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Abstract. The nonlinear finite element solutions for the buckling and post-buckling responses 
of the functionally graded shell panel subjected to the non-uniform thermal environment have 
been presented in this article. The thermal fields are assumed as uniform, linear and nonlinear 
temperature rise across the thickness of shell panel and the properties of each constituent are 
considered to be temperature dependent. The effective material properties of the graded 
structure are evaluated using the Voigt’s micromechanical rule in conjunction with power-law 
distribution. For the analysis purpose, a general nonlinear mathematical model of the 
functionally graded shell panel has been developed based on the higher order shear 
deformation theory and Green-Lagrange type geometrical nonlinear strains. The system 
governing equation of the panel structure is derived using the variational principle. Further, 
suitable nonlinear finite element steps have been adopted to discretize the model for the 
computation of the desired responses in association with the direct iterative method. The 
convergence and the validation behavior of the present numerical model are initially tested to 
demonstrate its efficacy and significance. Finally, the effects of curvature, power law index and 
different support conditions on the buckling and post-buckling responses of the functionally 
graded shell panels are investigated and discussed in details.  

1 Introduction  
The ability of the functionally graded materials (FGMs) to withstand very high thermal gradient have 
made them popular in many high performance engineering applications under extreme temperature 
loading conditions. During service under sever thermal load, the FGM structures buckles and 
geometrical nonlinearity is induced. The consideration of the temperature dependent (TD) material 
properties (rather merely considering temperature independent (TID) material properties alone) is very 
much essential for the exact analysis of their stability behaviour. The linear and nonlinear buckling 
and post-buckling behaviour of FGM flat/curved panel subjected to uniform and non-uniform 
temperature loading conditions was investigated numerically by various researchers in past by using 
the existing/refined shear deformation theories such as the Classical Plate Theory (CPT) [1-2], First 
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Order Shear Deformation Theory (FOSDT) [3] and High Order Shear Deformation Theory (HOSDT) 
[5]. It is evident from the review of literature that, the FEM based numerical studies related to the 
geometrically nonlinear buckling and the post-buckling behavior of FG spherical panels is very 
limited [6-7]. Also, studies using the CPT [8-9] /FOSDT [10-12] mid-plane kinematics are more in 
number in comparison to the HOSDT [13-15]. Researchers considered the through the thickness 
temperature variation to be uniform, linear and nonlinear and incorporated TD and TID material 
properties of the FG structures. However, in all the aforementioned research to represent the 
geometrical distortion the von-Karman type of nonlinear kinematics has been adopted in contrast to 
the Green-Lagrange type that accounts for the deformation behaviour of material continuum more 
accurately [16]. 

The motivation of the present research is to study the buckling and the post-bucking behavior of 
FG spherical shell panel by considering Green-Lagrange type geometrical nonlinearity and the 
HOSDT mid-plane kinematics. Moreover, the FG shell panel properties are evaluated using Voigt’s 

rule of mixture in conjunction with the power-law of distribution by taking both the TD and TID 
material properties. The governing equation of FG panel is derived using the variational principle and 
discretised using a nine noded isoparametric Lagrangian element with nine degrees of freedom per 
node. A direct iterative method is employed to obtain the desired responses. 

2 Nonlinear finite element formulations  
Figure 1 shows a typical FG spherical shell panel with a rectangular base with length ‘a’, width ‘b’ 

and uniform thickness ‘h’, considered for the present analysis. The curvature at the mid surface (at z =
0) of the shell panel is defined as ‘R’. The displacement field based on the HOSDT mid-plane 
kinematics as in [17]: 

 

Figure 1. Geometry and dimension of FG spherical shell panel. 
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where, (u0, v0, w0) represent the corresponding displacements of the points on the mid-plane along 
(x, y, z) coordinates, respectively. θy and θx are the rotations of normal to the mid-plane about the x
and y axis, respectively and � �* * * *

0 0, , ,
x y

u v � � are the higher order terms of the Taylor series expansion 
defined at the mid-plane those account for the parabolic distribution of shear stress. 

The small strain and large deformation behavior of the FG shell panel is expressed by considering 
Green-Lagrange type nonlinear strain-displacement field as in [18]  

                                                      � � � � � �
l nl

� �	 	 	                                            (2) 

where, � �
l
	  and � �

nl
	  are the linear and the nonlinear strain tensors, respectively.  
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The temperature dependent material properties of the graded structure have been obtained using 
the equivalent steps as in the reference [19]. Now, the effective elastic and the thermal properties of 
the FGM are obtained via Voigt’s micromechanics model using the following equation [15]:  

                                � �( , ) ( , ) ( , ) 1
 

( , )
2c m

n

m
P T z P

z

h

T z P T z P T z

 ��� 

�

� �
�

�                                      (3) 

where, subscript ‘m’ and ‘c’ represent the ceramic and the metal constituents, respectively 
and 0P , 1P� , 1P , 2P and 3P  are the coefficients of temperature (T) and n ( 0    n� � � ) is the power-
law index. 

The temperature function is expressed in the following form for uniform temperature variation:
                                                          

m
T T T� � � or 

c
T T�                          (4)

where, 
c m

T T T� � �  and Tm and Tc are the temperatures at the bottom and top surfaces of the 
panel, respectively. The detail of the linear temperature field through the thickness condition the 
temperature field is expressed as can be seen in Kar and Panda [16].

The thermo-elastic stress tensor at any point within the FG spherical shell panel can be written as 

                              � � � � � � � � � �� �T

xx yy xy xz yz th
C� � �� � � � � � 	 	                           (5)

where, [ ]Q is the reduced stiffness matrix and � � � �1 1 0 0 0 ( , )T

th
T z T� �	 �  is the thermal 

strain tensor at any point within the shell panel and the details of [C] can be seen in [16]. 
The elemental displacement vector is expressed using the corresponding shape function and the 

nodal displacement field as

                                                                   � � � �
9

0 0
1

i
i

i

N

�

� �� �                    (6)

where, is the nodal displacement vector and
i

N  is the 

shape function for the ith node, respectively. The details of the shape function can be seen in [19]. 
The linear and nonlinear mid-plane strain vector in terms of nodal displacement vector is written 

as   

                                      � � � �� � � � � �� �� �0 0,    
i i

l nl
B GA� �	 � 	 �    (7) 

where, [B] and [G] are the product form of the differential operator matrix and the shape functions 
for the linear and the nonlinear strain vectors, respectively and [A] is the function of displacements 
associated with the nonlinear strain terms. For the details of [B], [A] and [G] matrices, [16] can be 
referred.   

The strain energy expression can be conceded as: 

� � � � � � � � � � � � � � � �� �0 0 0 0 30 020 01
1 [ ] [ ] [ ] [ ]
2 i i i i i i i i

T T T T
e e e e e

l nl nl nl
U K K K K� � � �	 � � � � � � � �       (8) 

The expressions for [ ]e

l
K , 1[ ]e

nl
K 2[ ]e

nl
K  and 3[ ]e

nl
K  can be seen in [18].  

In the similar manner, the elemental equation of work done due to the in-plane thermal force 
resultant can be expressed as  

                                                                � � � �0 0
1 [ ]
2 i i

T
e e

G
W K� � �                             (9) 

where, 
1 1

1 1

[ ] [ ] [ ][ ]e T

G G G G
K B D B J d d

� �

� � � � � is the elemental geometric stiffness matrix. 

The governing equation for the for the post-buckled FG spherical shell panel is obtained by 
minimizing the total energy expression. This result in  

                                                              0( )e e

U W� �	�                               (10) 
Now, substituting Eq. (8) and (9) into Eq. (10), the final form of the equilibrium equation for the 

post-buckled FG spherical shell panel is conceded to the following form: 
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                                         � � � �� �� �1 2 3[ ] [ ] [ ] [ ] 0
l nl nl nl cr G

K K K K K� � � � � ��             (11) 

where, 
cr
�  is the critical buckling load factor. [Kl], [Knl1], [Knl2], [Knl3] and [KG] are the 

corresponding global matrices of [Kl]e, [Knl1]e, [Knl2]e, [Knl3]e and [KG]e, respectively. 

3 Results and discussion 

In order to compute the desired responses, a homemade computer code has been developed in 
MATLAB environment based on the present nonlinear FE model of the FG panel. The critical 
buckling and post-buckling responses are computed by considering both the TD and TID material 
properties. For computation, the silicon nitride (Si3N4) and the stainless steel (SUS304) are considered 
as the ceramic and the metal constituent at the top and at the bottom surface of the shell panel, 
respectively. The corresponding TD material properties are taken from the reference and details can 
be seen in [20].  

After establishing the convergence and validation of the present model the effects of different 
support conditions, power-law index (n) and curvature ratio (R/a) on the post-buckling responses of 
FG spherical panel under different temperature fields have been investigated. The corresponding 
responses for FG flat panel are also presented for the sake of comparison. The different support 
conditions employed for the present analysis can be seen in [16].

3.1 Convergence and validation studies 

First, a convergence study has been performed to note the exact mesh size at which the present model 
is capable of computing the linear and nonlinear post-buckling responses for the FG shell panel. The 
desired responses are computed for FG spherical (R/a=5, n=2, a/h=10) panel with SSSS support 
condition and flat (n=0.2 and 5, a/h=10) panel with CSCS support condition and presented in Figure 2 
(a) and (b), respectively. The responses are obtained for different mesh sizes and amplitude ratios 
(Wmax/h=0, 0.5, 1 and 1.5) by considering various through the thickness temperature distribution 
(uniform, linear and nonlinear). It is clearly observed that the responses are converging well with 
mesh refinement for both the spherical and flat panels. Based on the convergence study a (5×5) mesh 
is used to compute the thermal post-buckling responses throughout the present study.

Figure 2. Convergence behavior of the thermal buckling and postbuckling responses of (a) TD-FG spherical 
panel and (b) TID-FG flat panel. 
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Figure 3. Comparison of the thermal post-buckling responses of simply supported FG (Al/Al2O3) flat panel. 

Then the validation of the present model is offered by considering a FG (Al/Al2O3) flat (a/h=20 
and a/b=1) panel, as the flat panels are considered to be the simplest form of the shell panel. The 
thermal post-buckling responses are computed under the uniform temperature rise for three different 
power-law indices (n = 0, 1 and 5) and presented in Figure 3 together with the available results of Duc 
and Tung [13]. The material and geometrical parameters are taken to be the same as in the reference 
[13]. It is observed that the present results are exhibiting higher critical buckling temperature values as 
compared to Duc and Tung [13]. It is because, the present model accounts the full geometrical 
nonlinearity in Green-Lagrange sense whereas, in the reference, the nonlinearity is introduced via 
von-Karman strain which is unrealistic to consider the exact geometrical distortion under the severe 
thermal load.

3.2 Additional Illustrations 

In this section, some more numerical illustrations are presented to show the applicability of the present 
developed model to compute the post-buckling behavior of FG (SUS304/Si3N4) spherical shell panel 
under varying thermal loading conditions. The temperatures at the bottom and the top of the shell 
panel are assumed to be Tm=300K and Tc=600K, respectively and both the TD and TID material 
properties are considered for computation of the responses. To perform a comparative analysis, the 
responses are also computed for flat panel (R=∞) under identical geometry, material properties and 

constraint conditions. 

3.2.1 Influence of temperature field

The effect of different temperature fields namely uniform, linear and nonlinear temperature 
distribution through the thickness on the buckling and the post-buckling responses (

cr
� ) of the square 

(a/b=1) FG (SUS304/Si3N4) spherical (R/a=10) and flat panel (a/h=10, n=2) has been examined in this 
example. The responses are computed for different support conditions (SSSS and CSCS) and 
presented in Table 1.  It is observed that the critical buckling and post-buckling load parameters are 
highest for the nonlinear temperature distribution and lowest for all uniform condition. The post-
buckling responses are higher for spherical panel than the flat ones. However, the FG spherical panel 
with the TD properties is showing the inferior buckling and the post-buckling strength in comparison 
to the FG spherical panel with TID properties. 
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Table 1. Effect of support conditions on the critical buckling and post-buckling responses (
cr
� ) of the FG 

spherical and flat panel. 

Temperature 
field

TD/
TID

Support 
conditions

Flat Panel Spherical (R/a=10)
Wmax/h Wmax/h

0 0.5 1 1.5 0 0.5 1 1.5

Uniform 
TID SSSS 3.096 3.333 4.054 5.223 3.179 3.699 4.634 4.921

SCSC 5.247 5.664 6.612 6.890 5.328 6.335 6.627 6.983

TD SSSS 2.728 2.942 3.565 3.788 2.807 3.283 4.150 4.471
SCSC 4.914 5.499 7.027 7.126 5.004 6.037 7.558 7.256

Linear
TID SSSS 6.420 6.971 8.569 8.908 6.581 7.524 9.640 10.154

SCSC 10.903 12.148 13.493 14.373 11.051 13.172 13.703 14.792

TD SSSS 5.727 6.058 7.613 8.883 5.870 6.869 8.776 9.065
SCSC 9.721 10.832 12.027 12.701 9.852 11.738 12.283 12.855

Non Linear 
TID SSSS 6.628 7.175 8.749 29.375 6.793 7.948 10.130 10.431

SCSC 11.254 12.541 13.963 14.714 11.406 13.548 14.234 15.001

TD SSSS 5.923 6.417 7.866 8.224 6.070 7.115 8.275 9.364
SCSC 10.054 11.202 14.139 13.135 10.188 12.124 12.703 13.394

3.2.2 Influence of power-law index

In this example, the effect of power-law index on the buckling and the post-buckling responses (
cr
� )

of simply supported thick (a/h=10) square FG (SUS304/Si3N4) spherical (R/a=5) and flat panel with 
TD and TID properties has been investigated and presented in Figure 4 (a)-(c), respectively. It is noted 
that, as the FGM becomes metal rich, the post-buckling responses for both spherical and flat panel are 
decreasing monotonously. This is expected as the ceramic has comparatively higher stiffness than the 
metal. Also, the FG flat and spherical panel show highest buckling and the post-buckling strength 
under the nonlinear temperature field in comparison to the other temperature fields.  

3.2.3 Effect of curvature ratio 

It is inferred from the previous examples that the spherical panels exhibit higher buckling and post-
buckling strength over the flat panel due to their spatial curvature. Therefore, the buckling and the 
post-buckling responses (

cr
� ) of the thin (a/h=50) shallow FG spherical shell panel (a/b=1, n=2 and 

CSCS) under the effect of various curvature ratios (R/a=10, 50, 100) have been investigated in this 
example. The post-buckling responses are computed for uniform, linear and nonlinear temperature 
fields and presented in Figure 5 (a)-(c), respectively. It is observed that the buckling and the post-
buckling load parameters are decreasing as the panel tend to become flat. 

Figure 4. Effect of power-law indices on the critical buckling and post-  ) of FG 
spherical (R/a=10) and flat panel under (a) Uniform (b) Linear and (c) Nonlinear temperature field. 
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Figure 5. Effect of curvature ratio on the critical buckling and post-buckling responses (
cr
� ) of FG spherical 

panel under (a) Uniform (b) Linear and (c) Nonlinear temperature field. 

4 Conclusion 

In this article, the buckling and post-buckling strength of FGM structure have been investigated using 
a new higher-order model under elevated thermal filed as well as different geometrical configurations. 
The effective material properties of the FGM are evaluated via the Voigt’s micromechanical model in 

conjunction with the power-law distribution. In addition to this, both the TD and TID material 
properties of the FG panel are considered in the present analysis. It is observed from the present 
results that the TD material properties and the Green-Lagrange type geometrical nonlinearity in 
conjunction with the HOSDT model for the thermal stability of the FG panel structures are inevitable. 
It is inferred that as the power-law index increase the instability of the FGM panel is enhanced.
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