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ABSTRACT— Recently, telemedicine solutions have become a new trend in remote medical treatment. Many diseases are originated from abnormal 

variation of biological processes, especially in nucleosome positioning. Thus, effective prediction of nucleosome positioning becomes a hotspot 

in research of telemedicine. In this paper, a novel method is provided to compare varies of sequences firstly. This method, which called fractal 

entropy increment of diversity (FEID) is based on information entropy and increment of diversity. Then, a novel nucleosome positioning method 

is provided by using FEID into the data set of diversiform DNA sequences of human, worm, fly and yeast. Moreover, experimental results show 

that FEID is an effective nucleosome positioning method by compared with other methods on several benchmark datasets. Finally, the most 

important nucleotide sequence in nucleosome positioning is provided based on calculated contribution rates of nucleotide sequences. 

INDEX TERMS—Telemedicine, information entropy, fractal entropy increment of diversity, fractal, nucleosome positioning. 

 

Ⅰ.INTRODUCTION 

Telemedicine is a new medical technology which can provide 

remote diagnosis, treatment and consultation service to area 

with poor medical condition. Telemedicine becomes a research 

hotspot because it helps people who live in remote areas. 

However, many diseases are related to variation of biological 

processes which can’t be directly observed in telemedicine. 

Recently, with the development of computer technology, 

communications technology and medical technology, some 

information involved data, voice and image can transfer in a 

long distance. Which contributes to the implementation of 

telemedicine. In order to obtain more accurate diagnostic 

results, study the cause of the disease from the gene level is 

necessary. Besides, many diseases are associated with 

abnormal reactions in biological processes. In this case, long-

distanced nucleosome positioning is valued to study because it 

affects various bioprocesses [1-2]. Furthermore, analysis of 

nucleosome positioning is significant for providing an in-depth 

understanding of biological processes in diseases, such as 

binding of transcription factors and transcriptional regulation 

mechanism [3, 4]. 

Nucleosome is the basic units of eukaryotic chromatin, which 

is constructed by a histone octamer that wrapped tightly by a 

DNA sequence with 147 base pair (bp) (Figure 1). Nucleosome 

positioning provides important information for remote 

diagnosis, for example, a gene based diagnosis can be quickly 

determined if genetic variations can be found by remote 

nucleosome positioning. Hence it becomes a critical issue in 

telemedicine in recent years. 

Recently, studies of theoretical prediction model and 

experiment of nucleosome positioning have been developed 

based on development of genetic maps in human, mouse, 

chicken and yeast genomes [5-7]. Today, many prediction 

theories of nucleosome positioning have been presented, such 

as nucleosome-DNA interaction model, N-Score combined 

with mathematical regression model, curvature spectrum, term 

Hidden Markov Model and relative fragment frequency index 

[8-13].  

 

Fig. 1. Nucleosome is constructed by a histone octamer that wrapped 

tightly by a DNA sequence with 147 base pair (bp). And two 

nucleosomes are connected by linker DNA 

Earlier study by Satchwell et al. found that GG di-nucleotide 

sequence appeared about 10-bp periodicity in DNA sequences, 

which was used to bend around histone octamer [3]. Afterwards, 

various nucleosome positioning methods had been proposed 

based on DNA sequence scores. Xing et al. used functions 

related position in nucleosome positioning [11]. Polishko et al. 

proposed an improved Gaussian model for nucleosome 

positioning [9]. Xi et al. used Hidden Markov Model in 

nucleosome positioning and obtained nucleosome occupancy 

maps by used software “NuPoP” [10]. Besides, based on a 

probabilistic graphical model, Yassour et al. proposed a new 

model in nucleosome positioning [12]. Based on the NPS 

algorithm, iNPS algorithm was used in nucleosome positioning 

[8, 13]. Furthermore, several nucleosome positioning models 

were proposed according to the information of di-nucleotide 

sequences frequencies [5, 6, 14]. Recently, many software and 

R packages were applied to predict the position of nucleosome 

[15-17]. 

Increment of diversity was also an important measure of 

biological sequences, which was widely utilized to measure 

similarity of two diversity sources. Earlier, Li et al. predicted 

the structural class of protein based on increment of diversity 

[18]. Later, Chen et al. presented a SVM-based method to 
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predict subcellular localization according to combined 

increment of diversity [19]. Increment of diversity and 

quadratic discriminant analysis (IDQD) was adopted by Yun et 

al. to predict subcellular localization [20]. Wang et al. 

constructed immune classifier using increment of diversity [21]. 

Besides, Yang et al. predicted presynaptic and postsynaptic 

neurotoxins based on increment of diversity [22]. Zuo et al. 

used the subsequence increment to predict the plant pol-II 

promoter [23]. They also used minimum increment of diversity 

to predict protein amino acids of plasmodium [24]. Afterwards, 

DNA sequence and protein pattern recognition were studied by 

increment of diversity and quadratic discriminant analysis [25]. 

Based on increment of diversity, Chen et al. identified 

mitochondrial protein of malaria parasites and developed an 

effective treatment for reducing morbidity of malaria [26]. 

Recently, Feng et al. have identified antimicrobial peptides by 

increment of diversity [27]. Zhang et al. trained a SVM detector 

to do pathological brain detection [28]. And nucleosome 

positioning, which is important to understand biological 

processes, has also been studied by increment of diversity and 

quadratic discriminant analysis in [14]. Furthermore, Zhao et al. 

calculated scores of different regions in genome and analyzed 

the nucleosome occupancy [14, 29]. 

Studies of nucleosome positioning have shown that position 

of nucleosome is related to genome sequences. Indeed, some 

sequences of the core DNA appear periodically, which is 

favorable for the DNA fragments to bend around the histone 

octamer [3, 30, 31]. Furthermore, a sequence with high affinity 

to histone is beneficial to the formation of compact structure of 

nucleosome. However, a DNA sequence with low affinity to 

histone is helpful when transcription factor approaches target 

sequence. Therefore, core-DNA can be truly recognized 

according to the distribution of genome and positions of 

nucleosome can be determined by DNA sequences. 

In this paper, based on the increment of diversity, a new 

metric “fractal entropy increment of diversity (FEID) [32-34]” 

is used to find a new nucleosome positioning method by DNA 

sequence because fractal is a measure of self-similarity and 

fractal dimension is an important characteristic of objects with 

complex structure. Thus, when consider that iterative process 

of genomic structure is related to fractal, we first extract the 

fractal dimension of DNA sequences as an important feature of 

nucleosome positioning. Then, with similar hypothesize that 

gene sequences impact nucleosome positioning [3, 30, 31], we 

put these characteristics into back propagation neural network 

(BP neural network) to predict position of nucleosome on 

human, worm, fly and yeast genomes datasets [35, 36]. 

Meantime, jackknife test and 10-fold cross-validation are used 

to evaluate the effectiveness of our model. Finally, analysis of 

contribution rates of nucleotide sequences is provided to find 

key factors that influence nucleosome positioning. 

Rest of the paper is organized as follows. Section 2 presents 

materials and methods of this paper, including sources of 

benchmark datasets, fractal entropy increment of diversity, 

FEID-BP model and evaluation metrics of results; Section 3 

shows the experiment results and its additional analysis; 

Proposed method and future plans are discussed in Section 4; 

Conclusion is provided in Section 5. 

Ⅱ.MATERIALS AND METHODS 

A. DATASET 

In this paper, core-DNA distributions of different species are 

analyzed with a combined dataset, including nucleosome 

information in both human, worm, fly and yeast genomes. The 

dataset of human comes from Guo et al. [6], and compared 

nucleosome positioning data is from Schones et al. [37] 

(http://dir.nhlbi.nih.gov/papers/lmi/epigenomes/hgtcellnucleos

omes.aspx). The data of human genome used in this paper is 

“hg 18” version of UCSC human genome database 

(http://hgdownload.cse.ucsc.edu/). Partial data extracted from 

chromosome 20 of human genome is used as experimental 

nucleosome positioning dataset of human as follows [38]. 

First, each DNA fragment is assigned with a given 

nucleosome formation score. Then, the sequences with highest 

scores are chosen as core DNAs, while those with the lowest 

scores are chosen as linker DNAs. Finally, to reduce redundant 

data in current dataset, CD-HIT software is applied to remove 

redundancy with threshold 80% [39]. The obtained benchmark 

dataset contains 2273 core DNA sequences and 2300 linker 

DNA sequences with same length 147 bp. The dataset is same 

to dataset in supplementary data of Ref.6. 

Similarly, the dataset of worm and fly are from Guo et al. [6]. 

Entire genome data are available from the UCSC genome 

database (http://hgdownload.cse.ucsc.edu/). Compared 

nucleosome positioning data of worm is also from UCSC 

genome database and compared nucleosome positioning data 

of fly is from Mavrich et al. (http://atlas.bx.psu.edu/) [40, 41]. 

In UCSC database, WS170/ce4 version is chosen as entire 

worm genome data and BDGP R5 version is chosen as entire 

fly genome data in this paper. Then, by same methodology to 

construct dataset of human genome, experimental nucleosome 

positioning datasets of worm and fly are finally obtained. 

Dataset of worm contains 2567 core DNA sequences and 

2608 linker DNA sequences with same length 147 bp. The 

dataset is same to dataset in supplementary data of Ref.6. 

Dataset of fly contains 2900 core DNA sequences and 2850 

linker DNA sequences with same length 147 bp. The dataset is 

same to dataset in supplementary data of Ref.6. 

Dataset of the yeast genome is constructed by Chen et al. [42] 

and compared nucleosome positioning data is from Lee et al. 

[7]. With entire genome data (http://www.yeastgenome.org/) 

and same chosen strategy, benchmark dataset is obtained with 

1880 core DNA sequences and 1740 linker DNA sequences 

with same length 150 bp. The dataset is same to dataset in 

supporting information of Ref.43. 

B. FRACTAL ENTROPY INCREMENT OF DIVERSITY 

1) INCREMENT OF DIVERSITY 

Measure of Diversity (MD) is applied to describe interaction 

of factors in high dimensional space S = {m1, 𝑚2, … 𝑚s} , 

which is composed of s different dimensions. Let X ∈ S; 𝑥𝑖 

denotes frequency of ith dimension of X in simple base; when 

assuming (∀x)0 ∙ log𝑏
0

𝑥
= 0  is tautology, measure of 

diversity MD(X) of 𝑋(𝑥1, 𝑥2, … , 𝑥𝑠) is defined as Eq.1, where 

𝑁𝑋 = ∑ 𝑥𝑖
𝑠
𝑖=1  is frequencies’ amount of every xi in X; b is the 

given base of logarithm. 

𝑀𝐷(𝑋) = 𝑁𝑋 log𝑏 𝑁𝑋 − ∑ 𝑥𝑖
𝑠
𝑖=1 log𝑏 𝑥𝑖               (1)                                                

Similarly, when we have another diversity source  

𝑌(𝑦1, 𝑦2 , … , 𝑦𝑠) ∈ 𝑆, MD(Y) can be defined as Eq.2, where yi 

denotes frequency of ith component in Y and 𝑁𝑌 = ∑ 𝑦𝑖
𝑡
𝑖=1 . 

𝑀𝐷(𝑌) = 𝑁𝑌 log𝑏 𝑁𝑌 − ∑ 𝑦𝑖
𝑠
𝑖=1 log𝑏 𝑦𝑖               (2)                                           

http://hgdownload.cse.ucsc.edu/
http://hgdownload.cse.ucsc.edu/
http://atlas.bx.psu.edu/
http://www.yeastgenome.org/
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Then, MD of X+Y is defined as Eq.3. 

M𝐷(𝑋 + 𝑌) = (𝑁𝑋 + 𝑁𝑌) log𝑏(𝑁𝑋 + 𝑁𝑌)

− ∑(𝑥𝑖 + 𝑦𝑖)

𝑠

𝑖=1

log𝑏(𝑥𝑖 + 𝑦𝑖)   (3) 

Thus, increment of diversity (ID) of X and Y is defined to 

measure similarity of two diversity sources X and Y by Eq.4, 

which is widely used to describe similarity between X and Y. 

The more similar between X and Y, the less ID(X,Y) is 

calculated. 

𝐼𝐷(𝑋, 𝑌) = 𝑀𝐷(𝑋 + 𝑌) − 𝑀𝐷(𝑋) − 𝑀𝐷(𝑌)       (4)                                 

2) ENTROPY INCREMENT OF DIVERSITY 

In this paper, based on increment of diversity and 

information entropy in information space, Entropy Increment 

of Diversity (EID) is provided. 

We have Eq.5 to describe diversity of sequence X, where 

H(X) denotes information entropy of sequence X. H(X) reflects 

chaos of DNA sequences. The larger the value is, the more 

chaotic the DNA sequences are. The meaning of Nx is the same 

as the Nx in Eq. 1, and the value is equal to the length of DNA 

sequences minus 1. 

MD(X) = NXH(X)                                (5)  

Because core DNA sequences and linker DNA sequences 

have different sequence preferences. Besides, different features 

of these two kinds of sequences become apparent if we splice 

those DNA sequences with same sequence preferences. Thus, 

it is necessary to consider length of DNA sequence when we 

measure the diversity of DNA sequences, which means that 

MD(X) reflects the sequence preference of DNA sequence. 

Assuming that there is another sequence 𝑌(𝑦1, 𝑦2, … , 𝑦𝑠), 

which is composed of same s different components, we have 

Eq.6 to record MD(Y) like Eq.5. 

MD(Y) = NYH(Y)                              (6) 

When we have MD(X+Y) in Eq.7, EID(X, Y) can be defined 

in Eq.8 where k=0 if X=Y, k=1 if XY, N = min (𝑁𝑥, 𝑁𝑦). 

MD(X + Y) = NX+YH(X + Y)   (7) 

EID(X, Y) = MD(X + Y) − MD(X) − MD(Y) + 2kNlogs  (8) 

Each DNA sequence has a certain sequence preference. Type 

of the DNA sequences can be determined by calculated their 

sequence preference. Meanwhile, in case that results of EID are 

negative, a constant was added in Eq.8. 

3) FRACTAL DIMENSION 

In this paper, fractal dimension is another method used to 

measure similarity. Box-counting method is applied to 

calculate fractal dimension of DNA sequences. 

Supposing A as a nonempty bound subset of space Rn, a 

number of boxes are applied to cover A. For all r>0, Nr(A), 

which denotes minimum boxes’ number, is given by Eq.9 

where d = lim
𝑟→0

log 𝑁𝑟(𝐴)

log (
1

𝑟
)

 means box-counting dimension. 

Nr(𝐴) ∝
1

𝑟𝑑                                 (9)  

4) PREDICTING MODEL: FEID-BP MODEL 

In this paper, with calculated FEID of various types of DNA 

fragments in both core DNA and linker DNA, a recognition 

method of nucleosome positioning is provided by used BP 

neural network which is constructed as follows. 

Step 1. Combine all core DNA sequences as one long 

sequence, count sequence frequencies of all types of di-

nucleotide and calculate its MD as X2 = {𝑥1, 𝑥2, … 𝑥16}. 

Step 2. Combine all linker DNA sequences as one long 

sequence, count sequence frequencies of all types of di-

nucleotide and calculate its MD as Y2 = {𝑦1 , 𝑦2, … 𝑦16}. 

Step 3. Count sequence frequencies of all types of di-

nucleotide in all core DNA sequences and all linker DNA 

sequences. For each DNA sequences (assuming its serial 

number is k), calculate its MD Xk′ = {𝑥k,1′, 𝑥k,2′, … 𝑥k,16′}. 

Step 4. Calculate both sk,2
+ =EID(Xk’,X2) and 

sk,2
− =EID(Xk’,Y2) by Eq.8 to obtain a two dimensions feature 

vectors for each X’. Calculate the box-counting dimensions sk,d 

for each core DNA and linker DNA by Eq.9. 

Step 5. Similarly, calculate fractal entropy increment of 

diversity of other types of DNA fragments, including tri-

nucleotide, four-nucleotide, five-nucleotide and six-nucleotide 

fragments. For each DNA sequence with serial number k, we 

have a vector Sk with 11 dimensions in Eq.10. 

Sk = {sk,2
+ , sk,2

− , sk,3
+ , sk,3

− , sk,4
+ , sk,4

− , sk,5
+ , sk,5

− , sk,6
+ , sk,6

− , 𝑠𝑘,𝑑}  (10) 

Step 6. Use Sk as feature vector of kth DNA sequence k, 

recognized all Sk with BP neural network. 

 
5) EVALUATIONS OF THE QUALITY OF PREDICTION 

Independent data test, k-fold cross-validation and jackknife 

test are often used to evaluate model’s quality. However, 

jackknife test is deemed to have a better effect than other 

methods [43]. Thus, jackknife test is widely used by many 

scholars to evaluate the quality of a model [5, 6, 44-49]. 

In this paper, four factors TP, FP, FN and TN are defined as 

true positive, false positive, false negative and true negative, 

respectively. Detailedly, TP denotes the number that core DNA 

sequences are predicted to core DNA sequences; TN denotes 

the number that linker DNA sequences are predicted to linker 

DNA sequences; FP denotes the number that linker DNA 

sequences are predicted to core DNA sequences; FN denotes 

the number that core DNA sequences are predicted to linker 

DNA sequences. The following metric Sn, Sp, Acc and Mcc are 

defined to evaluate performance of our method, where Sn 

denotes sensitivity, Sp denotes specificity, Acc denotes 

accuracy, and Mcc denotes Mathew correlation coefficient [5]. 

 

Sn =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Sp =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Acc =
TP + TN

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 

Mcc =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑁)(𝑇𝑃 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)
 

Ⅲ. RESULTS 

A. CONTRIBUTION RATES OF THE NUCLEOTIDE 

SEQUENCES 

Contribution rate is an important metric to measure benefits’ 

factors in economics. When assume x is input and y is output; 

quantity of x and y are 0 in the initial state; y is a function of x; 

contribution ratio cr is defined by Eq.11. 

cr =
𝑦(𝑥)

𝑥
                                     (11) 
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Based on Eq.11, contribution rate is defined as Eq.12 in 

arbitrary initial state. ∇y and ∇x are defined as increment of 

output and input, respectively. 

∇cr =
∇𝑦

∇𝑥
                                     (12) 

   According to Eq.12, contribution rates of nucleotide 

sequences can be calculated as follows. 

Step 1. Combine all types of DNA fragments as input 

factors (di-nucleotide, tri-nucleotide, four-nucleotide, five-

nucleotide and six-nucleotide sequences) and calculate 

provided model’s accuracy acc by using FEID-BP model. 

Step 2. Calculate provided model’s accuracy by using each 

type of DNA fragments as the only input factor. Accuracy of 

di-nucleotide, tri-nucleotide, four-nucleotide, five-nucleotide 

and six-nucleotide sequences are defined as acc2, acc3, acc4, 

acc5 and acc6, respectively. 

Step 3. Combine all types of DNA fragments as input 

factors except di-nucleotide and calculate the model’s accuracy 

𝑎𝑐𝑐2
′ . Similarly, 𝑎𝑐𝑐3

′ , 𝑎𝑐𝑐4
′ , 𝑎𝑐𝑐5

′ , 𝑎𝑐𝑐6
′  denote accuracy of our 

model when remove tri-nucleotide, four-nucleotide, five-

nucleotide and six-nucleotide sequences from input factors, 

respectively. 

Step 4. Calculate contribution rates of different DNA 

fragments by Eq.13. 

∇𝑐𝑟𝑖 =
𝑎𝑐𝑐 − 𝑎𝑐𝑐𝑖

′

𝑎𝑐𝑐𝑖

                             (13) 

Here, ∇𝑐𝑟𝑖  is contribution rate of each type of i-nucleotide, 

and i = {2, 3, 4, 5, 6} . Detailedly, contribution rates of di-

nucleotide, tri-nucleotide, four-nucleotide, five-nucleotide and 

six-nucleotide sequences are respectively defined as 

∇𝑐𝑟2, ∇𝑐𝑟3, ∇𝑐𝑟4, ∇𝑐𝑟5, ∇𝑐𝑟6. 

Accuracy and contribution rates of all types of DNA 

fragments are shown in both Figure 2 and Table 1. In Figure 2, 

red line means accuracy of FEID by used only one type of DNA 

fragment, green line means accuracy of FEID by used all type 

of DNA fragment except one type, blue line means accuracy of 

FEID by used all type of DNA fragment. In order to make 

comparison with the red lines and green lines, the lines with 

different colors are placed in same figure. Values of Y axis have 

no function linkage to the value of X axis in blue lines because 

blue line means accuracy using all types of DNA fragments as 

input factors that it has no function linkage to all types of DNA 

fragment. 

In Table 1, we find that contribution rate of six-nucleotide 

sequence is highest in human, worm and fly datasets. However, 

in yeast dataset, contribution rate of five-nucleotide sequences 

is the highest. Though there are many combinations of 

nucleotide sequences can be used as input factors based on di-

nucleotide, tri-nucleotide, four-nucleotide, five-nucleotide and 

six-nucleotide sequences, accuracy will drop if one type of 

DNA fragments with negative ∇cri is put into input factors of 

FEID-BP model. Moreover, every contribution rate of one type 

of DNA fragments is not high, which means structure of 

nucleosome is controlled by many types of nucleotide 

fragments. In this paper, because different DNA fragments 

interact with each other and contribution rates of input 

nucleotide fragments is complex, all types of nucleotide 

fragments are used in our nucleosome positioning model at last. 

In fact, accuracy of our model with all 5 types of DNA 

fragments is larger than accuracy without any type of DNA 

fragment. 

 

TABLE 1: Contribution rates of different DNA fragments in four species 

Species cr2(%) cr3(%) cr4(%) cr5(%) Cr6(%) 

Human 0.76 -0.24 -0.34 0.49 2.25 

Worm 0.27 -0.28 -0.02 1.32 3.48 

Fly 0.83 5.77 0.73 2.82 8.88 

Yeast -0.03 0.11 0.13 0.19 0.05 

 

  

(A)                         (B) 

  

(C)                         (D) 

Fig. 2. Accuracy of our FEID-BP with different DNA fragments in human 

(A), worm (B), fly (C) and yeast (D) genomes. Point at red line denotes 

accuracy when only use di-nucleotide, tri-nucleotide, four-nucleotide, five-

nucleotide and six-nucleotide sequences as input factors, respectively. Point at 

green line denotes accuracy when use all type of DNA fragments except di-

nucleotide, tri-nucleotide, four-nucleotide, five-nucleotide and six-nucleotide 

sequences, respectively. Point at blue line denotes accuracy when use all 

types of DNA fragments (di-nucleotide, tri-nucleotide, four-nucleotide, five-

nucleotide and six-nucleotide sequences).  

B. PREDICTED RESULTS OF HUMAN,WORM, FLY AND 

YEAST DATASETS 

We use jackknife test to evaluate model’s quality with 

human, worm and fly datasets. Meanwhile, 10-fold cross-

validation is used to evaluate model’s quality with yeast dataset. 

Accuracy of FEID is 0.8789, 0.8976, 0.8550 and 0.9994 for 

human, worm, fly and yeast datasets, respectively. Detailed 

comparisons are shown in Tables 2-5 and Figure 3. The 

accuracies of FEID model are higher than other methods with 

human, worm and fly datasets. Accuracy for yeast dataset 

reaches 0.9994, higher than those obtained using DNA 

deformation energy model [50] and iNuc-PhysChem model [51] 

(Figure 3D).Furthermore, our model has best Mathew 

correlation coefficient with human, worm and fly datasets 

which means input factors in this paper is more related to 

nucleosome positioning. All these results show that FEID-BP 

model is an effective method in nucleosome positioning. 
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TABLE 2. Comparison using jackknife test in human genome 

Species Methods Acc Sn Sp Mcc 

Human FEID-BP 0.8789 0.9006 0.8574 0.7585 

iNuc-PseKNC [6] 0.8627 0.8786 0.8470 0.73 

 iNuc-PseSTNC [49] 0.8760 0.8931 0.8591 0.75 

 

TABLE 3. Comparison using jackknife test in worm genome 

Species Methods Acc Sn Sp Mcc 

Worm FEID-BP 0.8976 0.9061 0.8892 0.7953 

3LS [5] 0.8786 0.8654 0.8921 0.7576 

iNuc-PseKNC [6] 0.8690 0.9030 0.8355 0.74 

 iNuc-PseSTNC [49] 0.8862 0.9162 0.8666 0.77 

 

TABLE 4. Comparison using jackknife test in fly genome 

Species Methods Acc Sn Sp Mcc 

Fly FEID-BP 0.8550 0.8479 0.8621 0.7100 

3LS [5] 0.8341 0.8407 0.8274 0.6682 

iNuc-PseKNC [6] 0.7997 0.7831 0.8165 0.60 

 iNuc-PseSTNC [49] 0.8167 0.7976 0.8361 0.63 

 

TABLE 5. Comparison using 10-fold cross-valudation test in yeast genome 

Species Methods Acc Sn Sp Mcc 

Yeast FEID-BP 0.9994 1.0 0.9989 0.9989 

3LS [5] 1.0 1.0 1.0 1.0 

DNA deformation 

energy [50] 

0.981 0.982 0.980 0.963 

 iNuc-PhysChem [51] 0.967 0.972 0.943 0.936 
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Fig. 3. Comparison results of various methods in human (A), worm (B), fly 

(C) and yeast (D) genomes datasets. X axis denotes the metrics to evaluate 

model’s quality, including Acc, Sn, Sp and Mcc, and Y axis deno,tes the 

values of four metrics in human, worm, fly and yeast genomes, respectively. 

 

Besides, the iNuc-PseKNC model and the iNuc-PhysChem 

model are based on SVM, those methods may be deficient in 

finding key factors in nucleosome positioning. While the most 

important factors in nucleosome positioning can be found 

based on calculated contribution rates of nucleotide sequences. 

Ⅳ. DISCUSSION 

From Table 1, we find that six-nucleotide plays more 

important role in nucleosome positioning than other DNA 

fragments. We believe it is because of two main reasons. 

On the one hand, a six-nucleotide sequence is composed by 

two molecule tri-nucleotide sequences. We know that a tri-

nucleotide sequence can participates in gene expression 
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processes because they can construct codons in transcription 

[52]. In the processes of gene expression, the changes of 

nucleosome are quite clear. Furthermore, nucleosome has a low 

occupancy in TSS and CTCF position [8]. 

On the other hand, six-nucleotide sequences contain more 

sequences information in nucleosome positioning. Thus, we 

deduce that characteristics of six-nucleotide sequences are 

similar to feature of nucleosome [53]. In the future, we will 

combine the six-nucleotide sequences with six dimensional 

flexibilities of nucleotide sequences in nucleosome positioning. 

Besides, based on the distribution map of nucleosome 

positioning, important information for remote diagnosis will be 

found. 

Besides, we analyze relevance of the ten features in order to 

find more factors related to nucleosome positioning. 

Correlation degree can be measured by correlation 

coefficient. Due to the unknown distribution of ten features, 

spearman correlation coefficient is used to calculate relevance 

of ten features. 

From Figure 4A,B,C,D, we can obtain relevance of ten 

features in human, worm, fly and yeast genomes, respectively. 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

Fig. 4. Relevance of ten features in human, worm, fly and yeast 

genomes were shown by color matrix. Different color denoted 

different correlation coefficient, the relation between color and 

correlation coefficient was shown in legend. For simplicity, 

v1~v10 denoted ten features vectors obtained by positive di-

nucleotide, negative di-nucleotide, positive tri-nucleotide, 

negative tri-nucleotide, positive four-nucleotide, negative four-

nucleotide, positive five-nucleotide, negative five-nucleotide, 

positive six-nucleotide and negative six-nucleotide, 

respectively. Furthermore, those features vectors with high 

relevance were connected by a line and the relevance became 

weaker and weaker with the increase of distance with color 

matrix. (a) Relevance of ten features in human genome; (b) 

Relevance of ten features in worm genome; (c) Relevance of 

ten features in fly genome; (d) Relevance of ten features in 

yeast genome. 

  As shown in Figure 4, some features vectors are highly 

relevant. In order to obtain accurate results, meanwhile, reduce 

calculation time, the following strategy was adopted. 

At first, search for those features vectors with high relevance in 

four species genomes and set relevant threshold. And two 

features vectors whose correlation coefficient exceeded the 

threshold were considered as features vectors of highly relevant. 

Then, use all features vectors except those features vectors with 

highly relevant as input feature vector of model to recognize 

core DNA. Finally, 10-fold cross-validation was used to 

examine the performance of prediction model. The threshold 

and feature vectors with high velevance in Table 6. The 

prediction results obtained all feature vectors except those with 

high relevance were shown in Table 7. 

TABLE 6. Feature vectors with high relevance in four species 

 

TABLE 7. Prediction results obtained by feature vectors 

combinations as input feature vectors of model 
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Species   threshold    feature vectors with high relevance 

Human     90%        v1 and v3, v2 and v4, v3 and v5, 

                          v5 and v7, v7 and v9. 

 

worm      90%            v1 and v3, v2 and v4, 

                          v6 and v8, v8 and v10. 

 

fly         93%       v2 and v4, v7 and v9, v8 and v9, 

                      v8 and v10, v9 and v10. 

 

yeast       95%       v1 and v3, v2 and v4, v3 and v5, 

                      v4 and v6, v5 and v7, v6 and v8, 

                      v7 and v9, v8 and v10. 
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  As shown in Table 6-7, using new feature vectors with low 

relevance as input vectors of model, the prediction accuracy of 

human, worm and yeast was slightly lower than those obtained 

by 10 feature vectors. Which illustrated that new features of 

Table 7 were important factors in nucleosome positioning. As 

for fly genome, the prediction results were not ideal only using 

new feature vectors as input feature vectors of model. Which 

showed that different DNA fragments interacted with each 

other and interaction information was favor to nucleosome 

positioning. 

Ⅴ. CONCLUSION 

In this paper, a novel nucleosome positioning method based 

on both fractal, entropy information and increment of diversity 

was proposed. Based on this method, core DNAs of human, 

worm, fly and yeast were recognized by their sequences. In 

order to evaluate model’s quality, different nucleosome 

positioning methods were compared with same exist 

benchmark datasets. Experimental results showed that the 

provided model was an effective nucleosome positioning 

method. Besides, this paper analyzed importance of all factors 

which were thought to play roles in nucleosome structure. We 

found six-nucleotide sequences palyed most important role in 

nucleosome positioning based on analysis of nucleotide 

sequences we used. 

Because nucleosome positioning has great significance in 

telemedicine, when combined the information of nucleosome 

positioning with biology processes, genetic variations in 

remote area will be found recently. Furthermore, a gene based 

diagnosis will be quickly determined in future. 

However, FEID-BP model was based on sequences 

information, some factors influencing nucleosome position 

were ignored. In order to obtain more accurate prediction 

results, we will combine the sequences information with 

physicochemical properties of sequences in nucleosome 

positioning in the future. 
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