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ABSTRACT 

Longitudinal dispersion of solute released in an unsteady flow between two coaxial cylinders is re-examined 

in the presence of first order chemical kinetics in the bulk flow. The flow unsteadiness is caused by the 

oscillation of the outer tube around its axis as well as by a periodic pressure gradient. Unlike some previous 

works, the gap width of the annular tube is used as the typical length scale which is physically meaningful to a 

greater extent. In order to employ the method of moment, a finite difference implicit scheme has been adopted 

to solve the Aris integral moment equations arising from the unsteady convective diffusion equation for all time 

periods. The individual and combined effects of different velocity components resulting from steady and time-

dependent parts of the driving forces are examined and they are identified based on their functionality. In any 

flow situation, wall factor is found to have a larger contribution in velocity as well as in dispersion compared 

to the pressure factor. The behaviour of dispersion coefficient with the variation of radius ratio, bulk flow 

reaction parameter, and frequency parameters have been examined. Dispersion coefficient is found to diminish 

with the increase of the reaction-rate in the bulk flow, whereas the effect of the radius ratio on the dispersion 

coefficient is fixed by the form of the velocity distribution. The axial distributions of mean concentration are 

approximated using Hermite polynomial representation from the first four central moments for a range of 

different reaction-rate parameters. It has been found that, irrespective of the flow situation, the peak of the 

concentration distribution decreases with the increase in reaction rate parameter. 

Keywords: Dispersion coefficient; Axial Reynolds number; Concentration distribution; Radius ratio; 

Poiseuille number; Bulk-flow reaction. 

NOMENCLATURE 

C concentration 

Dα  dispersion coefficient 

i time index during navigation 

j space index 

P Poiseuille number 

r radial coordinate  

Re  axial Reynolds number 

ri internal radius 

ro external radius 

Sc  Schmidth number 

t time 

u axial velocity 

 

αp frequency of pressure pulsation 

αw frequency of Wall oscillation 

εp amplitude of pressure pulsation 

εw amplitude of wall oscillation 

η aspect ratio  

ν kinetic viscosity  

ρ density 

δ direct delta function 

κ bulk flow reaction constant  

 
1. INTRODUCTION 

Dispersion is the mechanism that controls the rate 

of spreading of a cloud contaminant in a flowing 

stream. Due to its numerous application in 

chemical, environmental and bio-medical 

processes, considerable attention has been given on 

the axial dispersion of tracer. When Taylor (1953) 

initiated the study of dispersion, it was his 

anticipation that in shear flow, additional 

longitudinal diffusion of matters could result from 

the combined action of lateral diffusion and 

velocity shear. Aris (1956) generalized Taylors 

conceptual model by removing restrictions 

imposed by Taylor to include longitudinal diffusion 

and developed an approach viz. method of 

moments whose main scope is to analyze the 

asymptotic behaviour of the second moment of the 
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distribution of solute about the mean. Certain 

technical difficulties in Aris (1956) method was 

resolved by Barton (1983) and obtained the 

solutions of second and third-order moment 

equations of the distribution of solute which are 

valid for all time. Flow unsteadiness is one of the 

key factors having a heavier impact on the 

dispersion phenomena. For laminar flow, the case 

of an oscillatory axial flow in a uniform tube was 

first studied by Aris (1960) by the moment method. 

He studied the effect of flow pulsation with the 

consideration that the velocity at a point as a 

periodic function of time. An exact solution of the 

diffusion equation was acquired by Chatwin (1970) 

to study the dispersion by considering solute 

concentration as a harmonic function of time. The 

idea proposed by Chatwin was utilized by Watson 

(1983) to dissect the mass transfer of a diffusing 

substance through a pipe in oscillatory flow, which 

was extended to an annular flow by Tsangaris and 

Athanassiadis (1985). 

The effect of wall absorption on dispersion in an 

oscillatory flow through a pipe was explained by 

Mazumder and Das (1992). Mondal and Mazumder 

(2005) studied the tracer dispersion in an annular 

pipe with reactive boundary. Solute transport in 

oscillatory flow through an annulus was 

investigated by Sarkar and Jayaraman (2004) and 

Mazumder and Mondal (2005) and also explained 

the application of their study to a catheterized 

artery. Ng (2006) and Mazumder and Paul (2012) 

examined dispersion process in presence of 

reversible and irreversible reactions in the 

boundary. In spite of the fact that there exists a 

number of attempts where boundary reaction is 

considered in the study of dispersion process to 

analyze the impact of the former on the later, but 

very scant attention has been given to study the 

behaviour of dispersion in the presence of 

homogeneous reaction in the bulk flow though it 

has abundant applications in chemical and 

biomedical engineering, e.g. hydrolysis of ester, 

gas absorption in an agitated tank with chemical 

reaction and so on. Cleland and Wilhelm (1956), 

Gupta and Gupta (1972), Kumar, Umavathi, and 

Basavaraj (2012) are a few who threw some light 

on the effect of first order reaction in the bulk flow. 

For flow through a channel, quite a number of efforts 

have been launched to investigate dispersion 

phenomena under the pulsation of walls. Few studies 

in this field may include Secomb (1978), Hydon and 

Pedley (1993),Waters (2001) etc. Dispersion process 

through a channel forced by unsteady pressure 

gradient has been studied by Paul and Mazumder 

(2009), Mazumder and Mondal (2005). Literature 

suggests that there exist a number of studies on 

dispersion under the sole influence of either pressure 

pulsation or boundary oscillation, but very few 

studies considered both pressure pulsation or 

boundary oscillation. 

In two successive attempts, Paul and Mazumder 

(2008) and Paul (2009) has given weightage to both 

types of driving forces in order to study their 

combined effect on the dispersion process. While 

the first attempt was focused on channel-flow, it 

was extended to flow through an annular tube in the 

subsequent attempt where the radius of the outer 

cylinder was considered as the typical length scale 

which is based on weak physical background. The 

same physically insignificant non-

dimensionalisation procedure was adopted in the 

work of Mazumder and Mondal (2005) also. The 

radial diffusion processes like viscous and 

concentration diffusion, are expected to be over the 

gap width of the annular tube which was violated in 

those studies. Time was also scaled on the same 

faulty platform. The typical diffusion time should 

never be over a length scale with outer radius. 

These types of errors lead the authors to have some 

erroneous results. The unexpected presence of 

Schmidt number in the velocity profile, for 

example, is the outcome of the slips done in those 

works. As the feedback of concentration gradients 

on the flow was explicitly excluded, therefore the 

flow is not affected by the concentration field, so 

the ratio of viscosity and concentration diffusion 

are not relevant to the flow indicating the Schmidt 

number independence of the velocity distribution. 

In the present work, attempts are made to re-

investigate the dispersion process through an 

annular tube in the presence of two types of driving 

forces, of course, by avoiding the slips already 

pointed out. Like the work of Paul (2011), the gap 

width of the annular tube is considered as the 

typical length scale. It is assumed that the solute 

chemically reacts with the liquid in which it is 

dispersed, the rate of reaction being first order. The 

main objective is to explain the behaviour of the 

dispersion coefficient due to the intricate 

distribution of velocity resulting from the 

interactions of the two driving forces and to solve 

the present problem we consider Aris-Barton 

method, which allows to simplify the convection-

diffusion equation into moment equation and solve 

numerically, as it is pretty complicated when p > 1. 

There are some analytical and semi-analytical 

methods, viz., Perturbation method (Purtell 1981), 

Multiple scale analysis method (Paul and 

Mazumder 2009) and Homotopy analysis method 

(He 2000; Tufail, Butt, and Ali 2016), etc., by 

which one can solve the advection-diffusion 

paradigm directly and eventually able to calculate 

the apparent diffusion coefficient. But these 

methods have certain limitation such as 

perturbation method is physically sound for weak 

physical parameter again multiple scale analysis 

could not produce time dependent behaviour as the 

method based on averaging the time, The 

Homotopy analysis method overcome these 

difficulty but very difficult to implement. There are 

some non-perturb analytic method such as 

Weighted linearization method (Agrwal and 

Denman 1985), Adomian decomposition 

(Adomian 1988; El-Danaf, Ramadan, and Alaal 

2005) method, Laplace Transform method (Alia, 

Sheikha; Saqiba, and Khanb 2017) vibrational 

iteration method (He, Wan, and Guo 2004), 

δ−expansion method (Awrejcewicz, Andrianov, 

and Manevitch 2012) however all these customary 

strategies can’t guarantee about the convergence of 

solution series and also those methods cannot be 
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are easily implemented. The present work may 

excel for the following aspects: 

First - To the best of our knowledge it is one of the 

very few works which takes into account both of the 

driving forces, specially when the flow is through an 

annulus. 

Second - It removes the technical difficulties of some 

previous works in this field that occurred due to the 

consideration of the outer radius as the typical length 

scale. 

Third - It is probably a fresh attempt where two 

driving forces and bulk flow reactions receiving 

parallel attention in order to find out the complex 

interactions of the two forces with the reaction 

parameter. 

For simplicity, only first order chemical kinetics 

have been considered here. The outer wall of the 

annulus is considered to execute oscillatory 

motion in its own plane keeping the inner one 

stationary. To find out the aggregate effects due to 

the presence of both the driving forces as 

compared with the isolated effects due to either of 

the oscillations alone, velocity is dissected into 

multiple parts using an additive model from where 

the participation of the velocity terms in the 

dispersion process can be made out. Results are 

obtained to find the effects of the radius ratio of 

the annular tube, the frequencies of oscillations of 

the forces and bulk flow reaction parameter on the 

spreading of tracers. The movement of the center 

of mass and the patterns of the mean concentration 

distributions in presence of both driving forces are 

also discussed. In a wide variety of problems of 

chemical engineering, diffusion of a solute takes 

place in oscillatory flows with simultaneous 

chemical reactions. Many industrial processes, 

such as the transport of oil, gas, water and 

foodstuffs through pipes, are directly or indirectly 

related with the dispersion subject to this type of 

physical situation. The study may have a 

significant contribution to the understanding of 

pulsatile flow through catheterized artery where 

bulk flow reaction may be considered as 

mandatory due to injection as a part of medication. 

2. MATHEMATICAL MODEL 

An unsteady fully developed, axi-symmetric laminar 

flow of a homogeneous, incompressible viscous 

fluid is considered through the annular gap of two 

coaxial infinitely long cylinders having a and b their 

external and internal radii respectively, d = a − b 

being the annular gap between the cylinders. The 

geometry of the annulus is maintained by the radius 

ratio (ratio of the inner radius to the outer radius) η = 

of the annulus. Due to the infinite axial extend of the 

system, the aspect ratio, ratio between the axial 

length L and the gap width d, is infinite in this study. 

In the cylindrical coordinate system used, the radial 

and axial co-ordinates are r̂  and x̂  respectively, 

where hat represents dimensional quantities. The 

flow through the above geometry is strictly one-

dimensional and the Navier-Stokes equation 

becomes = − + ̂ ̂ ̂ ̂                                        (1) 

where ρ,ν and pˆ are the density, the kinematic 

viscosity and the pressure of the fluid respectively. 

The flow is driven by the combined action of 

periodic pressure gradient and pulsation of the outer 

tube around its axis, both with non-zero means. 

While the axial periodic pressure gradient is given by 

ˆ

ˆ

ˆ1
[1 Re( )]

ˆ

pi t
x p

p
P e e

x






  


                                        (2) 

the velocity of the outer wall of the annular tube is 

prescribed by, 

ˆˆˆ( , ) [1 Re( )],wi t
wu a t U e e

                                        (3) 

where tˆ is the time, U is the steady component of 

velocity of the outer cylinder, ep and eω are factors 

representing respectively the amplitude of the 

pressure pulsation and that of the wall oscillation, ωp 

is the frequency of the pressure pulsation and ωw of 

the wall oscillation. Re(.) represents the real part of 

the complex number. 

As the inner wall of the annulus is stationary, no-slip 

condition holds for the inner wall, i.e., 

ˆˆ( , ) 0u b t                                                                     (4) 

3. CONVECTION-DIFFUSION 

EQUATION 

If a solute is injected in the above discussed flow 

situation through the annular gap of the cylinders, the 

concentration C(t,r,x) of the solute as a function of 

axial distance x, radial distance r and time t, satisfies 

the non-dimensional convective-diffusion equation, 

2

2

1 1
( , )

C C C C
u r t r C

t x Sc r r r x


                  
   (5) 

with dimensionless quantities 

2
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C r r t
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, , .

ud d
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Here the velocity u(r,t) is composed of steady 

components usp(r) & usw(r) and the unsteady 

components uop(r,t) & uow(r,t) respectively due to 

the periodic pressure gradient and oscillatory 

motion of the outer cylinder, both with non zero 

means. C0 is the reference concentration, D is the 

molecular diffusion coefficient (assumed 

constant) and κ is the first-order reaction rate 

constant so that the last term κC represents the 

volume rate of disappearance of the solute due to 

chemical reaction. Sc is the Schmidt number (the 

ratio of viscous diffusion to molecular diffusion). 

The discharged material is assumed to be so dilute 

in concentration that its presence does not 
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materially effect the flow of the carrying fluid. 

The initial and boundary conditions for the 

concentration distributions are 

o

i
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                  (6) 

where B(r) s a function of δ is theDirac delta 

function, =  and =  are the 

dimensionless inner and outer radius of the annulus 

respectively. The first condition depicts the initial 

condition at t=0. Conditions second and third 

describe the no flux boundary condition at the inner 

and outer wall of the annular tube respectively 

whereas the last condition of equation (6) tells that 

the total amount of material inside the annulus is 

unity at t = 0. This amount will be depleted over time 

because of the reaction in the bulk flow. 

4. VELOCITY DISTRIBUTION 

Using the following non-dimensional quantities 

3
ˆ

2
, , ,

px w
e p w

P d Ud
P R d d

  
  

     

the Navier-Stokes equation along with boundary 

conditions i.e., the system of equations (1) − (4) 

reduce to the following form:, 

2 1
( )pi t

p

u u
P Re e r

t r r r

          
                          (7) 

with 

i

2

o

0 at

[ ] ate

r r
u

R Re i t r r 


   
                      (8) 

where P is the Poiseuille number, εp(= epP) is the 

non-dimensional amplitude of the pressure pulsation 

and εw(= ewRe) that of the outer-cylinders axial 

oscillation which is determined by the axial 

Reynolds number Re. 

The velocity profile in (5) can be readily found from 

the solution of equation (7) with boundary conditions 

(8) and is given in dimensionless form as 

( , ) ( ) ( ) ( , ) ( , )sp sw op owu r t u r u r u r t u r t        (9) 

where  

2

2

1 1+η log[r(1-η)]
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4 1-η logη1
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                                                                             (12) 

2

3 0 4 0( , ) ( ) ( ) ,wi t
ow w w wu r t e C J i i r C Y i i r

     
 0 1                                                               (13) 

The constants Ci’s are given by where 

= √ − √√ √ − √ √  

= √ − √√ √ − √ √  

= √√ √ − √ √  

= 00 0 0 − 0 0 0 ) 

Here J0, Y0 are the Bessel functions of first and 

second kind respectively. The dimensionless 

frequency parameters αp, αw used here are the 

measures of ratio of the time    required for 

viscosity to smooth out the transverse variationin 

vorticity to the periods of oscillations  and  

respectively. The first term in the expression for 

u(r,t) (Eq.9) results from the steady part of the 

pressure force and the second term from the steady 

part of the wall force. Last two terms originate from 

the periodic time dependent parts of the two driving 

forces respectively. 

5. MOMENT EQUATIONS 

Following the method of integral moment as 

proposed by Aris (1956), the pth moment of the 

distribution of the solute in the filament through r at 

time t is defined as, ( , )= ( , , )                                     (14) 

and the concentration distribution of the solute over 

the crosssection of the annulus is given by, ( ) = ( , )                                    (15) 

where over-bar denotes the cross-sectional average. 

Using equation (14), the diffusion equation (5) 

subject to the initial and boundary conditions can be 

written as − =  ( , ) + ( −1) −                                                         (16) 

with 
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where B(r)=1 for ri≤r≤ro . 

Averaging over the annular cross-section, Eq. (16) 

subject to the conditions (17) reduces to, =  ( , ) + ( − 1) −   (18) 

and 

(0) 1 for 0

         0 for 0

pC p

p

 
 

                                              (19) 

The pth order central moment of the concentration 

distribution about the mean can be defined as µ ( ) =                            (20) 

where 

1

0 

d

d
g

x C V C
x

CC V
   
  

                                                  (21) 

is the centroid or first moment of the solute and  represents the total mass of the solute in the whole 

volume of the annulus. which decays gradually with 

time due to the reaction in the bulk flow. The 

expressions for the central moments can then be 

obtained from (20) as 
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                     (22) 

Each of the integral moments of concentration 

defined in (22) has an important contribution for 

predicting dispersion phenomenon. The integral 

moments serve as simple and physically meaningful 

descriptors of the overall behaviour of the slug -(i) 

The zeroth moment gives the total area under the 

distribution curve, which corresponds to the total 

mass of the solute. (ii) The first moment xg measures 

the location of the center of gravity of the slug 

movement with the mean velocity of the fluid, 

initially located at the source. (iii) The second central 

moment µ2 represents the variance of the distribution 

about the mean position whose rate of change gives 

the dispersion coefficient. Aris (1956) showed that 

the rate of change of variance is proportional to the 

sum of molecular diffusion coefficient along the 

axial direction and apparent dispersion coefficient 

(Taylor dispersion coefficient). Since the axial 

diffusion is negligible compared to the lateral 

diffusion, the apparent dispersion coefficient Da can 

be written as =                                                                  (23) 

The skewness factor ν1 = , and the flatness 

factor ν2 = − 3  are also important factors during 

the initial stage of matter dispersion. 

6. NUMERICAL SOLUTION 

In the present paper, a finite difference implicit 

scheme has been applied due to the complexity of the 

moment equation when p > 1 and for that we have 

partitioned the entire annular region in (M−1) equal 

part of width ∆r represented by grid point j, where 

the initial grid j = 1 indicates the inner wall and j = 

M, the outer wall. The index i represents the time in 

which i = 1 indicates the initial time t = 0. The 

subsequent time grid is obtained from the 

relationship t = ∆t ×(i−1), where ∆t is the time 

increment. The resulting finite difference equation 

becomes a system of linear algebraic equation with 

tri-diagonal coefficient matrix, 

( 1, 1) ( 1, )j p j pP C i j Q C i j        

    ( 1, 1)j p jR C i j S                                                 (24) 

where Pj, Qj, Rj and Sj are the matrix elements and 

Cp(i, j) are the corresponding value of Cp at the grid 

point (i, j). The finite difference form of the initial 

condition is, 

(1, ) 1 for 0

0 for 0

pC j p

p

 
 

 

and that of boundary conditions are  ( + 1,0)= ( + 1,2) 

(at the surface of the inner cylinder) ( + 1, + 1)= ( + 1, − 1) 

(at the surface of the outer cylinder) 

The tri-diagonal system is solved by Thomas 

algorithm (I., Anderson, Tannehill, and Pletcher 

1986) with the help of above mentioned initial and 

boundary conditions, accordingly a matlab code is 

devolved to perform the action. The computational 

steps are as follows:  

(i) Time dependent axial velocity u is 

computed first from Eq.(7); 

(ii) the concentration Cp is then calculated 

from Eq.(16) as the value of u at each of the grid 

point (i, j) is already calculated in step (i); 

(iii) finally the value of Cp is calculated from 

Eq.(18) by applying Simpson’s one-third rule, with 

the known values of u(r,t) and Cp. 

Although the present scheme is linearly stable for  
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Table 1 Various combination of velocity components 

Velocity component Explanation 

usp 

Flow driven by only the steady part of the pressure gradient i.e., Fp = P; Fw = 0 

where Fp is the driving force exerted by the pressure gradient and Fw that by the 

boundary movement 

usw Flow driven by only the steady part of the wall movement i.e., Fp = 0, Fw = Re 

usp+usw Flow driven by the combined action of both steady parts i.e., Fp = P, Fw = Re 

uop 
Flow driven by only the periodic part of the pressure gradient i.e.,Fp = 

2

eR pi t
p e

  
 
 

, 

Fw = 0 

uow 

Flow driven by only the periodic part of the wall oscillation i.e., 

Fp = 0; Fw =
2

eR wi t
w e

  
  

, 

uop+uow 

Flow driven by the joint action of both periodic parts i.e., Fp = 
2

eR pi t
p e

  
 
 

, 

Fw =
2

eR wi t
w e

  
  

, 

usp+uop 

Flow driven by the steady and periodic part of the pressure gradient i.e., 

Fp=
2

eR pi t
p e

  
 
 

,Fw = 0 

usp+usw+uop 

Flow driven by the steady part of the wall oscillation combined with steady and 

oscillatory pressure gradient i.e., Fp = 
2

eR pi t
p e

  
 
 

, Fw = Re 

usp+uop+uow 

Flow driven by the steady part of the pressure gradient combined with steady 

and oscillatory boundary movement (case studied by Paul [23]) i.e., Fp = P+
2

eR pi t
p e

  
 
 

 Fw = Re+
2

eR wi t
w e

  
  

, 

usw+uop+uow 

Flow driven by the oscillatory part of the pressure gradient combined with 

steady and oscillatory wall oscillation i.e., Fp = 
2

eR pi t
p e

  
 
 

, Fw = Re +

2

eR wi t
w e

  
  

, 

usw+uop 

Flow driven by the steady part of the wall oscillation combined with oscillatory 

pressure gradient i.e., Fp = 
2

eR pi t
p e

  
 
 

, Fw = Re 

usp+uow 

Flow driven by the steady part of the pressure gradient combined with oscillatory 

wall movement i.e., Fp = P; Fw = 
2

eR wi t
w e

  
  

, 

usp+usw+uop+uow 

Flow is supported by the full participation of both the driving forces i.e., 

Fp =P+
2

eR pi t
p e

  
 
 

, Fw = Re+
2

Re wi t
w e

  
  

, 
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Fig. 1. Various combination of velocity components depending on the physique of the driving forces. 

 

 

any finite values of ∆t/(∆r)2, sufficiently small mesh 

size have been taken to obtain the results upto the 

desired accuracy. In all the cases we have taken 

εp=εw=1,Re=P=1,Sc=103. 

7. DISTRIBUTIONS OF MEAN 

CONCENTRATION 

Behaviour of the concentration distribution may be 

obtained from the knowledge of the first four central 

moments of the distribution. Using these four 

moments, it is possible to compute the mean axial 

concentration distribution Cm(x,t) of tracers with the 

help of Hermite polynomial representation for non-

Gaussian curves (Mehta, Merson, and McCoy 1974) 

and is given by, 

2

0

0

( , ) ( ) ( ) ( )z
m n n

n

C z t C t e a t H z





                      (25) 

where z = ( ) /  , =  and Hi, the Hermite 

polynomials, satisfy the recurrence relation with 

H0(z)=1 as 

1 1( ) 2 ( ) 2 ( ), 0,1,2,i i iH z zH z iH z i      

The coefficients ai’s are 

= 12 , = = 0, = √224 , = 96  

Therefore, given the statistical parameters (21), the  

concentration distribution can be estimated from (25) 

at any given location in the axial direction and time. 

8. RESULTS AND DISCUSSION 

In the absence of the term uop in the velocity, the flow 

is caused by the constant pressure gradient and 

periodic movement of the outer cylinder with non-

zero mean, a case considered by Paul (2011) for 

passive solute. Results of the present study are in 

excellent agreement with Paul under similar 

background. In the limiting case when η → 0, the 
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Table 2 Interpretation of results from Fig. 1 

Figures Conclusion 

1(a) 
Steady part of the wall force dominates over that of the pressure force when the flow is 

completely time-independent i.e., usw > usp when u = usp+usw. 

1(a,b,d) 
For flow driven by pressure only, steady part has larger weightage than the periodic part 

i.e., usp > uop when u = usp+uop. 

1(b,c,f) 
Time dependent part of the wall force dominates over that of the pressure force when the

flow is completely periodic i.e., uow > uop when u = uop+uow. 

1(a,g,h) 
Oscillatory part of the wall force, when combined with the steady flows, receives greater 

weightage than the pressure force. 

1(f,i,j) 
Steady part of the wall force again is more influential than that of the pressure force 

when attached with the periodic flows 

1(g,h,k) 
For the total flow, unsteady part of the wall force is more effective than that of the 

pressure force i.e., uow > uop when u = usp+usw+uop+uow: 

1(I,j,k) 
Steady part of the wall force again is more influential than that of the pressure force 

when the total flow is considered i.e., usw > usp when u = usp +usw + uop+uow. 

 
 

findings of this work can be supported by the existing 

literature on tube flow. 

Let us first analyze the velocity components. The 

flow is driven by the combined action of the periodic 

pressure gradient and axial oscillation of outer 

cylinder in its own plane, both having non-zero 

means, i.e., both of the driving forces consists of a 

steady part and a periodic time dependent part. As a 

result, as we have seen already, the velocity u(r,t) is 

composed of four components, two being steady and 

two unsteady. They can be introduced as (i) the 

steady component usp(r) arising due to the steady part 

of the pressure gradient, (ii) the steady component 

usw(r) derived from the steady part of the wall 

motion, (iii) the oscillatory component uop(r,t) due to 

the time dependent part of the pressure fluctuation 

and (iv) another oscillatory part uow(r,t) resulting 

from the unsteady part of the boundary pulsation. 

These four parts may be combined with each other in 

the following way depending upon the build of the 

driving forces and as velocity distribution is one of 

the main factor controlling dispersion, the coefficient 

of dispersion will respond accordingly which can be 

seen later on To find out the contribution of the four 

components in the velocity, we have diagrammed 

some possible combinations of the velocity 

components in Fig.1. Fig.1(a) shows the variation of 

the steady components of velocity w.r.t radial 

coordinate. Velocity components, and are shown in 

the figure as a function of. In other words, the figure 

depicts the combined as well as the sole influences 

of the moving boundary and pressure factor on the 

steady part of the velocity. In the absence of pressure 

factor, the velocity is pushed in the positive direction 

from zero by the outer wall movement and naturally 

the deviation is growing in the direction of the outer 

wall. If, on the other hand, boundary wall does not 

contribute in the flow velocity, the flow profile takes 

the well known parabolic shape due to constant 

pressure gradient. The effects of both driving forces 

can be seen in the velocity when the two parts 

combine with each other. 

 

 
Fig. 2. Solute residual with time due to bulk-flow 

reaction. 

 

Periodic components of the velocity due to pressure 

pulsation and wall oscillation are shown in Fig. 1(b) 

and 1(c) respectively for different phase angles. 

While the pressure gradient creates disturbances over 

the whole domain of the flow, the effects of wall 

oscillation is prominent in the vicinity of the outer 

wall. Both steady and periodic parts of the pressure 

gradient and wall force are combined in Fig. 1(d) and 

1(e) respectively. Comparison of Fig.1(a) 1(b) and 

1(d) reveals that steady part of the pressure gradient 

has larger contribution than that of the oscillatory 

part in the velocity profile. If we compare Fig. 1(e) 

with 1(a) and 1(c), the main function of the steady 

part usw will translate the flow near the outer wall in 

the direction of flow, though the periodic part is 

found to have larger contribution in the total 

flow.Both the oscillatory parts of the driving forces 

(u=uop + uow) combine in Fig. 1( f ). Comparison of  
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Fig. 3. Temporal variation of the centroid displacement (a) for different values of the reaction 

parameter when u = usp &u = usw and (b) when u = uop (c) for different values of the radius ratio η 

when u = uow. 
 

 

Fig. 1(b), 1(c) and 1( f ) shows that when both 

periodic parts joins in the total flow, the part arising 

from boundary movement has greater contribution, 

the feedback from the pressure factor seems to be 

rather small. Fig. 1(g) and 1(h) describes the velocity 

profile in the absence of periodic pressure gradient 

(u = usp + usw + uow) and boundary movement (u = usp 

+ usw + uop) respectively. The same is shown in Fig. 

1(i) and 1( j) where steady components of the 

pressure gradient (u = usw +uop +uow) and boundary 

movement (u = usw + uop + uow) are respectively 

absent. Velocity profile with all components (u = usp 

+ usw + uop + uow) can be seen in in Fig. 1(k). 

Comparison of Fig. 1(g) and 1(h) with 1(k) 

establishes the fact that the absence of periodic wall 

oscillation is more influential than the periodic 

pressure gradient. Same conclusions can be drawn 

about the steady parts also by considering the figures 

1(i), 1( j) and 1(k). The greater effect of the 

periodicity of the boundary movement can also be 

apprehended by the comparison of the Fig. 1(a), 1(g), 

1(h) whereas Fig. 1( f ), 1(i), 1( j) brought forward 

the leading role of the steady part of boundary force 

over that of the pressure force. As wall factor puts 

down the pressure factor for both steady and periodic 

nature of flows (when considered individually), 

consequently this dominance further enhances in the 

total flow (Fig. 1(d), 1(e), 1(k)). Steady part of one 

driving force is combined with the periodic part of 

the other force in Fig. 4(l) which again proves the 

superiority of the wall force. Some of the important 

findings about the dominance of the velocity 

components over each other are listed in Table 2. To 

see the depletion of the solute w.r.t time due to the 

homogeneous reaction with the solvent, Eq. (18) is 

called upon. When p = 0, Eq. (18) becomes 

(t,κ) =                                                           (26) 

Equation (26) represents the total mass of the solute, 

which is function of κ and t. We observe here how 

the total amount of tracer material is depleted over 

time for a given reaction parameter . When κ = 0, 

(t,κ) = 1, which represents a constant mass in the 

whole annular gap w.r.t time. As expected, 

dimensionless mass = ( , )( , )  is a decreasing 

function of κ and t (Fig. 2). 

Centroid displacement of the solute, estimated by the 

normalized first order moment =  has been 

studied for steady flows usp, usw and periodic flows 

uop, uow with different values of the reaction 

parameter κ and radius ratio η. When the flow is 

steady, xg is found to increase linearly with time 

(Fig. 3(a)) and it advances for a given time t. It is 

observed that, for periodic flow, the center of gravity 

of the slug (xg) proceeds with periodic oscillations 

over time (Fig. 3(b,c)). In any case, the amplitude of 

oscillation decreases with the increase in reaction 

parameter κ, though the effect of radius ratio η is 

found to be flow dependent. While for pressure 

driven oscillatory flow, the amplitude increases with 

increase of η, opposite tendency cropped up for wall 

driven flow. 

Temporal variation of the dispersion coefficient Da 

with respect to time is shown in Fig. 4 for various 

possible combinations of velocity components as 

described in Table 1. While for most of the figures 

reaction parameter is considered to vary, the 

variation of radius ratio and frequency of oscillation 

are shown in Fig. 4(e) and 4(g) respectively, for the 

sake of completeness. It can be seen from Fig. 4(a) 

that for steady flow, dispersion coefficient increases 

almost linearly with time. Da is found to raise in the 

absence of pressure gradient whereas absence of wall 

movement makes the dispersion coefficient to fall 

dramatically. For all time, Da decreases with the 

increase of κ, the parameter for first order reaction in 

the bulk flow. This decrease of the dispersion 

coefficient with the increase in the reaction rate 

constant is based on sound physical ground. In-

crease in κ leads to the growth in the number of 

moles of solute undergoing chemical reaction 

resulting in a drop in dispersion coefficient (Gupta 

and Gupta 1972). It can be mentioned that, for ab-

sorption in the boundary also similar trend can be 

seen (Mazumder and Das 1992) 

. Fig. 4(b) shows the variation of the dispersion 

coefficient with time when the flow is only due to the 

periodicity of the pressure gradient. The same is 

shown in Fig. 4(c) for flow due to unsteady boundary 

movement only. It is seen that the dispersion 

coefficient moves with periodic oscillations over 

time. While for flow due to  
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Fig. 4. Dispersion coefficient Da against time due to various form of the velocity distribution as in Fig 1. 
 

 

 

boundary oscillation, the double frequency period in 

the dispersion coefficient is prominent, it is 

suppressed in case of pressure fluctuation. Wall 

oscillation is found to produce more dispersion than 

the pressure gradient (Paul and Mazumder 2008). 

Also Da in the oscillatory current is much lower than 

Da in the steady current (Mazumder and Das 1992). 

Actually, when the period of oscillatory current is 

much smaller then the characteristic time of lateral 

diffusion, the shear effect due to the periodic flow 

becomes asymptotically smaller than that of a steady 

current (Okubo 1967). For flow caused by wall 

factor, amplitudes of the oscillations in dispersion 

coefficient is many times higher compared to flow  
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Fig. 5. Distribution of mean concentration against the axial distance for different values of the reaction 

parameter (a) when u = usp + usw (b) when u = uop and (c) when u = uow. 

 

 

due to pressure factor. When the both oscillatory 

parts combine together (Fig. 4(f)), dispersion 

coefficient almost behaves like as if it is due to the 

boundary oscillation only, the presence of the 

pressure factor seems to have negligible effect. 

Therefore, as pointed out by Paul and Mazumder 

(2008), boundary oscillation has larger contribution 

in the dispersion coefficient than the pressure 

pulsation. It is quite expected since the velocity, a 

major factor controlling dispersion, shows similar 

biasness towards the wall movement. In all cases, the 

dispersion coefficient decreases with the increase of 

the reaction parameter. 

Dispersion coefficient due to the steady and 

oscillatory parts of the pressure gradient and that of 

the wall movement are shown in Fig. 4(d) and 4(e) 

respectively. It can be seen that the effect of steady 

flow is more prominent during initial time. Actually 

the controlling parameters like reaction parameter κ, 

radius ratio η, frequencies of oscillations (αp and αw) 

etc used to take some time to set themselves in 

motion. That’s why dispersion coefficient usually 

shows weak dependence on those parameters during 

initial time. Steady flow is found to have a better 

control over its unsteady counter part in producing 

dispersion when the driving force is pressure 

gradient. For dispersion due to wall vibration, the 

control is comparatively much weaker. Wall 

vibration moves many times ahead than the pressure 

gradient in producing dispersion when steady part is 

added to its periodic counter part, which is quite 

natural since for both steady and periodic flow, 

pressure factor is preceded by wall factor in the run 

for dispersion. 

The effect of radius ratio of the annular tube on the 

dispersion coefficient is quite interesting. For flow 

under the sole influence of the periodic pressure 

gradient, it is found that the dispersion coefficient 

increases with the increase of radius ratio whereas 

the trend is reversed in the sole presence of periodic 

boundary movement. On physical ground, low radius 

ratio provides greater room for the solute to disperse 

giving rise to Da. When the driving force is the 

periodic pressure gradient, its strength becomes 

weaker if spread over larger area (i.e., smaller η) 

resulting a fall in dispersion coefficient. When steady 

counter part is added to its periodic part, Da responds 

in just a opposite way with the variation of the radius 

ratio. Due to the dominance of the wall factor, nature 

of Da in uow and uop + uow and in usw and usp +usw are 

same. Nature of Da withrespect to the velocity 

components are shown in the Table 3. For the sake 

of space figure (Fig. 4(e)) is provided only for a 

single case. 

 

Table 3 Nature of Da as a function of η 

depending on the velocity distribution 

Velocity 

component 
Nature of Da 

usp Decreasing 

usw Increasing 

uop Increasing 

uow Decreasing 

usp+uop Decreasing 

usw+uow Increasing (Fig. 4(e)) 

usp+usw Increasing 

uop+uow Decreasing 

 

 
Fig. 6. Variation of the dispersion coefficient 

with the reaction parameter when the flow is 

steady (u = usp + usw). 
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Dispersion coefficient due to the combined effort of 

all components of the velocity is shown in Fig. 4(k). 

It can be concluded that, for steady (u = usp + usw, 

Fig. 4(a)) as well as for combined flow (u = usp + usw 

+uop +uow, Fig. 4(k)), the effect of the pressure 

gradient is to diminish the dispersion coefficient 

whereas wall movement favors to raise it. The 

dominance of the wall factor in case of steady flow 

and periodic flow is already established in Fig. 4(a) 

and 4(c, f ) respectively. Now the same is established 

for combined flow also in Fig. 4(e,k). Like the case 

of steady and periodic flow, dispersion coefficient 

shows biasness towards the wall force compared to 

the pressure force in case of combined flow. In the 

case of periodic flow, the supremacy of the wall 

factor is not only qualitative, but quantitative also 

(Fig. 4(c, f )). 

Comparison of Fig. 4(a,g,h) bring forward the 

strength of the periodicity of the wall force 

compared to the pressure force. When the 

component uow is introduced, it makes a radical 

change in the dispersion coefficient whereas the 

introduction of uop seems to have no noticeable 

effect. It can also be explained from the Fig. 

4(g,h,k). The withdrawal of uop from the total flow 

seems less effective compared to the withdrawal 

of uow which shows a revolutionary effect leaving 

the velocity in a form as if it is time independent. 

The effect of frequency of oscillation on Da is 

explained in Fig. 4(g). The effect is found to be 

same irrespective of the combination of the 

velocity components. In any case, the increase of 

the frequency parameter leads to a decrease of the 

dispersion coefficient. The superiority of the 

steady part of the wall force compared to the 

pressure force can be inferred from the Fig. 4(i, 

j,k). While absence of usw makes a significant 

change in the profile, the feedback in the absence 

of usp in comparatively negligible. Fig. 4(l) shows 

that the oscillatory part of the pressure force is not 

stronger enough to produce any significant change 

in usw, but substantial effect of uow on usp can be 

seen. 

Fig. 6 shows the variation of the dispersion 

coefficient against the bulk flow reaction parameter 

κ when the flow is steady (u = usp + usw). The 

expected decrement of the dispersion coefficient 

with the increase of κ can be seen here. It is 

remarkable that the rate of decrement becomes 

sharper with the increase of κ. 

The variations of mean concentration distribution 

Cm(x,t) has been presented in Fig. 4(a − d) against 

the axial distance (x − xg) for different components 

of velocity. The increase of the reaction parameter κ 

ensures the depletion of the reactive material, and 

therefore the peak of the mean concentration 

distribution gradually decreases in any flow 

situation. It follows from Fig. 5(a) that steady 

component of the pressure force acts in favour of 

rising the peak of the concentration curve, whereas 

steady wall force attempts to make the concentration 

distribution curve to spread over larger portion 

forbidding the growth of the peak of the 

concentration curve. 

9. CONCLUSION 

In this work, longitudinal dispersion of reactive 

solute is examined in presence of homogeneous first 

order irreversible reaction between the solvent and 

the solute. The flow is considered to be driven by the 

joint action of two driving forces consisting of a 

steady and periodic part resulting in a tetra parted 

velocity distribution. The role played by each of the 

individual components of velocity in the dispersion 

process is sorted out. The following general 

conclusion can be made from the study: 

(a) The dispersion coefficient decreases with an 

increase in the reaction rate constant, the 

effect similar to irreversible reaction in the 

boundary. 

(b) Flow dependence of the effect of radius ratio 

is established through this analysis. 

(c) An absolute potency of the wall driven force 

over the pressure force on the velocity 

distribution as well as on dispersion 

coefficient is remarkable. 

(d) Pressure force is found to act in favour of 

decreasing the dispersion coefficient, 

whereas wall force against it. 

(e) Because of the depletion of the contaminant, 

peak of the mean concentration distribution 

has been seen to decrease with the increase 

of bulk-flow reaction rate constant.  
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