have

lim
k→∞

G(xm(k)–j(k)+,xn(k)+,xn(k)+) = ε.

http://www.fixedpointtheoryandapplications.com/content/2012/1/227
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Now, from the definitions of �(x, y, z) and θ (x, y, z) and from the obtained limits, we have

lim
k→∞

�(xn(k)+,xm(k)–j(k)+,xm(k)–j(k)+)

= lim
k→∞

θ (xn(k)+,xm(k)–j(k)+,xm(k)–j(k)+) = ε. (.)

Putting x = xn(k)+, y = xm(k)–j(k)+, z = xm(k)–j(k)+ in (II), we obtain

ψ
(

G(xn(k)+,xm(k)–j(k)+,xm(k)–j(k)+)
)

= ψ
(

G(Txn(k),Txm(k)–j(k),Txm(k)–j(k))
)

≤ ψ
(

�(xn(k)+,xm(k)–j(k)+,xm(k)–j(k)+)
)

– ϕ
(

θ (xn(k)+,xm(k)–j(k)+,xm(k)–j(k)+)
)

.

Passing to the limit as k → ∞, utilizing (.) and the obtained limits, we get

ψ(ε) ≤ ψ(ε) – ϕ(ε),

which is a contradiction if ε > . We have proved that (xn) is a G-Cauchy sequence in

(X,G). Since (X,G) is G-complete, there exists x* ∈ X such that

lim
n→∞

xn = x*. (.)

We shall prove that

x* ∈

p
⋂

i=

Ai. (.)

From condition (I), and since x ∈ A, we have (xnp)n≥ ⊆ A. Since A is closed, from

(.) we get that x* ∈A. Again, from the condition (I) we have (xnp+)n≥ ⊆A. SinceA

is closed, from (.) we get that x* ∈A. Continuing this process, we obtain (.).

Now, we shall prove that x* is a fixed point of T . Indeed, from (.), since for all n there

exists i(n) ∈ {, , . . . ,p} such that xn ∈ Ai(n), applying (II) with x = xn and y = z = x*, we

obtain

ψ
(

G
(

xn+,Tx
*,Tx*

))

= ψ
(

G
(

Txn,Tx
*,Tx*

))

≤ ψ
(

�
(

xn,x
*,x*

))

– ϕ
(

θ
(

xn,x
*,x*

))

, (.)

where

�
(

xn,x
*,x*

)

= max

{

G
(

xn,x
*,x*

)

,G(xn,Txn,Txn),G
(

x*,Tx*,Tx*
)

,G
(

x*,Tx*,Tx*
)

,





[

G
(

xn,Tx
*,Tx*

)

+G
(

x*,Txn,Txn
)]

,




[

G
(

x*,Tx*,Tx*
)

+G
(

x*,Tx*,Tx*
)]

,





[

G
(

x*,Txn,Txn
)

+G
(

xn,Tx
*,Tx*

)]

,

http://www.fixedpointtheoryandapplications.com/content/2012/1/227
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[

G
(

xn,Tx
*,Tx*

)

+G
(

x*,Tx*,Tx*
)

+G
(

x*,Txn,Txn
)]

}

= max

{

G
(

xn,x
*,x*

)

,G(xn,xn+,xn+),G
(

x*,Tx*,Tx*
)

,





[

G
(

xn,Tx
*,Tx*

)

+G
(

x*,xn+,xn+
)]

,





[

G
(

xn,Tx
*,Tx*

)

+G
(

x*,Tx*,Tx*
)

+G
(

x*,xn+,xn+
)]

}

, (.)

and

θ
(

xn,x
*,x*

)

= max
{

G
(

xn,x
*,x*

)

,G(xn,xn+,xn+),G
(

x*,Tx*,Tx*
)}

. (.)

Passing to the limit as n → ∞ in the inequality (.) and using (.), (.) and the fact

that G is continuous in its variables, we obtain

ψ
(

G
(

x*,Tx*,Tx*
))

≤ ψ
(

G
(

x*,Tx*,Tx*
))

– ϕ
(

G
(

x*,Tx*,Tx*
))

.

This implies that ϕ(G(x*,Tx*,Tx*)) =  and hence x* = Tx*. Thus, x* is a fixed point of T .

Finally, we prove that x* is the unique fixed point of T . Assume that y* is another fixed

point of T , that is, Ty* = y*. By the condition (I), this implies that y* ∈
⋂p

i=Ai. Then we

can apply (II) for x = x* and y = z = y*. We obtain

ψ
(

G
(

Tx*,Ty*,Ty*
))

≤ ψ
(

�
(

x*, y*, y*
))

– ϕ
(

θ
(

x*, y*, y*
))

, (.)

where

�
(

x*, y, z
)

= max

{

G
(

x*, y*, y*
)

,G
(

x*,Tx*,Tx*
)

,G
(

y*,Ty*,Ty*
)

,G
(

y*,Ty*,Ty*
)

,





[

G
(

x*,Ty*,Ty*
)

+G
(

y*,Tx*,Tx*
)]

,




[

G
(

y*,Ty*,Ty*
)

+G
(

y*,Ty*,Ty*
)]

,





[

G
(

x*,Ty*,Ty*
)

+G
(

y*,Tx*,Tx*
)]

,





[

G
(

x*,Ty*,Ty*
)

+G
(

y*,Ty*,Ty*
)

+G
(

y*,Tx*,Tx*
)]

}

(.)

and

θ
(

x*, y, z
)

= max
{

G
(

x*, y*, y*
)

,G
(

x*,Tx*,Tx*
)

,G
(

y*,Ty*,Ty*
)

,G
(

y*,Ty*,Ty*
)}

. (.)

Since x* and y* are fixed points of T , we have from (.)-(.)

ψ
(

G
(

x*, y*, y*
))

≤ ψ
(

G
(

x*, y*, y*
))

– ϕ
(

G
(

x*, y*, y*
))

.

Hence, G(x*, y*, y*) = , that is, x* = y*. Thus, we have proved the uniqueness of the fixed

point. �
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Remark  Following the proof of Theorem , we can derive a similar conclusion if

�(x, y, z) and θ (x, y, z) are replaced, respectively, by

�(x, y, z) = max

{

G(x, y, z),G(x,x,Tx),G(y, y,Ty),G(z, z,Tz),





[

G(x, y,Ty) +G(y,x,Tx)
]

,




[

G(y, z,Tz) +G(z, y,Ty)
]

,





[

G(x, z,Tz) +G(z,x,Tx)
]

,





[

G(x, y,Ty) +G(y, z,Tz) +G(z,x,Tx)
]

}

and

θ(x, y, z) = max
{

G(x, y, z),G(x,x,Tx),G(y, y,Ty),G(z, z,Tz)
}

,

and the condition (.) by

ψ
(

G(Tx,Ty,Tz)
)

≤ ψ
(

�(x, y, z)
)

– ϕ
(

θ(x, y, z)
)

.

Corollary  Let (X,G) be a complete G-metric space, p ∈ N, A,A, . . . ,Ap be nonempty

closed subsets of X, Y =
⋃p

i=Ai and T : Y → Y such that

(I) Y =
⋃p

i=Ai is a cyclic representation of Y with respect to T ;

(II′) for any (x, y, z) ∈Ai ×Ai+ ×Ai+, i = , , . . . ,p (with Ap+ =A),

ψ
(

G(Tx,Ty,Tz)
)

≤ ψ
(

G(x, y, z)
)

– ϕ
(

G(x, y, z)
)

,

where ψ : [, +∞) → [, +∞) is an altering distance function and ϕ : [, +∞) →

[, +∞) is a continuous function with ϕ(t) =  if and only if t = .

Then T has a unique fixed point.Moreover, the fixed point of T belongs to
⋂p

i=Ai.

4 Examples

In this section, we furnish some examples to demonstrate the validity of the hypotheses

of Theorem .

Example  (inspired by []) Define a G-metric G on the set X = {a,b, c} by

G(x,x,x) = , x ∈ X,

G(a,a,b) = ,

G(a,a, c) =G(a,b,b) =G(b,b, c) = ,

G(a,b, c) =G(a, c, c) =G(b, c, c) = ,

with symmetry in all variables. Note thatG is asymmetric sinceG(x,x, y) �=G(x, y, y) when-

ever x �= y. Let A = {a,b} and A = {a, c} and consider the mapping T : X → X given by

http://www.fixedpointtheoryandapplications.com/content/2012/1/227
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Ta = Tb = a and Tc = b. Obviously,A ∪A = X is a cyclic representation of X with respect

to T .

Take ψ(t) = t and ϕ(t) = t and denote L = ψ(G(Tx,Ty,Tz)), R = ψ(�(x, y, z)) – ϕ(θ (x,

y, z)). The following table shows that the contractive condition (.) is fulfilled whenever

(x, y, z) ∈A ×A ×A or (x, y, z) ∈A ×A ×A.

(x, y, z) G(Tx,Ty,Tz) �(x, y, z) θ (x, y, z) L R

(a,a,a)     

(a,a,b)     

(a,a, c)     

(a,b,b)     

(a,b, c)     

(a, c, c)     

(b,b, c)     

(b, c, c)     

Hence, all the conditions of Theorem  are fulfilled and it follows that T has a unique fixed

point a ∈A ∩A.

Example  Let X =R
 and let G : X →R

+ be given as

G
(

(x, y, z), (x, y, z), (x, y, z)
)

=


∑

i=

[

|xi – xi+| + |yi – yi+| + |zi – zi+|
]

,

where (x, y, z) = (x, y, z). It is easy to see that (X,G) is a complete G-metric space.

Consider the following closed subsets of X:

A =
{

(a, , ) :  ≤ a≤ 
}

, A =
{

(,b, ) :  ≤ b ≤ 
}

,

A =
{

(, , c) : ≤ c ≤ 
}

, Y =A ∪A ∪A

and the mapping T : Y → Y given by

T(a, , ) =

(

,
a


, 

)

, T(,b, ) =

(

,,
b



)

, T(, , c) =

(

c


, , 

)

.

It is clear that Y =A ∪A ∪A is a cyclic representation of Y with respect to T . We will

check that T satisfies the contraction condition (II).

Take ψ(t) = t (which is an altering distance function) and a continuous function ϕ(t) =
t


such that ϕ() = . Let, e.g., (x, y, z) ∈ A × A × A (the other two cases are treated

analogously), and let x = (a, , ), y = (,b, ), z = (, c, ). Without loss of generality, we

can assume that b ≥ c. Then Tx = (, a

, ), Ty = (, , b


), Tz = (, , c


) and

G(Tx,Ty,Tz) = a +
b


, G(x, y, z) = (a + b),

G(x,Tx,Tx) = a, G(y,Ty,Ty) =



b, G(z,Tz,Tz) =




c,

http://www.fixedpointtheoryandapplications.com/content/2012/1/227
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[

G(x,Ty,Ty) +G(y,Tx,Tx)
]

=




(

a +
b


+ 

∣

∣

∣

∣

b –
a



∣

∣

∣

∣

)

,





[

G(y,Tz,Tz) +G(z,Ty,Ty)
]

=



(b + c),





[

G(x,Tz,Tz) +G(z,Tx,Tx)
]

=




(

a +
c


+ 

∣

∣

∣

∣

c –
a



∣

∣

∣

∣

)

,





(

G(x,Ty,Ty) +G(y,Tz,Tz) +G(z,Tx,Tx)
)

=




(

a +



b +

c


+ 

∣

∣

∣

∣

c –
a



∣

∣

∣

∣

)

.

Hence,

ψ
(

G(Tx,Ty,Tz)
)

=

(

a +
b



)

≤




(

(a + b)
)

=



ψ

(

G(x, y, z)
)

≤ ψ
(

�(x, y, z)
)

– ϕ
(

θ (x, y, z)
)

.

Thus, the conditions of Theorem  are fulfilled and T has a unique fixed point (, , ) ∈
⋂

i=Ai.

5 An application to boundary value problems

In this section, we present another example where Theorem  and its corollaries can be

applied. The example is inspired by [].

We study the existence of a solution for the following two-point boundary value problem

for a second-order differential equation:

⎧

⎨

⎩

du
dt

= K(t,u(t)), t ∈ [, ],u ∈ [,∞),

u() = u() = ,
(.)

where K : [, ] × R
+ → R

+ is a continuous function. This problem is equivalent to the

integral equation

u(t) =

∫ 



G(t, s)K
(

s,u(s)
)

ds, for t ∈ [, ], (.)

where G(t, s) is the Green function

G(t, s) =

⎧

⎨

⎩

t( – s),  ≤ s < t ≤ ,

s( – t),  ≤ t < s≤ .

Denote by X = C([, ],R+) the set of non-negative continuous real functions on [, ].

We endow X with the G-metric

G(u, v,w) = max
t∈[,]

∣

∣u(t) – v(t)
∣

∣ + max
t∈[,]

∣

∣u(t) –w(t)
∣

∣ + max
t∈[,]

∣

∣v(t) –w(t)
∣

∣

for u, v,w ∈ X. Then (X,G) is a complete G-metric space.

http://www.fixedpointtheoryandapplications.com/content/2012/1/227
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Consider the self-map T : X → X defined by

Tu(t) =

∫ 



G(t, s)K
(

s,u(s)
)

ds, for t ∈ [, ].

Clearly, u* is a solution of (.) if and only if u* is a fixed point of T .

We will prove the existence and uniqueness of the fixed point of T under the following

conditions.

(A) K(s, ·) is a non-increasing function for any fixed s ∈ [, ], that is,

x, y ∈R
+,x ≥ y =⇒ K(s,x)≤ K(s, y).

(B) |K(s,x) –K(s, y)| ≤ |x – y| for all s ∈ [, ] and x, y ∈R
+.

(C) There exist α,β ∈ X such that α(t)≤ β(t) for t ∈ [, ] and that

Tα(t)≤ β(t) and Tβ(t)≥ α(t) for t ∈ [, ].

Theorem  Under the conditions (A)-(C), equation (.) has a unique solution u* ∈ X and

it belongs to C = {u ∈ X : α(t)≤ u(t) ≤ β(t), t ∈ [, ]}.

Proof In order to prove the existence of a (unique) fixed point of T , we construct closed

subsets A and A of X as follows:

A =
{

u ∈ X : u(t) ≤ β(t), t ∈ [, ]
}

and

A =
{

u ∈ X : u(t) ≥ α(t), t ∈ [, ]
}

.

We shall prove that

T(A) ⊆A and T(A) ⊆A.

Let u ∈A, that is,

u(s) ≤ β(s), for all s ∈ [, ].

Since G(t, s)≥  for all t, s ∈ [, ], we deduce from (A) and (C) that

∫ 



G(t, s)K
(

s,u(s)
)

ds≥

∫ 



G(t, s)K
(

s,β(s)
)

ds≥ α(t),

for all t ∈ [, ]. Then we have Tu ∈ A. Similarly, the other inclusion is proved. Hence,

Y =A ∪A is a cyclic representation of Y with respect to T .

Finally, we will show that, for each u ∈A and v,w ∈A, one has

ψ
(

G(Tu,Tv,Tw)
)

≤ ψ
(

G(u, v,w)
)

– ϕ
(

G(u, v,w)
)

for ψ(t) = t and ϕ(t) = 

t.
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To this end, let u ∈ A and (v,w) ∈ A ×A. Therefore, by (B) we deduce that for each

t ∈ [, ],

G(Tu,Tv,Tw)

= max
t∈[,]

∣

∣Tu(t) – Tv(t)
∣

∣ + max
t∈[,]

∣

∣Tu(t) – Tw(t)
∣

∣ + max
t∈[,]

∣

∣Tv(t) – Tw(t)
∣

∣

= max
t∈[,]

∫ 



G(t, s)
∣

∣K
(

s,u(s)
)

–K
(

s, v(s)
)
∣

∣ds

+ max
t∈[,]

∫ 



G(t, s)
∣

∣K
(

s,u(s)
)

–K
(

s,w(s)
)
∣

∣ds

+ max
t∈[,]

∫ 



G(t, s)
∣

∣K
(

s, v(s)
)

–K
(

s,w(s)
)
∣

∣ds

≤ max
t∈[,]

∫ 



G(t, s)
(
∣

∣u(s) – v(s)
∣

∣ +
∣

∣u(s) –w(s)
∣

∣ +
∣

∣v(s) –w(s)
∣

∣

)

ds

≤ G(u, v,w) max
t∈[,]

∫ 



G(t, s)ds. (.)

It is easy to verify that

∫ 



G(t, s)ds =
–t


+
t


≤




, for  ≤ t ≤ .

With these facts, the inequality (.) gives us

G(Tu,Tv,Tw) ≤



G(u, v,w)

and we have

ψ
(

G(Tu,Tv,Tw)
)

≤ ψ
(

G(u, v,w)
)

– ϕ
(

G(u, v,w)
)

.

Using the same technique, we can show that the above inequality also holds if we take

(u, v,w) ∈A ×A ×A. Thus, T satisfies the contractive condition of Corollary .

Consequently, by Corollary , T has a unique fixed point u* ∈A ∩A, that is, u
* ∈ C is

the unique solution to (.). �
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