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Matching is one of the most extensively studied areas in Computer Science and is
interesting from the combinatorial point of view as well. A matching in a graph G = (V , E)

is a subset M of edges, no two of which have a vertex in common. A matching M is said to
be perfect if every vertex in G is an endpoint of one of the edges in M . The excessive index
of a graph G is the minimum number of perfect matchings to cover the edge set of G . The
study of excessive index has a number of applications particularly in scheduling theory.
In this paper we determine the excessive index for certain classes of graphs including
augmented butterfly network and honeycomb network. We also prove that the excessive
index does not exist for butterfly and Benes networks.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Parallel processing is expected to bring a breakthrough in the increase of computing speed. But the new parallel com-
puter systems are often expensive assets that must be shared by many users. To take full advantage of high performance
computing, parallel applications must be carefully managed to guarantee quality of service and fairness in using shared
resources. Thus a good scheduling strategy is indispensable in an efficient parallel computer system [7,8]. The study of
excessive index has a number of applications in scheduling theory [6]. Further, in [19] Mazzuoccolo proves that the well
known Berge–Fulkerson conjecture [10–12] can be stated in terms of the excessive index of cubic graphs.

A matching in a graph G = (V , E) is a subset M of edges, no two of which have a vertex in common. A matching M is
said to be perfect if every vertex in G is an endpoint of one of the edges in M . Thus a perfect matching in G is a 1-regular
spanning subgraph of G . In the literature it is also known as a 1-factor of G . The perfect matching problem is known to
be in randomized NC . Finding a perfect matching has received considerable attention in the field of parallel algorithms.
Though deterministic parallel algorithms are known for planar bipartite graphs, no deterministic algorithm exists for the
non-bipartite case.

A graph G is 1-extendable if every edge of G belongs to at least one 1-factor of G . A 1-factor cover of G is a set F of
1-factors of G such that

⋃
F∈F F = E(G). A 1-factor cover of minimum cardinality is called an excessive factorization [4].

The excessive index of G , denoted χ ′
e(G), is the size of an excessive factorization of G . We define χ ′

e(G) = ∞ if G is not
1-extendable. A graph G is 1-factorizable if its edge set E(G) can be partitioned into edge-disjoint 1-factors. The problem of
determining whether a regular graph G is 1-factorizable is NP-complete [13].

Bonisoli and Cariolaro [4] observed that the problem of determining the excessive index for regular graphs is NP-hard.
Cariolaro and Fu [5] determined the excessive index of complete multipartite graphs, which proved to be a challenging task.
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Fig. 1. CAT(1,4,0,3,1).

The excessive index of a bridgeless cubic graph has been studied by Fouquet et al. [9]. Furthermore, the excessive index is
being investigated for regular graphs in [1,20].

If k is a non-negative integer, a k-edge coloring of a graph G is a map Φ : E(G) → C , where C is a set of colors of
cardinality k, such that adjacent edges of G are mapped into distinct colors. The minimum k for which a k-edge coloring of
G exists is called the chromatic index of G and is denoted by χ ′(G). In general, it is proved that χ ′

e(G) � χ ′(G) and that the
difference between χ ′

e(G) and χ ′(G) can be arbitrarily large [4]. In this paper we obtain forbidden subgraphs for a graph
to be 1-extendable. We identify forbidden subgraphs in butterfly and Benes networks and thus prove that their excessive
index is infinite. We also obtain the excessive index for augmented butterfly networks and honeycomb networks.

2. General results on excessive index

In the sequel let Cn be a cycle of length n. Let δ and � denote the minimum and maximum degree of G respectively.
The vertices belonging to the edges of a matching are said to be saturated by the matching. The remaining vertices are
unsaturated. A perfect matching or 1-factor is a matching that saturates every vertex of G .

Lemma 1. (See [4].) Let G be a graph. Then χ ′
e(G) � �.

Lemma 2. (See [4].) If G is regular and has even order, then χ ′
e(G) = � if and only if G is 1-factorizable.

A tree is called a caterpillar if the deletion of vertices of degree one leaves a path.

Definition 1. (See [16].) Let m � 1, and ki , 1 � i � m, be non-negative integers such that m +k1 +· · ·+km � 3. A tree which
is obtained from a path P : v1 v2 · · · vm by joining vi to new vertices vij , 1 � j � ki , is called a caterpillar CAT(k1, k2, . . . ,km).
It has m + k1 + · · · + km vertices. Path P is called the spine of the caterpillar. The vertices and the edges on the spine are
called spine vertices and spine edges respectively. See Fig. 1.

Let H(CAT(k1,k2, . . . ,km)) denote a graph that contains CAT(k1,k2, . . . ,km) as an induced subgraph with degH vi equal
to deg vi in CAT(k1,k2, . . . ,km), 1 � i � m and degH vij > 1, 1 � j � ki , 1 � i � m. An edge e = (u, v) is a pendent edge in
G if degG u > 1 and degG v = 1 or vice versa.

Lemma 3. Let m be odd and let G be a graph H(CAT(k1,0,k3,0, . . . ,km−2,0,km)). Then χ ′
e(G) �

∑
1� j�m k j .

Proof. We claim that pendent edges vi vis and v j v jt , 1 � s � ki , 1 � t � k j , i < j of CAT(k1,0,k3,0, . . . ,km−1,0,km) be-
long to distinct perfect matchings of G . Suppose not, without loss of generality let vi vi1 and v j v j1, i < j be edges in a
perfect matching M of G such that for no vertex vl , i < l < j, l odd, an edge vl vlr , 1 � r � kl is in M . The vertices vi+1,
vi+2, . . . , v j−1 are odd in number and hence cannot be saturated by M , a contradiction, thus proving our claim. �
Lemma 4. Let G be a graph H(CAT(1,k2,0,k4,0, . . . ,km−3,0,km−1,1)). Then χ ′

e(G) �
∑

1< j<m k j + 2.

Proof. Clearly m − 1 is even and hence m is odd. We claim that pendent edges vi vis and v j v jt , 1 � s � ki , 1 � t � k j ,
1 �= i < j �= m of CAT(1,k2,0,k4,0, . . . ,km−3, 0, km−1, 1) belong to distinct perfect matchings of G . Suppose not, without
loss of generality let vi vi1 and v j v j1, 1 �= i < j �= m be edges in a perfect matching M of G such that for no vertex vl ,
i < l < j, l even, an edge vl vlr , 1 � r � kl is in M . The vertices vi+1, vi+2, . . . , v j−1 are odd in number and hence cannot be
saturated by M , a contradiction, thus proving our claim.

Again the spine edge v1 v2 and the pendent edge vi vis , i even, 3 � i � m − 1, 1 � s � ki belong to distinct perfect
matchings of G since the vertices v3, v4, . . . , vi−1 are odd in number. Similarly the spine edge vm vm−1 and the pendent
edge vi vit , i even, 1 � i � m − 2, 1 � t � ki belong to distinct perfect matchings of G . Further, the spine edges v1 v2
and vm vm−1 belong to distinct perfect matchings of G , since the vertices v3, v4, . . . , vm−2 are odd in number. Therefore
χ ′

e(G) �
∑

1< j<m k j + 2. �
The following results exhibit forbidden induced subgraphs for a graph G to be 1-extendable.
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Fig. 2. (a) HC(2), (b) α, β , γ axes, (c) α, β , γ lines.

Lemma 5. Let G be a graph with a pendent edge. Then χ ′
e(G) = ∞.

Proof. There does not exist any perfect matching containing an edge adjacent to a pendent edge in G . �
Lemma 6. Let G be a graph on n vertices with an even cycle Cm : v1 v2 · · · vm v1 , m < n, as an induced subgraph. Let degG v1 and
degG v3 be greater than 2 and degG vi = 2, for every i �= 1, 3. Then χ ′

e(G) = ∞.

Proof. Suppose not, let E = {M1, M2, . . . , Mk} be a 1-factor cover of G . Since degG(v1) � 3 there exists at least one
vertex x not on Cm such that xv1 is in at least one member of E . Without loss of generality, let xv1 ∈ M1. Then
v2 v3, v4 v5, . . . , v m

2
v m

2 +1, . . . , vm−2 vm−1 ∈ M1 and so the vertex vm is not saturated by M1, a contradiction. �
Lemma 7. Let G be a graph on n vertices with an odd cycle Cm : v1 v2 · · · vm v1 , m < n with degG v1 > 2 as an induced subgraph.
Suppose either degG v2 > 2 or degG v3 > 2 and degG vi = 2, for i �= 1, j, j = 2 or 3. Then χ ′

e(G) = ∞.

Proof. Suppose not, let {M1, M2, . . . , Mk} be a 1-factor cover of G . If degG v2 > 2, without loss of generality let v1 v2 ∈ M1.
Then v3 v4, v5 v6, . . . , vm−2 vm−1 ∈ M1 and so vm is not saturated by M1. Similarly if degG v3 > 2 and v3 v4 ∈ M1. Then
v5 v6, . . . , vm−2 vm−1, vm v1 ∈ M1 and so the vertex v2 is not saturated by M1. In either case, M1 is not a 1-factor, a contra-
diction. �

In a similar way, one can prove the following slightly more general result.

Lemma 8. Let G be a graph on n vertices with an even cycle Cm : v1 v2 · · · vm v1 , m < n, as an induced subgraph. Let degG v1 and
degG vi , i odd, be of degree greater than 2 and all other v j ’s of degree 2, j �= 1, i. Then χ ′

e(G) = ∞.

Lemma 9. Let G be a graph on n vertices with an odd cycle Cm : v1 v2 · · · vm v1 , m < n, as a subgraph. Let v1, vi1 , vi2 , . . . , vik be
vertices of Cm of degree greater than 2, where i1, i2, . . . , ik are all odd or all even and all other v j ’s be of degree 2, j /∈ {1, i1, . . . , ik}.
Then χ ′

e(G) = ∞.

3. Honeycomb networks

A honeycomb network can be built in various ways. The honeycomb network HC(1) is a hexagon. The honeycomb net-
work HC(2) is obtained by adding a layer of six hexagons to the boundary edges of HC(1) as shown in Fig. 2(a). Inductively
honeycomb network HC(n) is obtained from HC(n − 1) by adding a layer of hexagons around the boundary of HC(n − 1).
The number of vertices and edges of HC(n) are 6n2 and 9n2 − 3n respectively [21].

Ben-Natan et al. [3] mentioned the honeycomb array as a processor network. The demand for high speed computation
models has motivated the research in many domains of parallel computing. Honeycomb is an interconnection network
belonging to the family of planar graphs which is not yet intensively studied as meshes for example. Honeycomb network
has interesting properties: Honeycomb architecture is suitable in various applications: in wireless networks, its dual is
used for cellular phone station placement [22], image processing [2], and in Chemistry as the representation of benzenoid
hydrocarbons [21]. Honeycomb networks bear resemblance to atomic or molecular lattice structures of chemical compounds.

The edges of HC(1) are in 3 different directions. If the perpendicular bisectors of these edges meet at point O , then O is
called the center of the honeycomb network HC(1). O is also considered to be the center of HC(n). Through O draw three
oriented lines perpendicular to the three edge directions and name them as α,β,γ axes. See Fig. 2(b). The α line through
O , denoted by αo , passes through 2n − 1 hexagons. Any line parallel to αo and passing through 2n − 1 − i hexagons is
denoted by αi , 1 � i � n − 1 if the hexagons are above αo and by α−i , 1 � i � n − 1 if the hexagons are below αo . Further
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Fig. 3. (a) Hexagonal chain of dimension 3, (b) triangulene graph T (4) with level 1 vertices shown as dotted line, (c) a benzenoid system.

β j , β− j , 1 � j � n − 1 are defined as lines parallel to β0 lying to the right and left of β0 respectively. In the same way
γk, γ−k , 1 � k � n − 1 are defined. See Fig. 2(c).

Theorem 1. Let G be the honeycomb network HC(n), n � 1. Then χ ′
e(G) � n + 1.

Proof. We find that CAT(1, 0, 1, 0, 1, . . . ,0, 1) with the 2n +1 vertices above αn−1 as spine vertices, is an induced subgraph
of G . By Lemma 3, χ ′

e(HC(n)) � n + 1. �
Definition 2. Let P be a path of length 2k − 1, k � 1. A graph obtained from P by replacing alternate edges of P beginning
from the second edge by a hexagon with a pair of diametrically opposite vertices identified with the vertices of P is called
a hexagonal chain of dimension k. See Fig. 3(a).

A benzenoid system is a finite connected plane graph in which every interior face is a regular hexagon with each side of
length 1. See Fig. 3(c).

Definition 3. A regular triangulene graph T (n) is a benzenoid system with n(n+1)
2 regular hexagons and these hexagons are

arranged in the shape of an equilateral triangle with each side having the same number of hexagons and pendent edges
being added at the three corners of T (n) as shown in Fig. 3(b).

For our convenience we define levels for triangulene graph. The triangulene graph T (n) consists of n + 2 levels as shown
in Fig. 3(b). Edges with one end at level i and the other end at level i + 1 are vertical edges. Other edges of T (n) are called
acute edges or obtuse edges according as these edges make an acute angle or an obtuse angle with an imaginary line drawn
perpendicular to vertical edges. Consider the three sides of the triangulene, call one of the sides as base, one as left step
path and the other as right step path.

Theorem 2. Let G be the honeycomb network HC(n), n � 1. Then χ ′
e(G) = n + 1.

Proof. Removal of the edges perpendicular to and crossing α0, β0 and γ0 disconnects the graph HC(n) into 6 components
such that each component is isomorphic to a triangulene graph of dimension n − 2 and are named as T1(n − 2), T2(n − 2),
T3(n − 2), T4(n − 2), T5(n − 2) and T6(n − 2) in the counterclockwise order around O . Thus in HC(n) the six triangulene
graphs Ti(n − 2), 1 � i � 6 are joined in such a way that the vertices in the right step path of Ti(n − 2) are adjacent to the
corresponding vertices (same level) of the left step path of Ti+1(n − 2), i mod 6.

Let Mi0 and M ′
i0 be the matchings in Ti(n − 2), 1 � i � 6 such that Mi0, i odd, consists of acute edges and Mi0, i even,

consists of obtuse edges in level l, 1 � l � n. Similarly M ′
i0, i odd, consists of obtuse edges and M ′

i0, i even, consists of acute
edges in level l, 1 � l � n. Thus the obtuse edges in each level l, 1 � l � n leave a vertex x unsaturated in the left step path
and the acute edges in each level l, 1 � l � n leave a vertex y unsaturated in the right step path such that xy ∈ E(HC(n)).
Include xy in Mi0 and M ′

i0, 1 � i � 6. Therefore
⋃

1�i�6 Mi0 and
⋃

1�i�6 M ′
i0 form two perfect matchings and cover all the

acute edges, obtuse edges and the edges perpendicular to α0, β0, γ0.
Let Mi1, Mi2, . . . , Mi	 n

2 
 , M ′
i1, M ′

i2, . . . , M ′
i	 n

2 
 , 1 � i � 6 be the matchings such that if n is even, Mi	 n
2 
 is nothing but

M ′
i	 n

2 
 in Ti(n − 2), 1 � i � 6. The hexagonal chain of dimension l, 1 � l � 	 n
2 
 are induced subgraphs of Ti(n − 2), 1 � i � 6

with a pendent edge uv in the left step path or right step path whose pendent vertex u is at the level 2l. See Fig. 4. Now
Mil (M ′

il), 1 � i � 6, 1 � l � 	 n
2 
 contains the vertical edge in the left step path (right step path) of the hexagonal chain l,

1 � l � 	 n
2 
 of the triangulene graph Ti(n − 2), 1 � i � 6. Thus all vertical edges in the triangulene graph are covered by

Mil and M ′
il , 1 � i � 6, 1 � l � 	 n

2 
 if n is even and all the vertical edges except the pendent edge with the pendent vertex
at level n are covered if n is odd. In order to extend Mil and M ′

il , 1 � i � 6, 1 � l � 	 n
2 
 into perfect matchings of G , some

edges from Mi0 and M ′
i0, 1 � i � 6 are included as follows:

Note that each hexagonal chain l, 1 � l � 	 n
2 
 in Ti(n − 2), 1 � i � 6 lies between level 1 and 2l. From the level 1 edges,

include acute edges to the right and obtuse edges to the left of the pendent edge in Mil and M ′ , 1 � i � 6, 1 � l � 	 n 
.
il 2
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Fig. 4. Bold lines and shaded hexagons show hexagonal chains in T (4) of (a) dimension 1, (b) dimension 2 and (c) dimension 3.

Fig. 5. Edges included in Mil and M ′
il are the dotted lines selected on either side of (a) pendent edges at levels 1 and 6 (b) hexagons at levels 2, 3, 4 and 5.

Similarly from the edges of level 2l, include obtuse edges to the right and acute edges to the left of the pendent edge in
Mil and M ′

il , 1 � i � 6, 1 � l � 	 n
2 
. For edges in the levels 2 to 2l − 1, starting with level 2, choose acute edges to the right

and obtuse edges to the left of the hexagons of the hexagonal chain from alternate levels and choose obtuse edges to the
right and acute edges to the left of the hexagons from the remaining levels in Mil and M ′

il , 1 � i � 6, 1 � l � 	 n
2 
. See Fig. 5.

Choosing acute edges to the right and the obtuse edges to the left as defined above leaves a vertex x unsaturated in the
right step path and a vertex y unsaturated in the left step path of Ti(n − 2), 1 � i � 6 such that xy ∈ E(HC(n)). Include xy
in Mil and M ′

il , 1 � i � 6, 1 � l � 	 n
2 
.

Now consider the levels 2l + 1 to n, n even. Include the acute edges, i odd, 1 � i � 6 and the obtuse edges, i even,
1 � i � 6 in Mil and M ′

il , 1 � i � 6, 1 � l � 	 n
2 
. Repeat the same procedure when n is odd for the levels 2l + 1 to n in Mil

and M ′
il , 1 � i � 6, 2 � l � 	 n

2 
 and for the level 2l + 1 to n − 2 in Mi1 and M ′
i1. The inclusion of these edges leaves a vertex

x unsaturated in the right step path and the vertex y unsaturated in the left step path such that xy ∈ E(HC(n)). Include xy
in Mil and M ′

il , 1 � i � 6, 1 � l � 	 n
2 
. Add the vertical edge with pendent vertex at level n in Mi1 and M ′

i1. Thus
⋃

1�i�6 Mil

and
⋃

1�i�6 M ′
il , 1 � l � 	 n

2 
 form a perfect matchings in HC(n). �
4. Butterfly and Benes networks

A multistage network consists of a series of switch stages and interconnection patterns, which allows N inputs to be
connected to N outputs. The butterfly and Benes networks are important multistage interconnection networks, which pos-
sess attractive topologies for communication networks. They have been used in parallel computing systems such as IBM
SP1/SP2, MIT Transit Project, and NEC Cenju-3, and used as well in the internal structures of optical couplers, e.g., star cou-
plers [17]. Butterfly graphs were originally defined as the underlying graphs of fast Fourier transform (FFT) networks, which
can perform the FFT very efficiently [14]. Manuel et al. [17] have identified new topological representations for butterfly
and Benes networks as diamond representations and proved that the normal and diamond representations of butterfly and
Benes networks are isomorphic.

The set V of nodes of an r-dimensional butterfly correspond to pairs [w, i], where i, 0 � i � r, is the level of a node and
w is an r-bit binary number that denotes the column of the node. Two nodes [w, i] and [w ′, i′] are linked by an edge if
and only if i′ = i + 1 and either:

1. w and w ′ are identical, or
2. w and w ′ differ in precisely the i′th bit.

The edges in the network are undirected. An r-dimensional butterfly is denoted by BF(r). See Fig. 6(a). An r-dimensional
Benes network has 2r +1 levels, each level with 2r nodes. The level 0 to level r nodes in the network form an r-dimensional
butterfly. The middle level of the Benes network is shared by two butterflies [15]. An r-dimensional Benes is denoted by
B(r). Fig. 6(b) shows a B(2) network.
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Fig. 6. (a) Butterfly BF(3). (b) Benes B(2).

Fig. 7. Augmented butterfly network of dimension 3.

Definition 4. (See [18].) Let n � 1 be an integer. The vertices of the n-dimensional augmented butterfly network are the pairs
(r, x) where r is a non-negative integer 0 � r � n called the level and x = (x1x2x3 . . . xn) is a binary string of length n. In ABn

the vertex (r, x), 0 � r � n − 1, is adjacent to the vertices (r + 1, x), (r + 1, x1x2 . . . xr xr+1xr+2 . . . xn), (r, x1x2 . . . xr xr+1 . . . xn)

and (r, x1x2 . . . xr xr+1xr+2 . . . xn). Further the vertex (n, x1x2x3 . . . xn) is adjacent to (n, x1x2x3 . . . xn). See Fig. 7.

In particular, when r = 0, the vertex (0, x1x2x3 . . . xn) is adjacent to the vertices (1, x1x2x3 . . . xn), (1, x1x2x3 . . . xn) and (0,
x1x2x3 . . . xn). Also when r = n, (n, x1x2x3 . . . xn) is adjacent to the vertices (n, x1x2x3 . . . xn), (n − 1, x1x2x3 . . . xn) and (n − 1,
x1x2x3 . . . xn). Clearly ABn has (n + 1)2n vertices and 3n × 2n edges.

In the sequel, an edge joining (r, x) and (r + 1, x) is denoted by [(r, x)(r + 1, x)].

Definition 5. The edges e = [(r, x)(r′, y)] and e′ = [(r, u)(r′, v)], 1 � r � n − 1 in ABn are called mirror images if

(i) r′ = r or r′ = r + 1, and
(ii) x & u and y & v differ in exactly the first bit.

In particular, when r = n, the edge [(n, x1x2 . . . xn)(n, x1x2 . . . xn)] is the mirror image of the edge [(n, x1x2 . . . xn)

(n, x1x2 . . . xn)].

Remark 1. (See [18].) The edges between (r, x) and (r, x1x2 . . . xr−1xr xr+1 . . . xn) and between (r, x) and
(r, x1x2 . . . xr xr+1xr+2 . . . xn) are called level edges. The edges between (r, x) and (r + 1, x) are called straight edges while the
edges between (r, x) and (r + 1, x1x2 . . . xr xr+1xr+2 . . . xn) are called cross edges.

Theorem 3. Let G be a butterfly network BF(r) or Benes network B(r), r � 2. Then χ ′
e(G) = ∞.

Proof. Both BF(r) and B(r) contain an induced 4-cycle namely [(0, x1x2 . . . xr)(1, x1x2 . . . xr)] [(1, x1x2 . . . xr)(0, x1x2 . . . xr)]
[(0, x1x2 . . . xr)(1, x1x2 . . . xr)] [(1, x1x2 . . . xr)(0, x1x2 . . . xr)] with alternate vertices of degree 4 and remaining vertices of de-
gree 2. By Lemma 6, χ ′

e(G) = ∞. �
Theorem 4. Let G be an augmented butterfly network ABn, n � 2. Then χ ′

e(G) = 6.

Proof. By Lemma 1, χ ′
e(G) � 6. We now construct six perfect matchings M1, M2, M3, M4, M5 and M6 covering all the

edges of ABn . We prove something more that all 0 level edges in ABn belong to each of four perfect matchings, say M1, M2,
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M3 and M4. We prove the result by induction on the dimension n of the augmented butterfly ABn . When n = 2 it can be
manually checked that the following six perfect matchings cover the edge set of AB2.

M1 = {[(1,00)(2,00)], [(1,01)(2,01)], [(1,10)(2,10)], [(1,11)(2,11)], [(0,00)(0,10)], [(0,01)(0,11)]},
M2 = {[(1,00)(2,01)], [(1,01)(2,00)], [(1,10)(2,11)], [(1,11)(2,10)], [(0,00)(0,10)], [(0,01)(0,11)]},
M3 = {[(1,00)(1,01)], [(1,10)(1,11)], [(2,10)(2,11)], [(2,00)(2,01)], [(0,00)(0,10)], [(0,01)(0,11)]},
M4 = {[(1,00)(1,10)], [(1,01)(1,11)], [(2,10)(2,11)], [(2,00)(2,01)], [(0,00)(0,10)], [(0,01)(0,11)]},
M5 = {[(0,00)(1,00)], [(1,10)(0,10)], [(2,10)(2,11)], [(2,00)(2,01)], [(1,01)(0,01)], [(0,11)(1,11)]},
M6 = {[(0,10)(1,00)], [(1,10)(0,00)], [(2,10)(2,11)], [(2,00)(2,01)], [(1,01)(0,11)], [(0,01)(1,11)]}.

In these perfect matchings Mi , 1 � i � 6, the edges [(0,00)(0,10)] and [(0,01)(0,11)] appear in M1, M2, M3 and M4.
Thus the induction hypothesis is true for k = 2.

We assume the result for n = k and prove the result for n = k + 1. Deletion of the vertices at level 0 and the edges [(1,
x1x2 . . . xk+1)(1, x1x2 . . . xk+1)], xi ∈ {0,1}, yield two copies of augmented butterfly network of dimension k, say ABk and AB′

k .
By induction hypothesis let M ′

1, M ′
2, M ′

3, M ′
4, M ′

5 and M ′
6 be six perfect matchings that cover the edge set of ABk and M ′′

1 ,
M ′′

2 , M ′′
3 , M ′′

4 , M ′′
5 and M ′′

6 be six perfect matchings that cover the edge set of AB′
k in such a way that the edges in M ′′

i ,
1 � i � 6 are the mirror images of the edges in M ′

i , 1 � i � 6.
Now let Mi = M ′

i ∪ M ′′
i , 1 � i � 6. By induction hypothesis let M1, M2, M3 and M4 be four matchings that contain the

edges [(1, x1x2 . . . xk+1) (1, x1x2 . . . xk+1)], xi ∈ {0,1}. Since deg(2, x1x2 . . . xk+1) = 6 there exists exactly one perfect matching,
say M1, in which the edges [(2, x1x2 . . . xk+1) (2, x1x2 . . . xk+1)] and [(1, x1x2 . . . xk+1) (1, x1x2 . . . xk+1)] appear.

Delete the edges [(1, x1x2 . . . xk+1) (1, x1x2 . . . xk+1)] from M2, M3 and M4 and include the edges [(1, x1x2 . . . xk+1) (1,
x1x2 . . . xk+1)] and [(0, x1x2 . . . xk+1) (0, x1x2 . . . xk+1)] in M2; [(0, x1x2 . . . xk+1) (1, x1x2 . . . xk+1)] in M3; [(0, x1x2 . . . xk+1) (1,
x1x2 . . . xk+1)] in M4 and the edges [(0, x1x2 . . . xk+1) (0, x1x2 . . . xk+1)] in M1, M5 and M6. Thus the straight edges between
level 0 and level 1 are covered by M3 and the cross edges between level 0 and 1 are covered by M4. The edges in level 0
are in M1 ∩ M2 ∩ M5 ∩ M6. The edges between ABk and AB′

k in level 1 of ABk+1 are covered by M2. �
5. Conclusion

The excessive index has been determined only for few networks. It would be an interesting line of research to determine
excessive index for circulant networks, torii, hexagonal networks and so on.
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