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In this work, we define new α − λ-rational contractive conditions and establish fixed-points results based on aforesaid contractive
conditions for a mapping in extended Branciari b-distance spaces. We furnish two examples to justify the work. Further, we discuss
results on weak well-posed property, weak limit shadowing property, and generalized w-Ulam-Hyers stability in the underlying
space. Finally, as an application of our main result, we obtain sufficient conditions for the existence of solutions of a nonlinear
fractional differential equation with integral boundary conditions.

1. Introduction and Preliminaries

The distance notion in the metric fixed-point theory is intro-
duced and generalized in different ways by many authors [1–
5]. Bakhtin [6] defined the notion of b-metric space which is
further used by Czerwik in [7, 8]. In [9], Branciari extended
the metric space and introduced the notion of the Branciari
distance by changing the property of triangle inequality with
quadrilateral one.

Definition 1 [9]. Let Ξ ≠∅ be a set and let b : Ξ2
⟶ℝ+ such

that, for all ϑ, ν ∈ Ξ and all u, v ∈ Ξ \ fϑ, νg

(bd1) bðϑ, νÞ = 0 if and only if ϑ = ν (self-
distance/indistancy)

(bd2) bðϑ, νÞ = bðν, ϑÞ (symmetry)

(bd3) bðϑ, νÞ ≤ bðϑ, uÞ + bðu, vÞ + bðv, νÞ (quadrilateral
inequality).

The symbol ðΞ, bÞ the denotes Branciari distance space
and abbreviated as “BDS.”

In [10], Kamran et al. introduced the notion of extended
b-metric space as a generalization of b-metric space and
proved the following result.

Definition 2 [10]. Let Ξ ≠∅ be a set and w : Ξ2
⟶ℝ+ \

ð0, 1Þ. We say that a function ρe : Ξ2
⟶ℝ+ is an

extended b-metric (ρe-metric, in short) if it satisfies

(eb1) ρeðϑ, νÞ = 0 if and only if ϑ = ν

(eb2) ρeðϑ, νÞ = ρeðν, ϑÞ (symmetry)
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(eb3) ρeðϑ, νÞ ≤wðϑ, νÞ½ρeðϑ, υÞ + ρeðυ, νÞ�,

for all ϑ, ν, υ ∈ Ξ. The symbol ðΞ, ρeÞ denotes a ρe-metric
space.

Theorem 3 [10]. Let ðΞ, ρeÞ be a complete extended b-metric
space such that ρe is a continuous functional. LetI : Ξ⟶ Ξ
satisfy ρeðIϑ,IνÞ ≤ k ρeðϑ, νÞ for all ϑ, ν ∈ Ξ where k ∈ ½0, 1Þ
such that for each ϑ0 ∈ Ξ, limn,m⟶∞wðϑn, ϑmÞ < 1/k, here ϑn
=Inϑ0, n = 1, 2,⋯. Then I has precisely one fixed-point ϑ.
Moreover, for each ν ∈ Ξ, Inν⟶ ϑ.

In [3], Mitrović et al. extended Theorem 3 and proved the
following:

Theorem 4 [3]. Let ðΞ, ρeÞ be a complete extended b-metric
space such that ρe is a continuous functional. Let I : Ξ⟶

Ξ satisfy

ρe Iϑ,Iνð Þ ≤ a ρe ϑ, νð Þ + b ρe ϑ,Iϑð Þ + c ρe ν,Iνð Þ, ð1Þ

for all ϑ, ν ∈ Ξ where a, b, c are nonnegative real numbers with
a + b + c < 1. Then, I has a unique fixed-point ϑ. Moreover,
there exists a sequence fϑngn∈ℕ in Ξ which converges to ϑ such
that ϑn+1 =Iϑn for every n ∈ℕ.

In [11], Abdeljawad et al. defined the notion of extended
Branciari b-distance (EBbDS, in short) by combining the
extended b-metric and Branciari distance.

Definition 5 [11]. Let Ξ ≠∅ be a set and w : Ξ2
⟶ℝ+ \ ð0

, 1Þ. We say that a function eb : Ξ2
⟶ℝ+ is an extended

Branciari b-metric (eb-metric, in short) if it satisfies

(ebb1) ebðϑ, υÞ = 0 if and only if ϑ = υ

(ebb2) ebðϑ, υÞ = ebðυ, ϑÞ

(ebb3) ebðϑ, υÞ ≤wðϑ, υÞ½ebðϑ, νÞ + ebðν, ρÞ + ebðρ, υÞ�,

for all ϑ, υ ∈ Ξ, all distinct ν, ρ ∈ Ξ \ fϑ, υg. The symbol
ðΞ, ebÞ denotes the extended Branciari b-distance space. For
wðϑ, υÞ = 1, ðΞ, ebÞ will be called a Branciari b-distance space
(BbDS, in short).

Example 1. Let Ξ = Cð½0, 1�,ℝÞ and define eb : Ξ2
⟶ℝ+ by

ebðP,QÞ =
Ð 1

0
ðPðtÞ −QðtÞÞ2dt with wðP,QÞ = jPðtÞj + jQðtÞj

+ 2. Note that ebðP,QÞ ≥ 0 for all P,Q ∈ Ξ, and ebðP,QÞ = 0
if and only if P =Q. Also, ebðP,QÞ = ebðQ, PÞ. Hence, it is
clear that ðΞ, ebÞ is an EBbDS, but it is neither an BDS nor
metric space.

Definition 6 [11]. Let Ξ ≠∅ be a set endowed with extended
Branciari b-distance eb.

(a) A sequence fϑng in Ξ converges to ϑ if for every ε > 0
there exists N =NðεÞ ∈ℕ such that ebðϑn, ϑÞ < ε for
all n ≥N . For this particular case, we write limn⟶∞

ϑn = ϑ

(b) A sequence fϑng in Ξ is called Cauchy if for every ε
> 0 there exists N =NðεÞ ∈ℕ such that ebðϑm, ϑnÞ
< ε for all m, n ≥N

(c) An eb-metric space ðΞ, ebÞ is complete if every Cau-
chy sequence in Ξ is convergent.

On the other hand, in [12], Samet et al. define the notion
of α-admissible mappings which is further extended by Sin-
tunavarat [13] and named as weakly α-admissible mapping.

Definition 7. For a Ξ ≠∅ set, let α : Ξ × Ξ⟶ ½0,∞Þ and I
: Ξ⟶ Ξ be two mappings. Then I is called

(1) [12] α-admissible if

ϑ, ν ∈ Ξwith α x, νð Þ ≥ 1⇒ α Iϑ,Iνð Þ ≥ 1 ð2Þ

(2) [13] weakly α-admissible if

ϑ ∈ Ξwith α ϑ,Iϑð Þ ≥ 1⇒ α Iϑ,IIϑð Þ ≥ 1: ð3Þ

For a Ξ ≠∅ set and a mapping α : Ξ × Ξ⟶ ½0,∞Þ, we
use

A Ξ, αð Þ≔ The set of all α − admissiblemappings onΞ,

WA Ξ, αð Þ≔ The set of all weakly α − admissiblemappings onΞ:

ð4Þ

It is noted that

A Ξ, αð Þ ⊂WA Ξ, αð Þ: ð5Þ

The notion of well-posedness of a fixed-point problem
(fpp) has evoked much interest of several mathematicians,
for example, Popa [14, 15] and others. In the paper [16],
authors defined a weak well-posed (wwp) property in BbDS
and in the papers [17, 18]; the authors have discussed limit
shadowing property of fixed-point problems.

The aim of this work is to introduce α − λ-rational con-
traction in an EBbDS and prove the existence of fixed points
of such rational contraction in an EBbDS.We also discuss the
weak well-posedness, limit shadowing property, and general-
ized weak-Ulam-Hyers stability of fixed-point problems in a
EBbDS. As an application of our main result, we obtain suf-
ficient conditions for the existence of solutions of a nonlinear
fractional differential equation with integral boundary condi-
tions. By doing these work, we generalize Theorems 3 and 4
in the sense that we use a more general contractive condition
which depends on the variable (Lipschitz constants), func-
tion wðx, yÞ on the left-side of contractive condition, and
proved results on the weakly α-admissible mapping on more
general space structures. It is justifies the usefulness of these
terms through illustrations, and the results are real generali-
zation as the considered distances are neither metric space
not Branciari distance space.
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2. Main Results

2.1. α − λ-Rational Contractive Mapping and Fixed Points.
We start with introducing the notion of α − λ-rational con-
traction in a EBbDS as follows.

Definition 8. Let ðΞ, ebÞ be an EBbDS and α : Ξ2
⟶ℝ+ and

λ : Ξ⟶ ½0, 1Þ. A mappingI : Ξ⟶ Ξ is said to be an α − λ
-rational contraction, if there exist

ϑ, ν ∈ Ξ, ð6Þ

with

α ϑ, νð Þ ≥ 1,

eb ϑ, νð Þ > 0, eb Iϑ,Iνð Þ > 0,
ð7Þ

which implies

w ϑ, νð Þeb Iϑ,Iνð Þ

≤ λ uð Þ max

eb ϑ, νð Þ, eb ϑ,Iϑð Þ, eb ν,Iνð Þ,

eb ν,Iνð Þ 1 + eb ϑ,Iϑð Þ½ �

w ϑ, νð Þ 1 + eb ϑ, νð Þ½ �
,
eb ϑ,Iϑð Þ:eb ν,Iνð Þ

w ϑ, νð Þ:eb ϑ, νð Þ

8

>

<

>

:

9

>

=

>

;

:

ð8Þ

We denote by ΛðΞ, αÞ the collection of all α − λ-rational
contractive mappings on ðΞ, ebÞ.

The set of all fixed points of a self-mapping I on a set
Ξ ≠∅ will be denoted by FixðIÞ.

We are now in a position to state and prove the result.

Theorem 9. Let ðΞ, ebÞ be a complete EBbDS and α : Ξ × Ξ
⟶ ½0,∞Þ. Let I : Ξ⟶ Ξ be a mapping satisfying the
following:

(A1) I ∈ΛðΞ, αÞ ∩WAðΞ, αÞ

(A2) There exists u0 ∈ Ξ such that αðu0,Iu0Þ ≥ 1

(A3) I is continuous.

Then, FixðIÞ ≠∅. Furthermore, for any u0 ∈ Ξ, the
sequence un satisfying un =Iun−1 is convergent.

Proof. By virtue of condition (A2), there exists u0 ∈ Ξ such
that αðu0,Iu0Þ ≥ 1. Define the sequence fung ∈ Ξ by un+1
=Iun. If there exists n0 ∈ℕ such that un0 = un0+1, then un0
∈ FixðIÞ, and we are complete. Therefore, we assume that
un ≠ un+1 for all n ∈ℕ:

It follows that

eb un, un+1ð Þ > 0,∀n ∈ℕ: ð9Þ

It follows from I ∈WAðΞ, αÞ and αðu0,Iu0Þ ≥ 1 that

α u1, u2ð Þ = α Iu0,IIu0ð Þ ≥ 1: ð10Þ

Continuing this process, we obtain

α un, un+1ð Þ ≥ 1∀n ∈ℕ: ð11Þ

Step 1. First, we prove that

lim
n⟶∞

eb un, un+1ð Þ = 0: ð12Þ

It follows from I ∈ΛðΞ, αÞ that

w un−1, unð Þeb Iun−1,Iunð ÞÞ

≤ λ un−1ð Þ max

eb un−1, unð Þ, eb un−1,Iun−1ð Þ, eb un,Iunð Þ,

eb un,Iunð Þ 1 + eb un−1,Iun−1ð Þ½ �

w un−1, unð Þ 1 + eb un−1, unð Þ½ �
,
eb un−1,Iun−1ð Þ:eb un,Iunð Þ

w un−1, unð Þ:eb un−1, unð Þ

8

>

<

>

:

9

>

=

>

;

= λ un−1ð Þ max

eb un−1, unð Þ, eb un−1, unð Þ, eb un, un+1ð Þ,

eb un, un+1ð Þ 1 + eb un−1, unð Þ½ �

w un−1, unð Þ 1 + eb un−1, unð Þ½ �
,
eb un−1, unð Þ:eb un, un+1ð Þ

w un−1, unð Þ:eb un−1, unð Þ

8

>

<

>

:

9

>

=

>

;

,

ð13Þ

≤λ un−1ð Þ max
eb un−1, unð Þ, eb un−1, unð Þ, eb un, un+1ð Þ,

eb un, un+1ð Þ, eb un, un+1ð Þ

( )

≤ λ un−1ð Þ max eb un−1, unð Þ, eb un, un+1ð Þf g:

ð14Þ

If ebðun−1, unÞ ≤ ebðun, un+1Þ for some n ∈ℕ, then from
(13), we have wðun, un+1Þebðun−1, unÞ ≤ λðun−1Þebðun, un+1Þ,
which is a contradiction since w ≥ 1 and λ < 1. Thus, ebðun,
un+1Þ ≤ ebðun−1, unÞ for all n ∈ℕ, and the sequence febðun,
un+1Þg is a decreasing sequence of real numbers. Therefore,
there exists ζ such that

lim
n⟶∞

eb un, un+1ð Þ = ζ: ð15Þ

Again applying the limit in (13), we get

lim
n⟶∞

w un−1, unð Þζ ≤ lim
n⟶∞

λ un−1ð Þζ, ð16Þ

which leads to ζ = 0 as w ≥ 1. Thus, we get

lim
n⟶∞

eb un, un+1ð Þ = 0: ð17Þ

Step 2. At this step, we will prove that fung is a Cauchy
sequence, that is, for m > n, we prove

lim
n,m⟶∞

eb un, umð Þ = 0: ð18Þ
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Using (ebb3), we have

eb un, umð Þ ≤w un, umð Þ eb un, un+1ð Þ½

+ eb un+1, un+2ð Þ + eb un+2, un+mð Þ�

≤w un, umð Þeb un, un+1ð Þ +w un, umð Þeb un, un+1ð Þ

+w un, umð Þeb un+2, umð Þ

≤w un, umð Þeb un, un+1ð Þ +w un, umð Þeb un, un+1ð Þ

+w un, umð Þw un+2, umð Þ eb un+2, un+3ð Þ½

+ eb un+3, un+4ð Þ + eb un+4, umð Þ�

≤w un, umð Þeb un, un+1ð Þ +w un, umð Þeb un, un+1ð Þ

+w un, umð Þw un+2, umð Þeb un, un+1ð Þ

+w un, umð Þw un+2, umð Þeb un, un+1ð Þ

+w un, umð Þw un+2, umð Þeb un+4, umð Þ⋮

≤w un, umð Þeb un, un+1ð Þ +w un, umð Þeb un, un+1ð Þ

+w un, umð Þw un+2, umð Þeb un, un+1ð Þ

+w un, umð Þw un+2, umð Þeb un, un+1ð Þ+⋯

+w un, umð Þw un+2, umð Þ⋯w um−2, umð Þeb
� un, un+1ð Þ +w un, umð Þw un+2, umð Þ⋯w

� um−2, umð Þeb un, un+1ð Þ

≤w un, umð Þeb un, un+1ð Þ +w un, umð Þw

� un+1, umð Þeb un, un+1ð Þ +w un, umð Þw

� un+1, umð Þw un+2, umð Þeb un, un+1ð Þ

+w un, umð Þw un+1, umð Þw un+2, umð Þw

� un+3, umð Þeb un, un+1ð Þ+⋯+w un, umð Þw

� un+1, umð Þw un+2, umð Þ⋯w um−2, umð Þeb
� un, un+1ð Þ +w un, umð Þw un+1, umð Þw

� un+2, umð Þ⋯w um−2, umð Þw um−1, umð Þeb un, un+1ð Þ:

ð19Þ

Applying n,m⟶∞ and using (12), we get

lim
n,m⟶∞

eb un, umð Þ = 0: ð20Þ

Hence, fung is a Cauchy sequence. Since ðΞ, ebÞ is a com-
plete EBbDS, then there exists a point u∗ ∈ Ξ such that un
⟶ u∗ as n⟶ +∞, that is

lim
n⟶+∞

eb un, u
∗ð Þ = 0: ð21Þ

Next, we prove that u∗ ∈ FixðIÞ. Indeed, we write

eb u∗,Iu∗ð Þ ≤w u∗,Iu∗ð Þ eb u∗, unð Þ½

+ eb un, un+1ð Þ + eb un+1,Iu
∗ð Þ�:

ð22Þ

Since I is continuous, on letting n⟶ +∞, we obtain
ebðu

∗,Iu∗Þ = 0, that is, Iu∗ = u∗, and hence, u∗ is a fixed
point of I.

To prove the uniqueness of fixed-point u∗, we impose an
additional requirement.

(A4) For every pair u∗ and v∗ of fixed points of I, αð
u∗, v∗Þ ≥ 1.

Theorem 10. In addition of condition (A4) in Theorem 9, Fi
xðIÞ is a singleton set.

Proof. Following Theorem 9, u∗ ∈ FixðIÞ. To prove FixðIÞ
is a singleton set, assume that there exist u∗, v∗ ∈ FixðIÞ with
u∗ ≠ v∗, and by (A4), we have αðu∗, v∗Þ ≥ 1. It follows from
I ∈ΛðΞ, αÞ that

w u∗, v∗ð Þeb Iu
∗,Iv∗ð Þ

≤ λ u∗ð Þ max

eb u∗, v∗ð Þ, eb u∗,Iu∗ð Þ, eb v∗,Iv∗ð Þ,

eb v∗,Iv∗ð Þ 1 + eb u∗,Iv∗ð Þ½

w u∗, v∗ð Þ 1 + eb u∗, v∗ð Þ½ �
,
eb u∗,Iu∗ð Þ:eb v∗,Iv∗ð Þ

w u∗, v∗ð ÞÞ:eb u∗, v∗ð Þ

8

>

<

>

:

9

>

=

>

;

≤ λ u∗ð Þ max eb u∗, v∗ð Þ, 0, 0, 0, 0f g,

ð23Þ

which implies that

w u∗, v∗ð Þeb u∗, v∗ð Þ ≤ λ u∗ð Þeb u∗, v∗ð Þ, ð24Þ

a contradiction, and hence, u∗ = v∗.

2.2. Illustrations

Example 2. Let Ξ = f0:2,0:25,0:3,0:5,1g. Define eb : Ξ2
⟶

ℝ+ so that ebðζ, ξÞ = ebðξ, ζÞ for all ζ, ξ ∈ Ξ, and

eb 0:5,0:3ð Þ = 0:07, eb 0:5,0:25ð Þ = 0:015, eb 0:25,0:2ð Þ = 0:02,

eb 0:3,0:25ð Þ = 0:02, eb 0:3,0:2ð Þ = 0:02,

ð25Þ

ebðζ, ξÞ = ðζ − ξÞ2, otherwise. Then ðΞ, ebÞ is a EBbDS
with wðζ, ξÞ = ζ + ξ + 2 but neither a BDS ðΞ, bÞ nor a metric
space ðΞ, dÞ. For instance

eb 0:5,0:3ð Þ = 0:07≤0:035 = eb 0:5,0:25ð Þ + eb 0:25,0:3ð Þ,

eb 0:5,0:3ð Þ = 0:07≤0:055 = eb 0:5,0:25ð Þ + eb 0:25,0:2ð Þ + eb 0:2,0:3ð Þ,

ð26Þ

but

eb 0:5,0:3ð Þ = 0:07 ≤ 0:154 =w ζ, νð Þ eb 0:5,0:25ð Þ½

+ eb 0:25,0:2ð Þ + eb 0:2,0:3ð Þ�:
ð27Þ

Consider the self-mapping I on Ξ, α : Ξ2
⟶ℝ+ and λ

: Ξ⟶ ½0, 1Þ

I :

0:2 0:25 0:3 0:5 1

0:3 0:5 0:2 0:5 0:25

 !

,

α ζ, νð Þ =
1, ζ, νð Þ ∈ 0:2,1ð Þ ∪ 0:5,1ð Þ ∪ 1,0:2ð Þ ∪ 1,0:5ð Þ

0, otherwise,

 

ð28Þ

and λðζÞ = 2ζ/3 for all ζ ∈ Ξ.
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It is easy to see thatI ∈WAðΞ, αÞ. We will check thatI sat-
isfies (8) for ζ ≠ ξ withIðζÞ ≠IðξÞ and αðζ, ξÞ > 1. We dem-
onstrate by three nontrivial possible cases. Here,
wðζ, ξÞ ∈ ½2:4,6�.

Case 1. ζ = 0:5, ξ = 1 (or vice versa if ζ, ξ change places).
Then, ebðIζ,IξÞ = 0:015, wðζ, ξÞ = 3:5, λðζÞ = 0:333 and

Mw ζ, ξð Þ =max 0:25,0, 0:5625
0:5625ð Þ 1 + 0½ �

3:5ð Þ 1 + 0:25½ �
,
0ð Þ 0:5625ð Þ

3:5ð Þ 0:25ð Þ

� �

= 0:5625:

ð29Þ

Therefore, (8) implies that 0:0525 < 0:1873, and (8) holds
true.

Case 2. ζ = 0:2, ξ = 1 (or vice versa if ζ, ξ change places).
Then, ebðIζ,IξÞ = 0:02, wðζ, ξÞ = 3:2, λðζÞ = 0:1333 and

Mw ζ, ξð Þ =max 0:64,0:02,0:5625,
0:5625 1 + 0:02½ �

3:2 1 + 0:64½ �
,
0:2ð Þ 0:5625ð Þ

3:2ð Þ 0:64ð Þ

� �

= 0:64,

ð30Þ

and it is easily seen that (8) is fulfilled.

Thus, all the conditions are fulfilled, and I has a unique
fixed point (which is ζ∗ = 0:5).

Note that in this example the use of weakly α-admissi-
bility and λðζÞ was crucial because, e.g., if we take ζ = 0:2, ξ
= 0:5, we get ebðIζ,IξÞ = 0:07, wðζ, ξÞ = 2:7 and

Mw ζ, ξð Þ =max 0:09,0:02,0,
0ð Þ 1 + 0:02½ �

2:7 1 + 0:09½ �
,

0:02ð Þ 0ð Þ

2:7ð Þ 0:09ð Þ

� �

= 0:09,

ð31Þ

and no contractive condition for any λðζÞ < 1 can be chosen
which would holds for these points.

Example 3. Consider Ξ = ½0, 1� and define eb : Ξ2
⟶ℝ+ by

ebðζ, ξÞ = jζ − ξj2. Then, ðΞ, ebÞ is a EBbDS with wðζ, ξÞ = ζ
+ ξ + 2:5 but neither a BDS ðΞ, bÞ not a metric space ðΞ, dÞ
. For instance

eb 0, 1ð Þ = 1≤0:5 = eb 0,0:5ð Þ + eb 0:5,1ð Þ,

eb 0, 1ð Þ = 1≤0:4902 = eb 0,0:5ð Þ + eb 0:5,0:99ð Þ + eb 0:99,1ð Þ,

ð32Þ

but

eb ζ, ξð Þ = ζ − ξj j
2 = ζ − μ + μ − υ + υ − ξj j

2
≤ ζ − μj j

2

+ μ − υj j2 + υ − ξj j
2 + 2 ζ − μj j μ − υj j

+ 2 μ − υj j υ − ξj j + 2 υ − ξj j ζ − μj j

≤ ζ + ξ +
5

2

� �

ζ − μj j
2 + μ − υj j2 + υ − ξj j

2
h i

=w ζ, ξð Þ eb ζ, μð Þ + eb μ, υð Þ + eb υ, ξð Þ½ �,

ð33Þ

for all ζ, ξ, μ, υ ∈ Ξ.

Consider the self-mapping I on Ξ given by IðζÞ = ζ2/2.
Taking α : Ξ2

⟶ℝ+ and λ : Ξ⟶ ½0, 1Þ such that λðζÞ =
8:95 + ζ/10 for all ζ ∈ Ξ, and αðζ, ξÞ = 1 for ζ, ξ ∈ Ξ, it is obvi-
ous to see I ∈WAðΞ, αÞ. Here, wðζ, ξÞ ∈ ð2, 4Þ.

Then equation (8) for ζ ≠ ξ would be of the form

ζ + ξ + 2:5ð Þ
ζ2

2
−
ξ2

2

�

�

�

�

�

�

�

�

�

�

2

≤
8:95 + ζ

10

� �

max

ζ − ξj j
2, ζ −

ζ2

2

�

�

�

�

�

�

�

�

�

�

2

, ξ −
ξ2

2

�

�

�

�

�

�

�

�

�

�

2

,

ξ − ξ2/2
�

�

�

�

�

�

2
1 + ζ − ζ2/2
�

�

�

�

�

�

2
� �

ζ + ξ + 2:5ð Þ 1+∣ζ − ξj
2

h i ,
ζ − ζ2/2
�

�

�

�

�

�

2
: ξ − ξ2/2
�

�

�

�

�

�

2

ζ + ξ + 2:5ð Þ: ζ − ξj j
2

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

ð34Þ

holds whenever ebðIζ,IξÞ > 0 and αðζ, ξÞ ≥ 1.

For example, we demonstrate (34) is true for two cases:

Case 1. ζ = 0, ξ = 1 (or vice versa if ζ, ξ change places). Then,
(34) will be

3:5ð Þ 0:25ð Þ = 0:875

≤
8:95

10

� �

max 1, 0,
1

4
,
1/4 1 + 0ð Þ

3:5ð Þ 1 + 1ð Þ
, 0

� �

= 0:895,

ð35Þ

which is true.

Case 2. ζ = 1, ξ = 0:9 (or vice versa if ζ, ξ change places).
Then, (34) will be

4:4ð Þ 0:19ð Þ2 = 0:15884

≤
9:95

10

� �

max

0:01,0:444,0:3969,

0:3969ð Þ 1 + 0:444½ �

4:4ð Þ 1 + 0:01ð Þ
,
0:444ð Þ 0:3969ð Þ

4:4ð Þ 0:01ð Þ

8

>

<

>

:

9

>

=

>

;

= 0:44178,

ð36Þ

which holds true.

Similarly, it can be verified for any ζ ≠ ξ ∈ Ξ with αðζ, ξÞ
≥ 1. Thus, all the conditions are fulfilled, and the FixðIÞ =
f0g is a singleton set.

2.3. Weak Well-Posedness, Weak Limit Shadowing, and
Generalized w-Ulam-Hyers Stability. The notion of well-
posedness of an fpp has evoked much interest of several
mathematicians, for example, Popa [14, 15] and others. In
the paper [16], the authors defined a weak well-posed
(wwp) property in BbDS. In what follows, we extend this
notion to EBbDS.
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Definition 11. Let ðΞ, ebÞ be a complete EBbDS and I : Ξ
⟶ Ξ be a mapping. The fpp of I is said to be weak well-
posed if it satisfies the following:

(1) u∗ ∈ FixðIÞ is a singleton set in Ξ

(2) For any sequence fupg in Ξ with limp⟶∞ebðup,Ið

upÞÞ = 0 and

limp,q⟶∞eb I up
	 


,I uq
	 
	 


= 0, one has limp⟶∞eb up, u
∗

	 


= 0:

ð37Þ

Theorem 12. Let ðΞ, ebÞ be a complete EBbDS and I : Ξ
⟶ Ξ be a mapping satisfying all the conditions of Theorem
9 and a sequence fung in Ξ such that limn⟶∞ebðun,IunÞ
= 0, limn,m⟶∞ebðIun,IumÞ = 0, and u∗ ∈ FixðIÞ. Then,
the fpp of I is wwp.

Proof. Let fung be a sequence in Ξ such that limn⟶∞ebðun
,IðunÞÞ = 0 and limn,m⟶∞ebðIun,IumÞ = 0, for m > n; we

obtain from (ebb3) that

eb un, u
∗ð Þ ≤w un, u

∗ð Þ eb un,Iumð Þf

+ eb Ium,Iunð Þ + eb Iun, u
∗ð Þg:

ð38Þ

Taking limit n⟶∞

lim
n⟶∞

eb un, u
∗ð Þ ≤ lim

n⟶∞
w un, u

∗ð Þ eb un,Iumð Þ + eb Iun, u
∗ð Þf g:

ð39Þ

WLOG, we can assume that there exists a distinct subse-
quence fIunkg of fIung. Otherwise, there exists u0 ∈ Ξ and

n1 ∈ℕ such that Iun = u0 for n ≥ n1. Since limn⟶∞ebðun,
IunÞ = 0, we get limn⟶∞ebðun, u0Þ = 0. If u0 ≠ u∗, then u0
≠Iu0 due to uniqueness of the fixed point of I. For n ≥ n1
, we obtain u0 =Iun ≠Iu0. So, we have

eb u0,Iu0ð Þ = eb Iun,Iu0ð Þ ≤w un, u0ð Þeb Iun,Iu0ð Þ: ð40Þ

For αðu0,Iu0Þ ≥ 1 and I ∈ΛðΞ, αÞ, we have

Therefore, since limn⟶∞ebðun, u0ÞÞ = 0, we get

lim
n⟶∞

w un, u0ð Þeb u0,Iu0ð Þ ≤ lim
n⟶∞

λ unð Þeb u0,Iu0ð Þ: ð42Þ

So ebðu0,Iu0Þ = 0, i.e., u0 =Iu0, a contradiction. Hence,
there exist m, q, n > n0ðm > q > nÞ such that Ium ≠Iuq ≠I

un ≠ un. Then

eb un,Iumð Þ ≤w un,Iumð Þ eb un,Iunð Þf

+ eb Iun,Iuq
	 


+ eb Iuq,Ium
	 
�

,
ð43Þ

which ⟶0 as n⟶∞. On replacing the value in (39), we
get

lim
n⟶∞

eb un, u
∗ð Þ ≤ lim

n⟶∞
w un, u

∗ð Þeb Iun, u
∗ð Þ: ð44Þ

Again, since αðun, u
∗Þ ≥ 1 and I ∈ΛðΞ, αÞ, we have

w un, u0ð Þeb Iun,Iu0ð Þ ≤ λ unð Þ max

eb un, u0ð Þ, eb un,Iunð Þ, eb u0,Iu0ð Þ,

eb u0,Iu0ð Þ 1 + eb un,Iunð Þ½ �

w un, u0ð ÞÞ 1 + eb un, u0ð Þ½ �
,
eb un,Iunð Þ:eb u0,Iu0ð Þ

w un, u0ð Þ:eb un, u0ð Þ

8

>

<

>

:

9

>

=

>

;

≤ λ unð Þ max eb un, u0ð Þ, eb un, u0ð Þ, eb u0,Iu0ð Þ, 0, eb u0,Iu0ð Þf g = λ unð Þ max eb un, u0ð Þ, eb u0,Iu0ð Þf g:

ð41Þ

w un, u
∗ð Þeb Iun,Iu

∗ð Þ ≤ λ unð Þ max

eb un, u
∗ð Þ, eb un,Iunð Þ, eb u∗,Iu∗ð Þ,

eb un,Iunð Þ 1 + eb u∗,Iu∗ð Þ½ �

w un, u
∗ð Þ 1 + eb un, u

∗ð Þ½ �
,
eb u∗,Iu∗ð Þ:eb un,Iunð Þ

w un, u
∗ð ÞÞ:eb un, u

∗ð Þ

8

>

<

>

:

9

>

=

>

;

≤ λ unð Þ max eb un, u
∗ð Þ, eb un,Iunð Þ, 0,

eb un,Iunð Þ

w un, u
∗ð Þ 1 + eb un, u

∗ð Þ½ �
, 0

� �

,

ð45Þ
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which implies

lim
n⟶∞

w un, u
∗ð Þeb Iun,Iu

∗ð Þ ≤ lim
n⟶∞

λ unð Þeb un, u
∗ð Þ: ð46Þ

On placing in (39), we get

lim
n⟶∞

eb un, u
∗ð Þ ≤ lim

n⟶∞
w un, u

∗ð Þeb Iun,Iu
∗ð Þ

≤ lim
n⟶∞

λ unð Þeb un, u
∗ð Þ:

ð47Þ

Therefore, limn⟶∞ebðun, u
∗Þ = 0.

The limit shadowing property of fpps has been discussed
in the papers [17, 18]. We define weak limit shadowing prop-
erty (wlsp) in EBbDS.

Definition 13. Let ðΞ, ebÞ be a complete EBbDS and I : Ξ
⟶ Ξ be a mapping. The fpp of I is said to have wlsp in
Ξ if assuming that fung in Ξ satisfies ebðun,IunÞ⟶ 0 as
n⟶∞ and ebðIun,IumÞ⟶ 0, it follows that there exists
u ∈ Ξ such that ebðun,I

nuÞ⟶ 0 as n⟶∞.

Theorem 14. Let ðΞ, ebÞ be a complete EBbDS and I : Ξ
⟶ Ξ be an α − λ-contractive mapping for α : Ξ2

⟶ℝ+

and λ : Ξ⟶ ½0, 1Þ with fung in Ξ such that limn⟶∞ebðun
,IunÞ = 0, limn,m⟶∞ebðIun,IumÞ = 0 and u∗ ∈ FixðIÞ.
Then, I has the wlsp.

Proof. Since u∗ is a fixed point ofI, we have ebðu
∗,Iu∗Þ = 0,

and let fung in Ξ such that limn⟶∞ebðun,IunÞ = 0,
limn,m⟶∞ebðIun,IumÞ = 0; then, by virtue of Theorem 12,

we have limn⟶∞ebðun, u
∗Þ = 0, and therefore, we can write

limn⟶∞ebðun,I
nu∗Þ = 0.

In the following, we define the generalized w-Ulam-
Hyers stability (Gw-UHS) of fixed-point problem (fpp) in

EBbDS as an extension of b-metric space case discussed in
[19, 20] (see also [21]).

Definition 15. Let ðΞ, ebÞ be a complete EBbDS and I : Ξ
⟶ Ξ be a mapping. The fixed-point equation (FPE)

u =Iu, u ∈ Ξ ð48Þ

is called the generalized weak-Ulam-Hyers stable (Gw-UHS
in short) in the setting of EBbDS if there exists an increasing
function ϕ : ℝ+ ⟶ℝ+, continuous at 0, with ϕð0Þ = 0, such
that for each ε > 0 and an ε-solution υ ∈ Ξ, that is

eb υ,Iυð Þ ≤ ε, ð49Þ

there exists a solution u∗ ∈ Ξ of (48) such that

eb υ, u∗ð Þ ≤ ϕ w u∗, υð Þεð Þ: ð50Þ

If ϕðξÞ = αξ for all ξ ∈ℝ+, where α > 0, then FPE (48) is
said to be w-UHS in the setting of EBbDS.

Theorem 16. Let ðΞ, ebÞ be a complete EBbDS and I : Ξ
⟶ Ξ be an α − λ-contractive mapping for α : Ξ2

⟶ℝ+

and λ : Ξ⟶ ½0, 1Þ and also that the function φ : ℝ+ ⟶

ℝ+ is strictly increasing and onto. Then the FPE (48) is Gw
-UHS.

Proof. Following Theorem 14, we have Iu∗ = u∗, that is, u∗

∈ Ξ is a solution of the FPE (48) with ebðu
∗, u∗Þ = 0. Let ε

> 0 and υ∗ ∈ Ξ be an ε-solution of FPE (48), that is

e4b υ∗,Iυ∗ð Þ ≤ ε: ð51Þ

Since ebðu
∗,Iu∗Þ = ebðu

∗, u∗Þ = 0 ≤ ε, u∗ and υ∗ are ε
-solutions. Since we have αðu∗, υ∗Þ ≥ 1, so

Let us discuss the two possible cases.

Case 1. If ebðu
∗, υ∗Þ > ε, then we get

eb u∗, υ∗ð Þ ≤ λ u∗ð Þeb u∗, υ∗ð Þ +w u∗, υ∗ð Þε, ð53Þ

that is

eb u∗, υ∗ð Þ 1 − λ u∗ð Þ½ � ≤w u∗, υ∗ð Þε, ð54Þ

which implies that

eb u∗, υ∗ð Þ ≤w u∗, υ∗ð Þ eb u∗,Iu∗ð Þ + eb Iu
∗,Iυ∗ð Þ + eb Iυ

∗, υ∗ð Þ½ �

≤w u∗, υ∗ð Þeb Iu
∗,Iυ∗ð Þ + εw u∗, υ∗ð Þ

≤ λ u∗ð Þ max

eb u∗, υ∗ð Þ, eb u∗,Iu∗ð Þ, eb υ∗,Iυ∗ð Þ,

eb υ∗,Iυ∗ð Þ 1 + eb u∗,Iu∗ð Þ½ �

w u∗, υ∗ð Þ 1 + eb u∗, υ∗ð Þ½ �
,
eb u∗,Iu∗ð Þ:eb υ∗,Iυ∗ð Þ

w u∗, υ∗ð ÞÞ:eb u∗, υ∗ð Þ

8

>

<

>

:

9

>

=

>

;

+ εw u∗, υ∗ð Þ

≤ λ u∗ð Þ max eb u∗, υ∗ð Þ, 0, ε, 0, 0f g + εw u∗, υ∗ð Þ:

ð52Þ
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eb u∗, υ∗ð Þ ≤
1

1 − λ u∗ð Þ
w u∗, υ∗ð Þε = ϕ w u∗, υ∗ð Þεð Þ: ð55Þ

Case 2. If ebðu
∗, υ∗Þ < ε, then (12) gives

eb u∗, υ∗ð Þ ≤ λ u∗ð Þε +w u∗, υ∗ð Þε

≤ λ u∗ð Þw u∗, υ∗ð Þε +w u∗, υ∗ð Þε

= λ u∗ð Þ + 1ð Þw u∗, υ∗ð Þε = ϕ w u∗, υ∗ð Þεð Þ:

ð56Þ

It shows that the inequality (50) is true for all cases, and
thus the FPE (48) is Gw-UHS.

3. Application

In this section, we discuss the existence of solutions of a non-
linear fractional differential equation (FDE) [22] as an appli-
cation of Theorem 9. Some other FDE-related work can be
seen in [23–25].

The Caputo fractional derivative of order β is defined as

c
D

β p ρð Þð Þ =
1

Γ n − βð Þ

ðρ

0

ρ − σð Þn−β−1p nð Þ σð Þds

� n − 1 < β < n, n = β½ � + 1ð Þ,

ð57Þ

where p : ½0,∞Þ⟶ℝ is a continuous function, ½β� denotes
the integer part of the positive real number β, and Γ is the
gamma function.

Consider the nonlinear FDE

c
D

β ϑ ρð Þð Þ = ℏ ρ, ϑ ρð Þð Þ 0 < ρ < 1, 1 < β ≤ 2ð Þ, ð58Þ

with the integral boundary conditions

ϑ 0ð Þ = 0, ϑ 1ð Þ =

ðη

0

ϑ σð Þ ds 0 < η < 1ð Þ, ð59Þ

where J = ½0, 1�, ϑ ∈ CðJ ,ℝÞ, and ℏ : J ×ℝ⟶ℝ are a con-
tinuous function.

Let Ξ = CðJ ,ℝÞ be endowed with the EBbDS function

eb ϑ, νð Þ =max
ρ∈J

ϑ ρð Þ − ν ρð Þj j2, ð60Þ

and wðϑ, νÞ = jϑðρÞj + jνðρÞj + 2.

Theorem 17. Let I : Ξ⟶ Ξ be the operator defined by

Iϑ ρð Þ =
1

Γ βð Þ

ðρ

0

ρ − σð Þβ−1ℏ σ, ϑ σð Þð Þdσ

−
2ρ

2 − η2ð ÞΓ βð Þ

ð1

0

1 − σð Þβ−1ℏ σ, ϑ σð Þð Þdσ

+
2ρ

2 − η2ð ÞΓ βð Þ

ðη

0

ðσ

0

σ − ςð Þβ−1ℏ z, ϑ zð Þð Þ dς

� �

dσ,

ð61Þ

for ϑ ∈ Ξ, ρ ∈ J. Also, let ζ : ℝ ×ℝ⟶ℝ be a given function.
Assume the following:

(F1) ℏ : J ×ℝ⟶ℝ is a continuous function, non-
decreasing in the second variable

(F2) There exists ϑ0 ∈ Ξ such that ζðϑ0ðρÞ,Iϑ0ðρÞÞ ≥ 0
for all ρ ∈ J

(F3) ðϑ, νÞ ∈ Ξ2 and ζðϑðρÞ,IϑðρÞÞ ≥ 0 for all ρ ∈ J imply
that ζðIϑðρÞ,IIϑðρÞÞ ≥ 0 for all ρ ∈ J

(F4) There exists λ : Ξ⟶ ½0, 1Þ such that for ϑ, ν ∈ Ξ
with ζðϑ, νÞ ≥ 0, and ρ ∈ J , we have

ℏ ρ, ϑ ρð Þð Þ − ℏ ρ, ν ρð Þð Þj j2 ≤
λ ϑ ρð Þð ÞΘ ϑ, νð Þ ρð Þ

θ ×max
ρ∈J

ϑ ρð Þj j + ν ρð Þj j + 2ð Þ
,

ð62Þ

where

Θ ϑ, νð Þ ρð Þ =max

ϑ ρð Þ − ν ρð Þj j2, ϑ ρð Þ −Iϑ ρð Þj j2, ν ρð Þ −Iν ρð Þj j2,

ν ρð Þ −Iν ρð Þj j2
	 


1 + ϑ ρð Þ −Iϑ ρð Þj j2
	 


max
ρ∈J

ϑ ρð Þj j + ν ρð Þj j + 2ð Þ 1 +max
ρ∈J

ϑ ρð Þ − ν ρð Þj j2
� � ,

ϑ ρð Þ −Iϑ ρð Þj j2
	 


ν ρð Þ −Iν ρð Þj j2
	 


max
ρ∈J

ϑ ρð Þj j + ν ρð Þj j + 2ð Þ max
ρ∈J

ϑ ρð Þ − ν ρð Þj j
2

� � ,

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

;

ð63Þ

and θ = ð2β − 1ÞΓðβÞΓðβ + 1Þ/2ð5β + 2Þ. Then, the
problems (58) and (59) have at least one solution
ϑ∗ ∈ Ξ.

Proof. Define a function α : Ξ2
⟶ ½0,∞Þ by

α ϑ, νð Þ =
1, if forζ ϑ ρð Þ, ν ρð Þð Þ ≥ 0, for allρ ∈ J

γ, otherwise,

(

ð64Þ

where γ ∈ ð0, 1Þ. It is obvious to check that the assumption
(F2) implies the condition (A2) of Theorem 9. Assumption
(F3) clearly implies that I ∈WAðΞ, αÞ.

Let ϑ, ν ∈ Ξ be αðϑ, νÞ ≥ 1, i.e., ζðϑðρÞ, νðρÞÞ ≥ 0 for all ρ
∈ J . For each ρ ∈ J , by the definition (61) of operator I, we
have (using Cauchy-Schwartz inequality)
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Iϑ ρð Þ −Iν ρð Þj j2

=
1

Γ βð Þ

ðρ

0

ρ − σð Þβ−1ℏ σ, ϑ σð Þð Þ dσ

�

�

�

�

−
2ρ

2 − η2ð ÞΓ βð Þ

ð1

0

1 − σð Þβ−1ℏ σ, ϑ σð Þð Þdσ

+
2ρ

2 − η2ð ÞΓ βð Þ

ðη

0

ðσ

0

σ − ςð Þβ−1ℏ ς, ϑ zð Þð Þ dς

� �

dσ

−
1

Γ βð Þ

ðρ

0

ρ − σð Þβ−1ℏ σ, ν σð Þð Þ dσ

−
2ρ

2 − η2ð ÞΓ βð Þ

ð1

0

1 − σð Þβ−1ℏ σ, ν σð Þð Þ dσ

+
2ρ

2 − η2ð ÞΓ βð Þ

ðη

0

ðσ

0

σ − ςð Þβ−1ℏ ς, ν ςð Þð Þ dς

� �

dσ

�

�

�

�

2

≤
2

Γ2 βð Þ

ðρ

0

ρ − σð Þβ−1 ℏ σ, ϑ σð Þð Þ − ℏ σ, ν σð Þð Þj j2 dσ

� �

+
8ρ2

2 − η2ð Þ
2Γ2 βð Þ

ð1

0

1 − σð Þβ−1 ℏ s, ϑ σð Þð Þj

�

− ℏ σ, ν σð Þð Þj2 dσ
�

+
8ρ2

2 − η2ð Þ
2Γ2 βð Þ

·

ðη

0

ðσ

0

σ − ςð Þβ−1 ℏ ς, ϑ ςð Þð Þ − ℏ ς, ν ςð Þð Þj j2 dς

� �

dσ

� �

,

ð65Þ

that is

Iϑ ρð Þ −Iν ρð Þj j2 ≤
2

Γ2 βð Þ

ðρ

0

ρ − σð Þ2β−2dσ

�

ðρ

0

ℏ σ, ϑ σð Þð Þ − ℏ σ, ν σð Þð Þj j2 dσ

+
8ρ2

2 − η2ð Þ
2Γ2 βð Þ

ð1

0

1 − σð Þ2β−2dσ

�

ð1

0

ℏ σ, ϑ σð Þð Þ − ℏ σ, ν σð Þð Þj j2 dσ

+
8ρ2

2 − η2ð Þ
2Γ2 βð Þ

ðη

0

ðσ

0

σ − ςð Þ2β−2dς dσ

×

ðη

0

ðσ

0

ℏ ς, ϑ ςð Þð Þ − ℏ ς, ν ςð Þð Þj j2 dς dσ:

ð66Þ

Applying (F4) and small calculations, we get

Iϑ ρð Þ −Iν ρð Þj j2 ≤
λ ϑ ρð Þð ÞΘI ϑ, νð Þ ρð Þ

ϑ ρð Þj j + ν ρð Þj j + 2ð Þ
: ð67Þ

This implies that

w ϑ, νð Þeb Iϑ,Iνð Þ =w ϑ, νð Þ max
t∈I

Iϑð Þ ρð Þ − Iνð Þ ρð Þj j2
	 


≤ λ ϑð ÞΘI ϑ, νð Þ,

ð68Þ

for all ϑ, ν ∈ Ξ with ebðIϑ,IνÞ > 0 where

ΘI ϑ, νð Þ =max

eb ϑ, νð Þ, eb ϑ,Iϑð Þ, eb ν,Iνð Þ,

eb ν,Iνð Þ 1 + eb ϑ,Iϑð Þ½ �

w ϑ, νð Þ 1 + eb ϑ, νð Þ½ �
,
eb ϑ,Iϑð Þ:eb ν,Iνð Þ

w ϑ, νð Þ:eb ϑ, νð Þ

8

>

<

>

:

9

>

=

>

;

:

ð69Þ

Thus, I ∈ΛðΞ, αÞ. Therefore, all the requirements of
Theorem 9 are fulfilled, and we conclude that there is a
fixed-point ϑ∗ ∈ Ξ of the operator I. It is well known (see,
e.g., [22], Theorem 17) that in this case ϑ∗ is also a solution
of the integral equation (61) and the FDE (58) with the con-
dition (59).
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