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Abstract

In this paper, a novel technique is proposed to solve fuzzy fractional delay differential equations

(FFDDEs) with initial condition and source function, which are fuzzy triangular functions.

The obtained solution is a fuzzy set of real functions. Each real function satisfies an FFDDE

with a specific membership degree. A detailed algorithm is provided to solve the FFDDE. The

proposed method has been elucidated in detail through numerical illustrations. Graphs are

plotted using MATLAB.
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1. Introduction

Delay differential equation (DDE) is a type of differential equation in which the derivative of

an unknown function at any time depends on the solution at prior times. DDE is mainly used

in a large number of system models in physics, biology, and engineering. In addition, DDE is

applied in many practical systems such as automatic control, traffic models, neuroscience, and

lasers. References [1] and [2] presented a complete study of DDEs and their applications.

On the other hand, when a dynamical phenomenon with a delay is modeled using ordinary

DDEs, the model is not always accurate. In general, the initial conditions or parameters of the

equations are incomplete or vague. This limitation leads to the study of fuzzy DDEs (FDDEs).

In recent years, the theory and application of FDDEs have been developed by many researchers.

Lupulescu introduced a DDE with a fuzzy case in [3]. Consequently, Khastan et al. [4] and

Hoa et al. [5] presented the results of the existence and uniqueness of solutions of generalized

FDDEs. Moreover, Hoa et al. [6] introduced fuzzy delay integro-differential equations with

generalized Hukuhara differentiability. Random fuzzy delay integro-differential equations

were investigated in [7] and [8].

In many real-world tasks, the memory and hereditary properties of differential operators

are broadly perceived to be well anticipated through fractional operators. Fractional order is

an extension of the classical order of differentiation and integration. In the last few decades,

numerous phenomena in different fields of mathematics, economics, engineering, and science

have been more precisely described via fractional derivatives, and fractional differential

equations (FDEs) have come up as another powerful device for modeling many difficult types
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of complex systems. Podlubny [9] provided a major contribu-

tion to this field. The existence, uniqueness result, and some

integral transforms of FDEs are presented in [9]. Later, Kilbas

et al. [10] presented the idea of fractional calculus. A large

amount of literature has been dedicated to the theory and appli-

cations of FDEs [11-13]. Currently, fractional chaotic systems

are gaining considerable interest among many researchers in

the different fields of science, mathematics, and engineering.

Huang et al. [14] analyzed the behavior of a chaotic system

of a fractional order love model with an external environment.

Moreover, Huang et al. [15] studied the relationship of Romeo

and Juliet love fractional model using a fuzzy function.

The idea of Riemann–Liouville FDE with an uncertainty

was introduced by Agarwal et al. [16]. Consequently, many

authors presented results on the existence and uniqueness of

solutions for fuzzy FDEs (FFDEs) using numerous methods [17-

20]. Mazandarani et al. [21] used the modified Euler method to

solve FFDEs with a Caputo derivative. Salahshour et al. [22] ob-

tained the solution of FFDEs using the fuzzy Laplace transform

method. Ahmed et al. [23] provided analytical and numerical

solutions of FFDEs using the Zadeh’s extension principle.

In the present work, our aim is to obtain a solution for FD-

DEs under a fractional derivative. Many authors solved fuzzy

fractional DDEs (FFDDEs) using some numerical methods. For

instance, Hoa [24] proposed a solution of FFDDEs that involve

the Caputo gH-differentiability using the Adams–Bashforth–

Moulton method and also proposed the modified Euler method

to solve FFDDEs with an initial condition in [25].

In all the above-cited studies, the source functions and initial

conditions are considered as a fuzzy number-valued function.

For this function, the derivative is considered as a gH-derivative.

This gH-derivative has two types, namely, [(i)-gH] and [(ii)-gH]

differentiability. The disadvantages of this derivative are the

difficulty in determining which type of derivative to choose

and whether the solution is unique. Another difficulty of the

gH-derivative is that it may convert the fuzzy problem into

two crisp corresponding problems, and we need to choose one

solution from a set of solutions that more appropriately fits the

problem.

Therefore, our main motivation is to avoid the difficulties in

choosing the fuzzy derivative. Then, we enhance the methodol-

ogy proposed by Fatullayev et al. [26] for FDDEs to FFDDEs.

The authors in [26] solved fuzzy problems with an initial condi-

tion and a forcing function as a set of fuzzy real functions using

the method of Gasilov et al. [27]. Consequently, in [28] the

authors provided solutions for fuzzy problems with boundary

conditions in which the forcing functions were fuzzy functions.

To the best of our knowledge, this is the first study where

this technique is utilized for solving FFDDEs. In the present

work, our main objective is to obtain a solution for FDDEs with

a fractional derivative. Recently, fuzzy triangular membership

function is a beneficial device in many designing applications

[29]. Therefore, in this approach, we consider that the initial

condition and source functions are in fuzzy triangular forms.

Moreover, we prove that if the initial conditions and source

functions are fuzzy triangular functions, then the value of the

solution is also a fuzzy triangular function. According to this

methodology, we present the existence and uniqueness results

for of FFDDEs.

This paper is structured as follows: The basic definition

and notation of the fractional derivatives, fuzzy sets and fuzzy

functions are presented in Section 2. The proposed method

for solving FFDDEs is described in Section 3. Numerical

applications are performed to test the validity and reliability of

the present algorithm in Section 4. Finally, the conclusion is

drawn in Section 5.

2. Basics of Fuzzy and Fractional Calculus

In this section, we provide certain essential definitions and

properties of the fuzzy fractional concept.

Definition 1 [9, 10]. The Riemann–Liouville fractional inte-

gral of y(χ) with any order α > 0 is expressed as

Iαχ y(χ) =
1

Γ(α)

∫ χ

0

(χ− s)
α−1

y(s)ds. (1)

Definition 2 [9, 10]. The Caputo derivative of order α (0 <

α < 1) of real-valued function y(χ) is defined as

Dαy(χ) =I1−α
χ

[
dy(χ)

dχ

]

=
1

Γ(1− α)

∫ χ

0

(χ− s)
−α dy(s)

ds
ds. (2)

2.1 Fuzzy-Set Theory

We provide fixed set U , and a fuzzy set Ã on U with member-

ship function µÃ can be defined as Ã = {(x, µÃ(x)) | x ∈ U}.

We also consider a, b, and c as real numbers with a ≤ c ≤ b.

The membership function of triangular fuzzy number ũ = (a,
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c, b) is defined as

µÃ(x) =





x− a

c− a
, a < x < c,

1, x = c,

b− x

b− c
, c < x < b,

0, otherwise.

(3)

According to the geometric explanation of a fuzzy number, c

is the vertex, u = a is the left end point, and u = b is the right

end point.

In this study, ũ can be represented by ũ = ucr + ũun, where

ucr is the real part (ucr = c) and ũun is the uncertain part

(ũun = (a− c, 0, b− c)).

A fuzzy set can also be represented through the definition of

r-cut. For each 0 < r ≤ 1, the r-cut of Ã is expressed as Ar =

{x ∈ U | µÃ(x) ≥ r}. For r = 0, A0 = closure(support(Ã)),

where support(Ã) = {x ∈ U | µÃ(x) > 0}.

The r-cuts of fuzzy number ũ = (a, c, b) are intervals ur =

[ur, ur], where ur = a + r(c − a) and ur = b + r(c − b).

This ur and ur can be written as ur = c+ (1− r)(a− c) and

ur = c+ (1− r)(b− c). Then, [ur, ur] = c+ (1− r)[a− c,

b− c].

2.2 Fuzzy Triangular Function

In our work, we express a fuzzy function as a set of fuzzy

real functions in which every real function possesses a specific

membership degree. This function is defined by Gasilov et al.

[27].

Let Fa(•), Fb(•), and Fc(•) be functions that are continuous

on interval I .

Fuzzy set F̃ = 〈Fa, Fc, Fb〉 is called a fuzzy triangular func-

tion if it is determined by the following membership function:

µF̃ (y(.)) =





r, y = Fa + r(Fc − Fa) and 0 < r < 1,

1, y = Fc,

r, y = Fb + r(Fc − Fb) and 0 < r < 1,

0, otherwise.

(4)

The interpretation of triangular fuzzy function F̃ = 〈Fa, Fc,

Fb〉 is presented by Gasilov et al in [27].

The fuzzy triangular function is a fuzzy triangular number for

each time χ∈I . Then, we can represent it using the following

equation:

F̃ (χ) =(min{Fa(χ), Fc(χ), Fb(χ)},

Fc(χ), max{Fa(χ), Fc(χ), Fb(χ)}). (5)

3. Solution of Fuzzy Fractional Delay Differen-

tial Equations

We consider the following FFDDE:

{
CDαy(χ)=m(χ)y(χ−τ)+F̃ (χ), χ>0, 0<α<1,

y(χ) = Φ̃(χ), − τ ≤ χ ≤ 0,
(6)

where m(χ) is a continuous crisp function and τ > 0 is the

delay value. Φ̃(χ) = 〈Φa, Φc, Φb〉 and F̃ (χ) = 〈Fa, Fc, Fb〉

are triangular fuzzy functions defined on [−τ , 0] and (0, ∞),

respectively, and CDα denotes the Caputo derivative operator.

Definition 3 [26]. Fuzzy set Ỹ is the solution of FFDDE (6)

on U , and its membership function is defined by

µỸ (y(•)) =min{µΦ̃(ϕ(•)),

µF̃ (
CDαy(χ)−m(χ)y(χ− τ))}, (7)

where ϕ(χ) = y(χ).

We can explain Eq. (7) as follows:

Let us consider that y(•) is a function on U . Then, we cal-

culate ϕ(χ) = y(χ) for −τ ≤ χ ≤ 0 and find µϕ̃(ϕ(•)) = µ1.

Consequently, for given function y(χ), we calculate f(χ) =
CDαy(χ)−m(χ)y(χ− τ) for χ > 0 and find µF̃ (f(•)) =

µ2. Next, we determine membership degree µ for function

y(•), which is calculated as µ = min{µ1, µ2}. Then, we

define function set y(•) with membership degree µ as fuzzy

solution Ỹ .

As stated in Definition 3, solution Ỹ is a collection of fuzzy

real functions y(χ). A function y(χ) has a positive membership

degree if it satisfies the following equation:

{
CDαy(χ) = m(χ)y(χ− τ) + f(χ), χ > 0, 0 < α < 1,

y(χ) = ϕ(χ), − τ ≤ χ ≤ 0,

(8)

for ϕ∈supp(Φ̃) and f ∈ support(F̃ ).

Let us express F̃ as F̃ = fcr + f̃ , where fcr = Fc, f̃ = 〈fa,

0, fb〉 = 〈Fa−Fc, 0, Fb−Fc〉. Let us also express Φ̃ as Φ̃(χ) =

ϕcr + ϕ̃, where ϕcr = Φc, ϕ̃ = 〈ϕa, 0, ϕb〉 = 〈Φa − Φc, 0,

Φb − Φc〉.
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Because Eq. (6) is linear, we apply the principle of superpo-

sition into it.

Then, we split FFDDE (6) into three equations as follows:

(1) Fractional non-homogeneous equation

{
CDαy(χ)=m(χ)y(χ−τ)+fcr(χ), χ>0, 0<α<1,

y(χ) = ϕcr(χ), − τ ≤ χ ≤ 0,

(9)

(2) Fractional homogeneous equation involving an initial func-

tion, which is a triangular fuzzy function

{
CDαy(χ)=m(χ)y(χ−τ), χ>0, 0<α<1,

y(χ) = ϕ̃(χ), − τ ≤ χ ≤ 0.
(10)

(3) Fractional non-homogeneous equation involving a fuzzy

source function and whose initial value is zero

{
CDαy(χ)=m(χ)y(χ−τ)+f̃(χ), χ>0, 0<α<1,

y(χ) = 0, − τ ≤ χ ≤ 0.

(11)

Next, we develop an algorithm to solve these three equations.

3.1 Fractional Non-Homogeneous Equation

We consider fractional non-homogeneous equation, i.e., Eq. (9).

We use the method of steps to solve Eq. (9). First, we obtain

the solution in the interval [0, τ ]. For 0 ≤ χ ≤ τ , we obtain

y(χ− τ) = ϕcr(χ− τ). Then, Eq. (9) can be expressed as

{
CDαy(χ) = m(χ)ϕcr(χ− τ) + fcr(χ),

y(0) = ϕcr(0).
. (12)

By performing fractional integration on both sides of Eq.

(12), we obtain unique solution y(χ) = ϕcr(0) + Jα[m(χ)

ϕcr(χ − τ)] + Jα[fcr(χ)] for 0 ≤ χ ≤ τ , where Jα denotes

the fractional integral operators.

3.2 Fractional Homogeneous Equation Involving Initial

Fuzzy Function

Next, we solve Eq. (10) in which the initial condition is fuzzy

function ϕ̃ = 〈ϕa, 0, ϕb〉.

Let us consider that ya(χ) is the solution of the following

equation:

{
CDαy(χ) = m(χ)y(χ− τ), χ > 0, 0 < α < 1,

y(χ) = ϕa(χ), − τ ≤ χ ≤ 0.
(13)

Let us also consider that yb(χ) is the solution of the following

equation:

{
CDαy(χ) = m(χ)y(χ− τ), χ > 0, 0 < α < 1,

y(χ) = ϕb(χ), − τ ≤ χ ≤ 0.
(14)

Theorem 1. Let us consider Eq. (10), where ϕ̃ = 〈ϕa, 0,

ϕb〉 is a triangular fuzzy function and m(χ), ϕa(χ), and ϕb(χ)

are continuous functions. If ya(χ) and yb(χ) are solutions of

Eqs. (13) and (14), respectively, then Eq. (10) has unique

solution Ỹϕ = 〈ya, 0, yb〉.

Proof. According to Definition 3, functions ya(χ) and yb(χ)

with non-zero membership degree from bunch Ỹϕ are solutions

to Eqs. (13) and (14) for ϕa and ϕb from bunch ϕ̃, respectively.

However, the definition of triangular fuzzy function implies

that bunch ϕ̃ = 〈ϕa, 0, ϕb〉 consists of functions kϕa and kϕb

(k = 1− r and 0 ≤ r ≤ 1) because Φc = 0.

Moreover, we apply the linear property for the fractional or-

der (see [30]). Then, if y(χ) is a solution function of CDαy(χ)

= m(χ)y(χ − τ) with initial condition y(χ) = ϕ(χ), then

ky(χ) is a solution function of CDαy(χ) = m(χ)y(χ − τ)

with initial condition y(χ) = kϕ(χ), where k is a constant

number.

This result implies that set Ỹϕ contains functions kya and

kyb (0 ≤ k ≤ 1). Hence, Ỹϕ is a fuzzy triangular function

derived by Ỹϕ = 〈ya, 0, yb〉. Thus, the theorem is proven.

Remark 1. Fuzzy triangular function Ỹϕ = 〈ya, 0, yb〉 can

be expressed as a triangular fuzzy number at time χ as follows:

Ỹϕ(χ)={min{ya(χ), 0, yb(χ)}, 0,max{ya(χ), 0, yb(χ)}}.

3.3 Fractional Non-Homogeneous Equation Involving

Fuzzy Source Function and Zero Initial Value

Next, we solve Eq. (11) in which fuzzy source function f̃

= 〈fa, 0, fb〉 and the initial condition is zero.

We let yu(χ) be the solution to the following problem:

{
CDαy(χ)=m(χ)y(χ−τ)+fa(χ), χ>0, 0<α<1,

y(χ) = 0, − τ ≤ χ ≤ 0.

(15)
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We also let yv(χ) be the solution to the following problem:

{
CDαy(χ) = m(χ)y(χ− τ) + fb(χ), χ > 0, 0 < α < 1,

y(χ) = 0, − τ ≤ χ ≤ 0.

(16)

Theorem 2. Let us consider Eq. (11). Here, f̃ = 〈fa, 0, fb〉

is a triangular fuzzy function, and m(χ), fa(χ), and fb(χ) are

continuous functions. If yu(χ) and yv(χ) are solutions of Eqs.

(15) and (16), respectively, then Eq. (11) has unique solution

Ỹf = 〈yu, 0, yv〉.

Proof. The proof of this theorem can be derived from the same

procedure used in Theorem 1.

3.4 Algorithm for the Solution

Next, we provide the algorithm for solving FFDDE (6).

Step 1: We express the source function and initial value as

F̃ (χ) = fcr + 〈fa, 0, fb〉 and Φ̃(χ) = ϕcr + 〈ϕa, 0, ϕb〉.

Step 2: We find solution ycr(χ) of Eq. (9) using the step

method or any other numerical methods.

Step 3: We determine solutions ya(χ) and yb(χ) to Eqs. (13)

and (14), respectively. Then, the solution of Eq. (10) can be

defined as

Ỹϕ(χ) = {min{ya(χ), 0, yb(χ)}, 0,max{ya(χ), 0, yb(χ)}}.

Step 4: We find solutions yu(χ) and yv(χ) to Eqs. (15)

and (16), respectively. Then, the solution of Eq. (11) can be

expressed as

Ỹf (χ) = {min{yu(χ), 0, yv(χ)}, 0,max{yu(χ), 0, yv(χ)}}.

Step 5: The solution of FFDDE (6) is expressed as follows:

Ỹ (χ) = ycr(χ) + Ỹϕ(χ) + Ỹf (χ). (17)

4. Example

Let us consider the following FFDDE:





CDαy(χ) = λχy(χ− 1) + 〈χ2, 2χ2, 3χ2〉,

χ∈ [0, 1], 0 < α < 1,

y(χ) = Φ̃(χ) = 〈χ+ 1, 2χ+ 2, 3χ+ 3〉,

χ∈ [−1, 0],

(18)

where λ∈ [−1, 1] \ {0}.

We represent the source function and initial value as F̃ (χ) =

fcr+ 〈fa, 0, fb〉 = 2χ2+ 〈−χ2, 0, χ2〉 and Φ̃(x) = ϕcr+ 〈ϕa,

0, ϕb〉 = 2χ+ 2 + 〈−χ− 1, 0, χ+ 1〉.

First, we find a solution to the following fractional associated

non-homogeneous equation:

{
CDαy(χ)=λχy(χ−1)+fcr, χ∈ [0, 1], 0<α<1,

y(χ) = ϕcr = 2χ+ 2, χ∈ [−1, 0] ,
(19)

where fcr = 2χ2.

By solving Eq. (19), we obtain the following solution:

ycr(χ) = 2 +
4(λ+ 1)

Γ(3 + α)
χ2+α. (20)

Solution ycr(χ) is shown in Figure 1 (dashed black color

line).

Second, we derive the solution to the fractional homogeneous

equation involving fuzzy initial function





CDαy(χ) = λχy(χ− 1), χ∈ [0, 1], 0 < α < 1,

y(χ) = 〈ϕa, 0, ϕb〉

= 〈−χ− 1, 0, χ+ 1〉, χ∈ [−1, 0].

(21)

Then, we solve the following fractional equation:

Figure 1. Solution function and r-cuts: black color line—0-cut;

dotted blue color line—0.3-cut; dashed-dotted red color line—0.7-cut;

and dashed black color line—1.0-cut. λ = 1 and α = 0.5.
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Figure 2. Fuzzy solution in terms of the initial values and r-cuts:

black color line—0-cut; dotted blue color line—0.3-cut; dashed—

dotted red color line—0.7-cut; and dashed black color line—1.0-cut.

λ = 1 and α = 0.5.

{
CDαy(χ) = λχy(χ− 1), χ∈ [0, 1], 0 < α < 1,

y(χ) = ϕ(χ), χ∈ [−1, 0].
(22)

For ϕ(χ) = ϕa(χ), we obtain solution ya(χ) = −1−
2λ

Γ(3+α)χ
2+α, and for ϕ(χ) = ϕb(χ), we obtain solution yb(χ)

= 1 + 2λ
Γ(3+α)χ

2+α.

The obtained solution from Eq. (21) represents triangular

fuzzy function Ỹϕ = 〈ya, 0, yb〉. Solution Ỹϕ and its r-cuts are

shown in Figure 2, and for time χ, we obtain

Ỹϕ(χ) = (min{ya(χ), 0, yb(χ)}, 0,max{ya(χ), 0, yb(χ)}).

(23)

Next, we derive the solution for the fractional non-homoge-

neous equation involving a fuzzy source function.

{
CDαy(χ)=λχy(χ−1)+〈fa, 0, fb〉, χ∈ [0, 1], 0<α<1,

y(χ) = 0, χ∈ [−1, 0].

(24)

Then, we solve the crisp problems.

{
CDαy(χ) = λχy(χ− 1) + f(χ), χ∈ [0, 1], 0 < α < 1,

y(χ) = 0, χ∈ [−1, 0].

(25)

For f(χ) = fa(χ), we obtain solution yu(χ)=
−2

Γ(3+α)χ
2+α,

and for f(χ) = fb(χ), we obtain solution yv(χ)=
2

Γ(3+α)χ
2+α.

Figure 3. Fuzzy solution relative to the source function and its r-cuts:

black color line—0-cut; dotted blue color line—0.3- cut; dashed–

dotted red color line—0.7-cut; and dashed black color line—1.0-cut.

λ = 1 and α = 0.5.

The obtained solution from Eq. (24) is fuzzy triangular func-

tion Ỹf = 〈yu, 0, yv〉. Solution Ỹf and its r-cuts are shown in

Figure 3. For time t, we obtain

Ỹf (χ) = (min{yu(χ), 0, yv(χ)}, 0,max{yu(χ), 0, yv(χ)}).

(26)

Finally, we derive the solution of Equation (18) in the follow-

ing form:

Ỹ (χ) = ycr(χ) + Ỹϕ(χ) + Ỹf (χ).

Solution Ỹ (χ) and its r-cuts are shown in Figure 1.

5. Conclusion

In this study, we obtained the solutions of an FFDDE according

to the method proposed by Fatullayev et al. [26]. In the present

work, we considered that the initial condition and source func-

tion are triangular fuzzy functions. Meanwhile, the FFDDE was

converted into three equations based on the initial and source

functions. Finally, we combined all the solutions of the above-

mentioned three equations to obtain a solution of the FFDDE.

Graphs were plotted for the fuzzy solution. The obtained so-

lutions for the FFDDE were expressed as a fuzzy set of real

functions. We recommended an efficient method to compute the

fuzzy solution set. The numerical example demonstrated that

the proposed method is efficient and accurate for application to
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FFDDEs.
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