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A height-balanced tree is a rooted binary tree in which, for every vertex V, the difference in the heights of the subtrees rooted at the
left and right child of V (called the balance factor of V) is at most one. In this paper, we consider height-balanced trees in which the
balance factor of every vertex beyond a level is 0. We prove that there are 22

𝑡
−1 such trees and embed them into a generalized join of

hypercubes.

1. Introduction

The problem of efficiently implementing parallel algorithms
on parallel computers has been studied as a graph embedding
problem, which is to embed the communication graph 𝐺

𝐴

(underlying a parallel algorithm 𝐴) within the network
topology 𝐻

𝑁
of a parallel computer 𝑁 with minimum com-

munication overhead. The working of the parallel algorithm
𝐴 when implemented on 𝑁 can be described by embedding
𝐺
𝐴
into 𝐻

𝑁
. Mathematically, an embedding 𝜙 of a (guest)

graph 𝐺(𝑉, 𝐸) into a (host) graph 𝐻(𝑊, 𝐹) is a one-one
function 𝜙 : 𝑉 → 𝑊 such that if (𝑢, V) is an edge in 𝐺,
then 𝜙(𝑢) and 𝜙(V) are connected by a path in𝐻. We use 𝜙 :
𝑉 → 𝑊 and 𝜙 : 𝐺 → 𝐻 analogously. The following are two
of the parameters that measure the quality of an embedding.

(i) Dilation(𝜙) := max{dist
𝐻
(𝜙(𝑢), 𝜙(V)) : (𝑢, V) ∈ 𝐸}.

By dist
𝐻
(𝑥, 𝑦)wemean the shortest distance between

𝑥 and 𝑦 in graph 𝐻. The dilation of an embedding
measures the maximum time required to route a
message in the host graph, between any two vertices.
If dilation(𝜙) = 1, then𝐺 is isomorphic to a subgraph
of𝐻 and we write 𝐺 ⊆ 𝐻. If dilation(𝜙) = 2, then in
this paper we denote it by 𝐺 → 𝐻.

(ii) Expansion(𝜙) := |𝑊|/|𝑉|. This parameter mea-
sures the relative number of unutilized processors

in the host graph. Since 𝜙 is a one-one function,
expansion(𝜙) is at least 1.

A goal of a parallel algorithm designer is to map (or
embed) the algorithm graph 𝐺 into an interconnection
network 𝐻 with dilation and expansion kept as minimum
as possible. However, for most embedding problems, it is
very difficult to obtain an embedding that minimizes these
parameters simultaneously.Therefore, some tradeoffs among
the parameters must be made; see Leighton [1].

Trees generally form the underlying data structure for
several parallel algorithms that employ divide-and-conquer
rule, branch-and-bound technique, and so on. A self-
balancing binary search tree that ensures a logarithmic
running time (in both average and worst case) on operations
such as insertion, deletion, and rotation, regardless of the
order of the data inserted, is a height-balanced tree. Insertions
and deletions may require the tree to be rebalanced by one or
more tree rotations. However, these rotations take constant
time. The height-balanced trees are also called AVL trees,
named after their inventors Adelson-Velskii and Landis [2],
and their computational aspects are discussed in [3–5]. The
computational efficiency of height-balanced data structures
has motivated a vast study in parallel computations too.They
have been used for concurrent search, concurrent insertion,
and information storage and retrieval and implement parallel
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Figure 1: Examples of height-balanced trees.

dictionary routines; see [4–7]. A formal definition of height-
balanced trees is given in the next section.

On the other hand, among the interconnection networks
of parallel computers, the binary hypercube has received
much attention. An n-dimension hypercube (denoted by 𝑄

𝑛
)

has 2𝑛 vertices each labelled with a binary string of length
𝑛 and two vertices are adjacent if and only if their labels
differ in exactly one position. The hypercube topology has
several attractive features. Its popularity is due to the fact
that the nodes of a hypercube are symmetrically placed
and the number of interprocessor connections per node is
small. Another important property of a hypercube is its
ability to efficiently simulate the message routings of other
interconnection networks. An extensive survey of embedding
various graphs into hypercubes is given in [1, 8–10].

In this paper, we consider a subclass HB(ℎ, 𝑡) of height-
balanced trees and we analyse the size of the subclass by
counting the number of trees in it. We also prove that every
height-balanced tree 𝑇

ℎ
∈ HB(ℎ, 𝑡) is embeddable in a

generalized join of hypercubes with dilation 2.

2. Preliminaries

Definition 1. A rooted binary tree 𝑇 is said to be height-
balanced if, for every vertex V ∈ 𝑉(𝑇), the heights of the
subtrees, rooted at the left and right child of V, differ by at
most one.

A classical example of a height-balanced tree is the
complete binary tree. Figure 1 shows a few small height-
balanced trees.

In this paper, without loss of generality, we assume that
the height of the left subtree is not less than the height of the
right subtree for every V ∈ 𝑉(𝑇). With any height-balanced
tree𝑇, we associate a function b

𝑇
: 𝑉(𝑇) → {0, 1} defined by

b
𝑇
(V) := the difference between the heights of left and right

subtrees of V, for every vertex V ∈ 𝑉(𝑇). This difference b
𝑇
(V)

is called the balance factor of V. The balance condition, being
binary, ensures that the height of a height-balanced tree is
logarithmic of its size; refer to [11].

It is usually assumed that the height of an empty tree is −1
and that of a single-vertex tree is 0. Consequently, for a leaf
𝑙 ∈ 𝑉(𝑇), b

𝑇
(𝑙) = 0. Clearly,

b
𝑇
(V) = 0, for every V ∈ 𝑉 (𝑇)

iff 𝑇 is a complete binary tree.
(1)

If 𝑇
ℎ
is a height-balanced tree of height ℎ, we denote its levels

by 𝐿
0
, 𝐿
1
, . . . , 𝐿

ℎ
, where 𝐿

𝑖
= {V ∈ 𝑉(𝑇

ℎ
) : dist(V, root) =

𝑖}, 0 ≤ 𝑖 ≤ ℎ. It is shown in [2] that the

subtree of 𝑇
ℎ
induced by vertices

in 𝐿
0
∪ 𝐿
1
⋅ ⋅ ⋅ ∪ 𝐿

⌊ℎ/2⌋
is complete.

(2)

Let HB(ℎ, 𝑡) (where 0 ≤ 𝑡 ≤ ℎ) denote the subclass of
height-balanced trees 𝑇 with height ℎ such that

b
𝑇
(V) =

{

{

{

0 if V ∈ 𝐿
𝑡
∪ 𝐿
𝑡+1

∪ ⋅ ⋅ ⋅ ∪ 𝐿
ℎ

0 or 1 if V ∈ 𝑉

𝐿
𝑡

∪ 𝐿
𝑡+1

∪ ⋅ ⋅ ⋅ ∪ 𝐿
ℎ
.

(3)

So HB(ℎ, 0) ⊂ HB(ℎ, 1) ⊂ ⋅ ⋅ ⋅ ⊂ HB(ℎ, ℎ). While HB(ℎ, 0)
contains only one element, namely, the complete binary tree
of height ℎ, HB(ℎ, ℎ) is the class of all height-balanced trees of
height ℎ. Let V(𝑡, 𝑗) be the 𝑗th vertex from left at level 𝑡; then
it follows from (1) and from the definition of HB(ℎ, 𝑡) that

the subtree of 𝑇 rooted at V (𝑡, 𝑗) ∈ 𝐿
𝑡

is a complete binary tree.
(4)

By (2) and (4), the number of vertices in 𝑇 ∈ HB(ℎ, 𝑡), for
0 ≤ 𝑡 ≤ ⌊ℎ/2⌋, is

|𝑉 (𝑇)| = (2
𝑡
− 1) + ∑

V(𝑡,𝑗)∈𝐿𝑡

(2
ℎ
𝑗
+1
− 1) =

2
𝑡

∑

𝑗=1

(2
ℎ
𝑗
+1
) − 1.

(5)

3. Counting Trees of HB(ℎ,𝑡)

Theorem 2. The class HB(ℎ, 𝑡) of height-balanced trees con-
tains exactly 22

𝑡
−1 trees.

Proof. The idea of the proof is to establish a one-to-one
correspondence betweenHB(ℎ, 𝑡) andZ2t−1

2 .That is, for every
𝑇 ∈ HB(ℎ, 𝑡), we will prove that there exists a sequence
(𝑥
1
, 𝑥
2
, . . . , 𝑥

2
𝑡
−1
), 𝑥
𝑖
∈ {0, 1}, 1 ≤ 𝑖 ≤ 2

𝑡
− 1, such that

b
𝑇
(V(𝑗, 𝑘)) = 𝑥

2
𝑗
+𝑘−1

, 0 ≤ 𝑗 ≤ 𝑡 − 1, 1 ≤ 𝑘 ≤ 2
𝑗, and vice

versa.
We first assume the existence of a tree 𝑇 ∈ HB(ℎ, 𝑡) and

associate an element of Z2t−1
2 to 𝑇. Given the tree 𝑇, we order

the vertices of 𝐿
0
∪ 𝐿
1
∪ ⋅ ⋅ ⋅ ∪ 𝐿

𝑡−1
according to the breadth

first search (BFS), say, (V
1
, V
2
, . . . , V

2
𝑡
−1
). For 1 ≤ 𝑖 ≤ 2

𝑡
− 1,

let 𝑥
𝑖
= b
𝑇
(V
𝑖
). Then the sequence (𝑥

1
, 𝑥
2
, . . . , 𝑥

2
𝑡
−1
) is the

required sequence.
We next prove the converse. For a given sequence

(𝑥
1
, 𝑥
2
, . . . , 𝑥

2
𝑡
−1
) of 0’s and 1’s, we construct a tree 𝑇

(Figure 2) such that (1) 𝑇 ∈ HB(ℎ, 𝑡) and (2) b
𝑇
(V(𝑡, 𝑗)) =

𝑥
2
𝑡
−𝑗+1

as follows. Consider a complete binary tree 𝐶
𝑡
of

height 𝑡. Let 𝑙
𝑗
denote the 𝑗th leaf (where 1 ≤ 𝑗 ≤ 2𝑡) from left

in level 𝑡. For every 𝑗, 1 ≤ 𝑗 ≤ 2
𝑡, we root a complete binary

tree 𝐶
ℎ
𝑗

to 𝑙
𝑗
(i.e., 𝑙
𝑗
becomes the root of 𝐶

ℎ
𝑗

). The height ℎ
𝑗

of 𝐶
ℎ
𝑗

is calculated as follows:

ℎ
𝑗
= {

ℎ − 𝑡, if 𝑗 = 1
ℎ
𝑗−2
𝑠𝑗 − 𝑥
[2
𝑡−𝑠𝑗−1+⌈(𝑗−1)/2

𝑠𝑗+1⌉−1]
,

(6)
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Figure 2: 𝑇 ∈ HB(ℎ, 𝑡). The circles represent the vertices of the induced CBT from level 0 to 𝑡. The text inside the circle V(𝑖, 𝑗) for 0 ≤ 𝑖 ≤

𝑡, 1 ≤ 𝑗 ≤ 2
𝑖 denotes the 𝑗th vertex from left at 𝐿

𝑖
. The vertex V(𝑡, 𝑗) is also denoted by 𝑙

𝑗
.

(a) 𝑄1 (b) 𝑄2 (c) 𝑄1 + 𝑄2

Figure 3: The graph join 𝑄
1
+ 𝑄
2
.

where

𝑠
𝑗
= {

0, if 𝑗 is even
greatest power of 2 that divides 𝑗 − 1, if 𝑗 is odd.

(7)

Claim 1 (𝑇 ∈ 𝐻𝐵(ℎ, 𝑡)). From (6), we note that ℎ
𝑗
≤ ℎ − 𝑡.

Therefore, the height of 𝑇is height of 𝐶
𝑡
+max

1≤𝑗≤2
𝑡ℎ
𝑗
= 𝑡 +

(ℎ − 𝑡) = ℎ. In 𝑇, for all 𝑖 ≥ 𝑡, every vertex 𝑢 ∈ 𝐿
𝑖
is a vertex

of some 𝐶
ℎ
𝑗

, 1 ≤ 𝑗 ≤ 2
𝑡. Hence, b

𝑇
(𝑢) = 0 for all 𝑢 ∈ (𝐿

𝑡
∪

𝐿
𝑡+1

∪ ⋅ ⋅ ⋅ ∪ 𝐿
ℎ
). This implies that 𝑇 ∈ HB(ℎ, 𝑡).

Claim 2 (for 0 ≤ 𝑗 ≤ 𝑡 − 1 and 1 ≤ 𝑘 ≤ 2
𝑗, b
𝑇
(V(𝑗, 𝑘)) =

𝑥
2
𝑗
+𝑘−1

). Let𝑇
𝑗,𝑘

denote the subtree rooted at the vertex V(𝑗, 𝑘)
of𝑇. Hence by definition, the balance factor b

𝑇
(V(𝑗, 𝑘)) of the

vertex V(𝑗, 𝑘) is the difference between the heights of the left
subtree 𝑇

𝑗+1,2𝑘−1
and the right subtree 𝑇

𝑗+1,2𝑘
of V(𝑗, 𝑘). That

is,

b
𝑇
(V (𝑗, 𝑘)) := Height of 𝑇

𝑗+1,2𝑘−1
−Height of 𝑇

𝑗+1,2𝑘

= [(𝑡 − 𝑗 − 1) +Height of 𝑇
𝑡,𝑘2
𝑡−𝑗
−2
𝑡−𝑗
+1
]

− [(𝑡 − 𝑗 − 1) +Height of 𝑇
𝑡,𝑘2
𝑡−𝑗
−2
𝑡−𝑗−1
+1
] .

(8)

Let 𝑚
1
and 𝑚

2
denote the integers 𝑘2𝑡−𝑗 − 2

𝑡−𝑗
+ 1 and

𝑘2
𝑡−𝑗

− 2
𝑡−𝑗−1

+ 1, respectively. Since the subtree rooted
at a vertex in level 𝑡 is a complete binary tree, we have
𝑇
𝑡,𝑚
1

≃ 𝐶
ℎ
𝑚1

and 𝑇
𝑡,𝑚
2

≃ 𝐶
ℎ
𝑚2

and b
𝑇
(V(𝑗, 𝑘)) = ℎ

𝑚
1

− ℎ
𝑚
2

.
In order to calculate the difference ℎ

𝑚
1

− ℎ
𝑚
2

, we consider
two cases.

A

B

C D

f

f(A) f(B)

f(C) f(D)

Ch−1 Ch−1 f(Ch−1) f(Ch−1)

C†
h DRCBT(h + 1)

Figure 4: 𝐶+
ℎ
→ DRCBT(ℎ + 1).

Case 1 (0 ≤ 𝑗 < 𝑡−1).On rewriting the values of𝑚
1
and𝑚

2
we

have𝑚
1
= 2
𝑡−𝑗
(𝑘−1)+1 and𝑚

2
= 2
𝑡−𝑗
(𝑘−1)+2

𝑡−𝑗−1
+1. We

note that the greatest powers of 2 that divides𝑚
1
−1 and𝑚

2
−1

are 𝑡−𝑗 and 𝑡−𝑗−1. Hence, by following (6), we have 𝑠
𝑚
1

= 𝑡−𝑗

and 𝑠
𝑚
2

= 𝑡− 𝑗− 1, ℎ
𝑚
1

= ℎ
𝑚
1
−2
𝑡−𝑗 −𝑥

[2
𝑗−1
+⌈(𝑚
1
−1)/2

𝑡−𝑗+1
⌉−1]

, and
then,

ℎ
𝑚
2

= ℎ
𝑚
2
−2
𝑡−𝑗−1 − 𝑥

[2
𝑡−(𝑡−𝑗−1)−1

+⌈(𝑚
2
−1)/2

𝑡−𝑗
⌉−1]

= ℎ
𝑚
1

− 𝑥
[2
𝑗
+⌈(𝑘2

𝑡−𝑗
−2
𝑡−𝑗−1
)/2
𝑡−𝑗
⌉−1]

= ℎ
𝑚
1

− 𝑥
2
𝑗
+𝑘−1

.

(9)

Case 2 (𝑗 = 𝑡 − 1). In this case, 𝑚
1
= 2𝑘 − 1 and 𝑚

2
= 2𝑘.

Since𝑚
2
is even, 𝑠

𝑚
2

= 0 and

ℎ
𝑚
2

= ℎ
𝑚
2
−1
− 𝑥
[2
𝑡−1
+⌈(𝑚
2
−1)/2⌉−1]

= ℎ
𝑚
1

− 𝑥
2
𝑗
+𝑘−1

.

(10)

Hence in both cases, b
𝑇
(V(𝑗, 𝑘)) = ℎ

𝑚
1

− ℎ
𝑚
2

= 𝑥
2
𝑗
+𝑘−1

. We
have proved the claims and hence the theorem.

4. Embedding Trees of HB(ℎ,𝑡)

In this section, we embed every tree 𝑇 ∈ HB(ℎ, 𝑡) into
a generalized join of hypercubes. Before we proceed to
the result, we define the join of graphs and prove certain
preliminary lemmas.
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Figure 5: Embedding of 𝑇 ∈ HB(ℎ, 𝑡) in∑2
𝑡

𝑗=1
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. The intermediate edges between every pair of vertices are not shown for clarity purpose.

Definition 3. The join (denoted by 𝐺
1
+𝐺
2
) of two graphs 𝐺

1

and 𝐺
2
is defined as follows:

𝑉 (𝐺
1
+ 𝐺
2
) = 𝑉 (𝐺

1
) ∪ 𝑉 (𝐺

2
)

𝐸 (𝐺
1
+ 𝐺
2
) = 𝐸 (𝐺

1
) ∪ 𝐸 (𝐺

2
)

∪ {(𝑢, V) : 𝑢 ∈ 𝑉 (𝐺
1
) , V ∈ 𝑉 (𝐺

2
)} ,

(11)

that is, joining each vertex of 𝐺 to every vertex of𝐻. Figure 3
shows the join 𝑄

1
+ 𝑄
2
of the hypercubes 𝑄

1
and 𝑄

2
.

Hence from the definition of graph join we have |𝑉(𝐺
1
+

𝐺
2
)| = |𝑉(𝐺

1
)|+|𝑉(𝐺

2
)| and |𝐸(𝐺

1
+𝐺
2
)| = |𝐸(𝐺

1
)|+|𝐸(𝐺

2
)|+

|𝑉(𝐺
1
)||𝑉(𝐺

2
)|. We denote the generalized join (𝐺

1
+ (𝐺
2
+

⋅ ⋅ ⋅ (𝐺
𝑛−1

+𝐺
𝑛
))) of graphs 𝐺

1
, 𝐺
2
, . . . , 𝐺

𝑛
by∑𝑛
𝑖=1

𝐺
𝑖
. We note

that |𝑉(∑𝑛
𝑖=1

𝐺
𝑖
)| = ∑

𝑛

𝑖=1
|𝑉(𝐺
𝑖
)|.

Lemma 4. Let𝐶†
ℎ
be a supertree of the complete binary tree𝐶

ℎ

of height ℎwith root𝐴 formed by adding a new vertex𝐵 and the
edge (𝐴, 𝐵). Let DRCBT(ℎ + 1) be the double rooted complete
binary tree on 2ℎ+1 vertices. Then 𝐶†

ℎ
→ DRCBT(ℎ + 1).

Proof. Figure 4 shows the tree𝐶†
ℎ
.We call𝐵 as the deep root of

𝐶
†

ℎ
. Consider an embedding 𝑓 : 𝑉(𝐶†

ℎ
) → 𝑉(DRCBT(ℎ+1))

as shown in Figure 4. Such an embedding 𝑓 has dilation 2

since the edge (𝐴,𝐷) ∈ 𝐸(𝐶
†

ℎ
) is mapped onto a path of

length 2 in DRCBT(ℎ + 1) and this is the maximum shortest
distance. The embedding 𝑓 has expansion 1 since both 𝐶

†

ℎ

and DRCBT(ℎ + 1) have 2ℎ+1 vertices. Hence, in short, 𝐶†
ℎ
→

DRCBT(ℎ + 1).

It is known that DRCBT(ℎ + 1) is a subgraph of 𝑄
ℎ+1

; see
Nebeský [12]. Hence, this fact along with Lemma 4 implies
the following.

Lemma 5. One has 𝐶†
ℎ
→ 𝑄
ℎ+1

.

In the next theorem, we give an embedding of every tree
of HB(ℎ, 𝑡) into a generalized join of hypercubes.

Theorem 6. Let 𝑇 ∈ HB(ℎ, 𝑡) and let ℎ
𝑗
be the height of the

complete binary tree rooted at the jth vertex from left at a level
𝑡(0 ≤ 𝑡 ≤ ⌊ℎ/2⌋) of 𝑇. Then 𝑇 → ∑

2
𝑡

𝑗=1
𝑄
ℎ
𝑗
+1
.

Proof. Consider 𝑇 ∈ HB(ℎ, 𝑡). Let V(𝑖, 𝑗) denote the 𝑖th vertex
from left in level 𝑗. Decompose the tree into a forest of trees
by deleting the set of edges {(V(𝑡 − 1, 𝑘), V(𝑡, 2𝑘 − 1)), (V(𝑡 −
1, 𝑘), V(𝑡, 2𝑘))} for 1 ≤ 𝑘 ≤ 2

𝑡−1. Such a forest consists of
complete binary trees 𝐶

ℎ
𝑗

rooted at V(𝑡, 𝑗) (for 1 ≤ 𝑗 ≤ 2
𝑡)

and a complete binary tree 𝐶
𝑡−1

induced by the vertices of
𝑇 from levels 0 to 𝑡 − 1. For 1 ≤ 𝑗 ≤ 2

𝑡
− 1, let V(𝑎, 𝑏) where

2
𝑎
+𝑏−1 = 𝑗 be the deep root of𝐶

ℎ
𝑗

. Consider the embeddings
𝑓
𝑗
: 𝐶
†

ℎ
𝑗

→ 𝑄
ℎ
𝑗
+1

(such embeddings exist by Lemma 5). For
𝑗 = 2
𝑡, consider 𝑓

𝑗
: 𝐶
ℎ
𝑗

→ 𝑄
ℎ
𝑗
+1

(such an embedding exists
by [12]). The vertices V(𝑖, 𝑗) for 0 ≤ 𝑖 ≤ 𝑡 and 1 ≤ 𝑗 ≤ 2

𝑖

form a complete graph (a graph inwhich every pair of distinct
vertices is connected by a unique edge) in ∑

2
𝑡
−1

𝑗=1
𝑄
ℎ
𝑗
+1

and
hence contain as subgraph the deleted set of edges of 𝑇. Such
an embedding technique is depicted in Figure 5. The dilation
of the embedding is clearly 2 and hence 𝑇 → ∑

2
𝑡

𝑗=1
𝑄
ℎ
𝑗
+1
.The

number of vertices of ∑2
𝑡

𝑗=1
𝑄
ℎ
𝑗
+1

is ∑2
𝑡

𝑗=1
2
ℎ
𝑗
+1 and by (5), we

have |𝑉(𝑇)| = ∑
2
𝑡

𝑗=1
(2
ℎ
𝑗
+1
) − 1. Hence the expansion of the

embedding is almost 1 and is optimal.

5. Conclusion

In this paper, we have considered a subclass HB(ℎ, 𝑡) of
height-balanced trees and have analysed the size of this
subclass. We have also embedded every tree in this subclass
into a generalized join of hypercubes.
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