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Abstract

We discuss multivalued weakly Picard operators on partial Hausdorff metric spaces.
First, we obtain Kikkawa-Suzuki type fixed point theorems for a new type of
generalized contractive conditions. Then, we prove data dependence of a fixed
points set theorem. Finally, we present sufficient conditions for well-posedness of a
fixed point problem. Our results generalize, complement and extend classical
theorems in metric and partial metric spaces.
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1 Introduction and preliminaries

In , von Neumann [] initiated the fixed point theory for multivalued mappings in

the study of game theory. Indeed, the fixed point theorems for multivalued mappings are

quite useful in control theory and have been frequently used in solving many problems of

economics. In , Nadler [] initiated the development of the metric fixed point theory

for multivalued mappings. Nadler used the concept of Hausdorff metric to establish the

multivalued contraction principle containing the Banach contraction principle as a special

case. Also, for the basic problems of fixed point theory for multivaluedmappings, we refer

to [].

Let (X,d) be a metric space and let CB(X) be the family of all nonempty, closed and

bounded subsets of X. For A,B ∈ CB(X), x ∈ X, let

H(A,B) = max
{

sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}

,

where d(x,B) = inf{d(x, y) : y ∈ B} and H : CB(X) × CB(X) → R+ is the Hausdorff metric

induced by d.

Now on, the letters R, R+ and N will denote the set of all real numbers, the set of all

non-negative real numbers and the set of all positive integers, respectively. Also, CL(X) is

the collection of nonempty closed subsets of X.

Definition . Let X be a nonempty set. If T : X → CB(X) is a multivalued operator, then

an element x ∈ X is called

(i) fixed point of T if x ∈ Tx;

(ii) strict fixed point of T if {x} = Tx.
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In the sequel, we denote by Fix(T) := {x ∈ X : x ∈ Tx} the set of all fixed points of T and

by SFix(T) := {x ∈ X : {x} = Tx} the set of all strict fixed points of T .

Definition . ([]) Let (X,d) be a metric space and T : X → CL(X) be a multivalued

operator. T is called a multivalued weakly Picard operator (briefly MWP operator) if for

all x ∈ X and all y ∈ Tx, there exists a sequence {xn} such that:

(i) x = x, x = y;

(ii) xn+ ∈ Txn for all n ∈ N∪ {};

(iii) the sequence {xn} is convergent and its limit is a fixed point of T .

A sequence {xn} satisfying (i) and (ii) is also called a sequence of successive approxima-

tions (briefly s.s.a.) of T starting from x.

For interested readers, the theory of MWP operators was presented in [–].

In  Suzuki [] introduced a new type of mappings in order to generalize the well-

known Banach contraction principle. This result has led to some important contributions

in metric fixed point theory (see, for instance, [] and the references therein).

As wementioned above, Nadler proved the followingmultivalued version of the Banach

contraction principle.

Theorem . ([]) Let (X,d) be a complete metric space and T : X → CB(X) be a multi-

valued mapping satisfying H(Tx,Ty) ≤ kd(x, y) for all x, y ∈ X and k ∈ (, ). Then T has a

fixed point.

In the last decades, a number of fixed point results (see [–]) have been obtained in

attempts to generalize Theorem ..

One of the most significant fixed point theorems for multivalued mappings appeared

in [], Theorem .. This theorem merges the ideas of Suzuki [] and Nadler [] into a

consistent framework.

Theorem . ([]) Let (X,d) be a complete metric space and T : X → CB(X).Consider the

non-increasing function ψ : [, ) → (, ] defined by

ψ(r) =

⎧

⎨

⎩

 if  ≤ r < 
 ,

 – r if 
 ≤ r < .

Assume that there exists r ∈ [, ) such that

ψ(r)d(x,Tx)≤ d(x, y) �⇒ H(Tx,Ty)≤ rMd(x, y)

for all x, y ∈ X, where

Md(x, y) = max

{

d(x, y),d(x,Tx),d(y,Ty),
d(x,Ty) + d(y,Tx)



}

.

Then T has a fixed point.

We remark that the right-hand side of the above implication is known as Ćirić type

contractive condition, see [, , ]. Also, for our further use, we recall the following

refinement of Nadler’s theorem, see [].
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Theorem . Let η : [, ) → (  , ] be a function defined by η(r) = 
+r . Let (X,d) be a com-

pletemetric space and T : X → CB(X) be an r-KS multivalued operator, that is, there exists

r ∈ [, ) such that

η(r)d(x,Tx)≤ d(x, y) �⇒ H(Tx,Ty) ≤ rd(x, y)

for all x, y ∈ X. Then T is an MWP operator.

The other basic notion for the development of our work is the concept of partial met-

ric space, which was introduced by Matthews [] as a part of the study of denotational

semantics of dataflow networks. Matthews presented a modified version of the Banach

contraction principle, more suitable in this context, see also [, ]. For more reading

on interesting approaches to partial metric spaces and related contexts, we refer to [–

]. Now, the (complete) partial metric spaces constitute a suitable framework to model

several distinguished examples of the theory of computation and also to model metric

spaces via domain theory, see [, , –]. In this direction, Aydi et al. [] introduced

the concept of partial Hausdorff metric and extended Nadler’s fixed point theorem in the

setting of partial metric spaces.

Consistent with [, –], the following definitions and results will be needed in the

sequel.

Definition . ([]) Let X be any nonempty set. A function p : X ×X →R+ is said to be

a partial metric if and only if for all x, y, z ∈ X the following conditions are satisfied:

(P) p(x,x) = p(y, y) = p(x, y) if and only if x = y;

(P) p(x,x)≤ p(x, y);

(P) p(x, y) = p(y,x);

(P) p(x, z) ≤ p(x, y) + p(y, z) – p(y, y).

The pair (X,p) is called a partial metric space. If p(x, y) = , then (P) and (P) imply that

x = y, but the converse does not hold in general. A trivial example of a partial metric space

is the pair (R+,p), where p :R+ ×R+ →R+ is given by p(x, y) = max{x, y}, see also [].

Example . ([]) Let X = {[a,b] : a,b ∈ R,a ≤ b}. It is easy to show that the function

p : X × X → R+ given by p([a,b], [c,d]) = max{b,d} – min{a, c} defines a partial metric

on X.

For further examples, we refer to [, , , , ]. Note that each partial metric p on

X generates a T topology τp on X which has as a base the family of the open balls (p-balls)

{Bp(x, ǫ) : x ∈ X, ǫ > }, where for all x ∈ X and ǫ > ,

Bp(x, ǫ) =
{

y ∈ X : p(x, y) < p(x,x) + ǫ
}

.

A sequence {xn} in a partial metric space (X,p) is called convergent to a point x ∈ X, with

respect to τp, if and only if p(x,x) = limn→+∞ p(x,xn), see [] for details. If p is a partial

metric on X, then the function

pS(x, y) = p(x, y) – p(x,x) – p(y, y)
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defines a metric on X. Further a sequence {xn} converges in the metric space (X,pS) to a

point x ∈ X if and only if

p(x,x) = lim
n→+∞

p(x,xn) = lim
n,m→+∞

p(xn,xm).

Definition . ([]) Let (X,p) be a partial metric space. Then:

(i) A sequence {xn} in X is called Cauchy if and only if limn,m→+∞ p(xn,xm) exists and is

finite.

(ii) A partial metric space (X,p) is said to be complete if every Cauchy sequence {xn} in

X converges, with respect to τp, to a point x ∈ X such that

p(x,x) = limn,m→+∞ p(xn,xm).

Lemma . ([, ]) Let (X,p) be a partial metric space. Then:

(i) A sequence {xn} in X is Cauchy in (X,p) if and only if it is Cauchy in (X,pS).

(ii) A partial metric space (X,p) is complete if and only if the metric space (X,pS) is

complete.

Consistent with [], let (X,p) be a partial metric space and let CBp(X) be the family

of all nonempty, closed and bounded subsets of the partial metric space (X,p), induced

by the partial metric p. Note that the closedness is taken from (X, τp) (τp is the topology

induced by p) and the boundedness is given as follows: A is a bounded subset in (X,p)

if there exist x ∈ X and M ≥  such that for all a ∈ A, we have a ∈ Bp(x,M), that is,

p(x,a) < p(x,x) +M. For A,B ∈ CBp(X), x ∈ X, δp : CBp(X)× CBp(X) →R+ define

p(x,A) = inf
{

p(x,a) : a ∈ A
}

,

p(A,B) = inf
{

p(x, y) : x ∈ A, y ∈ B
}

,

δp(A,B) = sup
{

p(a,B) : a ∈ A
}

,

Hp(A,B) = max
{

δp(A,B), δp(B,A)
}

,

where Hp : CBp(X) × CBp(X) → R+ is called the partial Hausdorff metric induced by p.

Also, it is easy to show that p(x,A) =  implies that pS(x,A) = , where

pS(x,A) = inf
{

pS(x,a) : a ∈ A
}

.

Lemma . ([]) Let (X,p) be a partial metric space and A be any nonempty subset of

X, then a ∈ A if and only if p(a,A) = p(a,a).

Lemma . Let (X,p) be a partial metric space and A be any nonempty subset of X. If A

is closed in (X,p), then A is closed in (X,pS).

Proof Let {xn} be a sequence converging to some x ∈ X in (X,pS). Then we have

p(x,x) = lim
n→+∞

p(x,xn),

which implies, by definition, that {xn} converges to x ∈ X also in (X,p). Now, since A is

closed in (X,p), then x ∈ A and so we deduce that A is closed also in (X,pS). �
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Proposition . ([]) Let (X,p) be a partial metric space. For any A,B,C ∈ CBp(X), we

have:

(i) δp(A,A) = sup{p(a,a) : a ∈ A};

(ii) δp(A,A) ≤ δp(A,B);

(iii) δp(A,B) = �⇒ A ⊆ B;

(iv) δp(A,B) ≤ δp(A,C) + δp(C,B) – infc∈C p(c, c).

Proposition . ([]) Let (X,p) be a partial metric space. For any A,B,C ∈ CBp(X), we

have:

(h) Hp(A,A) ≤ Hp(A,B);

(h) Hp(A,B) =Hp(B,A);

(h) Hp(A,B) ≤ Hp(A,C) +Hp(C,B) – infc∈C p(c, c);

(h) Hp(A,B) =  �⇒ A = B.

Notice that each Hausdorff metric is a partial Hausdorff metric but the converse is not

true, see Example . in [].

Lemma . ([]) Let (X,p) be a partial metric space, A,B ∈ CBp(X) and q > , then for

any a ∈ A, there exists b(a) ∈ B such that p(a,b(a))≤ qHp(A,B).

Theorem . ([]) Let (X,p) be a partial metric space. If T : X → CBp(X) is a multival-

ued mapping such that for all x, y ∈ X, we have Hp(Tx,Ty) ≤ kp(x, y), where k ∈ (, ), then

T has a fixed point.

In view of the above considerations and following the ideas in [], the aim of this paper

is to discuss multivalued weakly Picard operators on partial Hausdorff metric spaces, see

also [] for other interesting results. First, we obtain Kikkawa-Suzuki type fixed point

theorems for a new type of generalized contractive conditions. Then, we prove data de-

pendence of a fixed points set theorem. Finally, we present sufficient conditions for well-

posedness of a fixed point problem. The presented results extend and unify some recently

obtained comparable results formultivaluedmappings (see [] and the references therein).

2 Fixed point theorems in partial Hausdorff metric spaces

In this section we present several theorems which characterize MWP operators, defined

in the previous section, in terms of different contractive conditions. Results of this section

are generalizations of Theorem ., Theorem . (and so Nadler’s Theorem .), Ćirić’s

theorem in [] and others.

2.1 Result - I

To provide the first theorem we introduce the notion of (s, r)-contractive multivalued op-

erator in partial Hausdorff metric spaces as follows.

Definition . Let p : X ×X →R+ be a partial metric and T : X → CBp(X) be a multival-

ued mapping. T is called an (s, r)-contractive multivalued operator if there exist r ∈ [, )

and s ≥ r such that

p(y,Tx) ≤ sp(y,x) �⇒ Hp(Tx,Ty)≤ rMp(x, y) ()
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for all x, y ∈ X, where

Mp(x, y) = max

{

p(x, y),p(x,Tx),p(y,Ty),
p(x,Ty) + p(y,Tx)



}

.

Now we state and prove our theorem.

Theorem . Let (X,p) be a complete partial metric space and T : X → CBp(X) be an

(s, r)-contractive multivalued operator with s ≥ . Then T is an MWP operator.

Proof Let r be a real number such that  ≤ r < r < . Let u ∈ X. As Tu is nonempty,

we can choose u ∈ Tu. Clearly, if u = u the proof is finished and so we assume u �= u.

Then we get

p(u,Tu) = p(u,u) ≤ p(u,u) ≤ sp(u,u). ()

Next, we choose u ∈ Tu such that

p(u,u)≤
r

r
Hp(Tu,Tu).

Now, from () and by using condition () we write

p(u,u) ≤
r

r
Hp(Tu,Tu) ≤ rMp(u,u)

= r max

{

p(u,u),p(u,Tu),p(u,Tu),
p(u,Tu) + p(u,Tu)



}

≤ r max

{

p(u,u),p(u,u),p(u,u),
p(u,u) + p(u,u)



}

≤ r max

{

p(u,u),p(u,u),
p(u,u) + p(u,u)



}

≤ r max
{

p(u,u),p(u,u)
}

.

Thus, we obtain

p(u,u)≤ r max
{

p(u,u),p(u,u)
}

.

Ifmax{p(u,u),p(u,u)} = p(u,u), then p(u,u) ≤ rp(u,u) implies that p(u,u) = ,

and we obtain pS(u,u) ≤ p(u,u) = , which further implies that pS(u,u) = . Hence

u = u ∈ Tu and the proof is finished. On the contrary, if max{p(u,u),p(u,u)} =

p(u,u), then we have

p(u,u)≤ rp(u,u).

Continuing this process, we can construct a sequence {un} inX such that un+ ∈ Tun, un+ �=

un and

p(un,un+) ≤ rn– p(u,u)

for every n > . This shows that limn→+∞ p(un,un+) = .
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Now, since

p(un,un) + p(un+,un+) ≤ p(un,un+),

then we get

lim
n→+∞

p(un,un) =  and lim
n→+∞

p(un+,un+) = . ()

Let ǫ >  and pick N ∈N large enough so that for n≥ N we have

rn–



 – r
p(u,u) < ǫ.

Then, for every positive integer k > n ≥ N , there is some m ∈ N such that k = n +m, and

we have

pS(un,un+m) ≤ p(un,un+m)

≤ 
[

p(un,un+) + · · · + p(un+m–,un+m)
]

≤ 
[

rn– p(u,u) + · · · + rn+m–
 p(u,u)

]

≤ rn–



 – r
p(u,u) < ǫ.

It is immediate to deduce that {un} is a Cauchy sequence in (X,pS), but by Lemma . {un}

is Cauchy also in (X,p). Moreover, since (X,p) is complete, again by Lemma . we deduce

the completeness of (X,pS). It follows that there exists z ∈ X such that limn→+∞ un = z in

(X,pS). Therefore limn→+∞ pS(un, z) =  implies

p(z, z) = lim
n→+∞

p(un, z) = lim
m,n→+∞

p(un,um).

Now, since {un} is a Cauchy sequence in (X,pS), then we have

lim
m,n→+∞

pS(un,um) = 

and so

lim
m,n→+∞

p(un,um) – lim
m→+∞

p(um,um) – lim
n→+∞

p(un,un) = .

It follows from () that

lim
m→+∞

p(um,um) = lim
n→+∞

p(un,un) = ,

which further implies that

lim
m,n→+∞

p(un,um) = 
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and hence

p(z, z) = lim
n→+∞

p(un, z) = lim
n→+∞

p(un,un) = .

Next, we will show that there exists a subsequence {un(k)} of {un} such that

p(z,Tun(k)) ≤ sp(z,un(k))

for all k ∈ N. Reasoning by contradiction, we assume that there exists a positive integer N

such that p(z,Tun) > sp(z,un) for all n≥ N . This implies p(z,un+) > sp(z,un) for all n≥ N .

By induction, for all n≥ N andm′ ≥ , we get that

p(z,un+m′ ) > sm
′
p(z,un). ()

Since

p(un+m′ ,un) ≤ p(un,un+) + p(un+,un+) + · · · + p(un+m′–,un+m′ ) –
m′–
∑

i=n+

p(ui,ui)

≤ p(un,un+) + p(un+,un+) + · · · + p(un+m′–,un+m′ )

≤ p(un,un+)
(

 + r + r + r + · · · + rm
′–



)

≤ p(un,un+)

[

 – rm
′



 – r

]

for all n ≥ N andm′ ≥ , then we get

p(z,un) ≤ p(z,un+m′ ) + p(un+m′ ,un) – p(z, z)

≤ p(z,un+m′ ) + p(un,un+)

[

 – rm
′



 – r

]

.

Passing to the limit as m′ → +∞, we have

p(z,un) ≤


 – r
p(un,un+) for all n ≥ N .

Then we obtain

p(z,un+m′ )≤


 – r
p(un+m′ ,un+m′+) ≤

rm
′



 – r
p(un,un+) ()

for all n ≥ N andm′ ≥ . By () and () we get

p(z,un) <
( r
s
)m

′

 – r
p(un,un+)

for all n≥ N andm′ ≥ . Next, passing to the limit asm′ → +∞, we obtain that p(z,un) = 

for all n ≥ N . This contradicts () and therefore there exists a subsequence {un(k)} of {un}

such that p(z,Tun(k)) ≤ sp(z,un(k)) for all k ∈N.
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Also, by hypothesis we have

Hp(Tun(k),Tz)

≤ rmax

{

p(un(k), z),p(un(k),Tun(k)),p(z,Tz),
p(un(k),Tz) + p(z,Tun(k))



}

≤ rmax

{

p(un(k), z),p(un(k),un(k)+),p(z,Tz),
p(un(k), z) + p(z,Tz) + p(z,un(k)+)



}

.

Therefore, we write

p(z,Tz)

≤ p(z,un(k)+) +Hp(Tun(k),Tz) – p(un(k)+,un(k)+)

≤ p(z,un(k)+)

+ rmax

{

p(un(k), z),p(un(k),un(k)+),p(z,Tz),
p(un(k), z) + p(z,Tz) + p(z,un(k)+)



}

.

On passing to the limit as k → +∞, we get

p(z,Tz) ≤ rmax

{

p(z,Tz),
p(z,Tz)



}

= rp(z,Tz).

Since r < , it follows that

p(z,Tz) = .

Therefore p(z,Tz) =  = p(z, z) and hence by Lemma . we deduce that z ∈ Tz, that is,

z is a fixed point of T . �

The following example illustrates the use of Theorem ..

Example . Let X = {, , } and p : X × X → R+ be defined by p(, ) = , p(, ) =

p(, ) = 
 , p(, ) =


 , p(, ) =


 , p(, ) =


 and p(y,x) = p(x, y) for all x, y ∈ X. Then (X,p)

is a complete partial metric space. Also define T : X → CBp(X) by

Tx =

⎧

⎨

⎩

{} if x �= ,

{, } if x = .

Therefore, we get

Hp(T,T) =Hp(T,T) =Hp(T,T) = p(,T) = p(,T) = p(, ),

Hp(T,T) =Hp(T,T) = p(,T) = p(,T) = p(, ),

p(,T) = min
{

p(, ),p(, )
}

= p(, ),

Hp(T,T) = p(, ).
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It follows easily that the inequality

p(y,Tx) ≤ sp(x, y)

holds for all x, y ∈ X with s ≥ 
 . Also, for all x, y ∈ X with r ∈ [  , ), we get

Hp(Tx,Ty) ≤ rMp(x, y).

Thus all the conditions of Theorem . are satisfied and  is a fixed point of T .

From Theorem . we deduce some corollaries.

Corollary . Let (X,p) be a complete partial metric space and T : X → CBp(X) be a

multivalued mapping. Assume that there exist r ∈ [, ) and s ≥  such that

p(y,Tx) ≤ sp(x, y) �⇒ Hp(Tx,Ty)≤ rmax
{

p(x, y),p(x,Tx),p(y,Ty)
}

for all x, y ∈ X. Then T is an MWP operator.

Corollary . Let (X,p) be a complete partial metric space and T : X → CBp(X) be a

multivalued mapping. Assume that there exist r ∈ [, ) and s ≥  such that

p(y,Tx) ≤ sp(x, y) �⇒ Hp(Tx,Ty)≤
r



[

p(x, y) + p(x,Tx) + p(y,Ty)
]

for all x, y ∈ X. Then T is an MWP operator.

In the case of single-valued mappings, Theorem . reduces to the following significant

corollary.

Corollary . Let (X,p) be a complete partial metric space and T : X → X be a single-

valued mapping. Assume that there exist r ∈ [, ) and s ≥  such that

p(y,Tx) ≤ sp(x, y) �⇒ p(Tx,Ty) ≤ rMp(x, y), ()

where

Mp(x, y) = max

{

p(x, y),p(x,Tx),p(y,Ty),
p(x,Ty) + p(y,Tx)



}

.

Then T has a unique fixed point.

Proof The existence part of the proof follows easily by Theorem .. Thus, we need to

prove uniqueness of the fixed point. Suppose to the contrary that, for s ≥ , there exist

x, y ∈ Fix(T) with x �= y. It follows immediately that

p(y,Tx) = p(y,x) ≤ sp(y,x).
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Thus, by hypothesis on T , we would have

p(Tx,Ty) ≤ rmax

{

p(x, y),p(x,Tx),p(y,Ty),
p(x,Ty) + p(y,Tx)



}

= rmax

{

p(x, y),p(x,x),p(y, y),
p(x, y) + p(y,x)



}

= rp(x, y).

We deduce that p(x, y) = , which further implies that pS(x, y) ≤ p(x, y) =  and hence

x = y, a contradiction. This completes the proof. �

The following two examples, adapted from [], show the validity of Corollary ..

Example . Let X = [, ] be endowed with the partial metric p(x, y) = max{x, y} for all

x, y ∈ X. Then (X,p) is a complete partial metric space. Also define T : X → X by

Tx =
x

 + x
.

Take arbitrary elements x, y ∈ X with y≤ x. Then we have

p(y,Tx) = max

{

y,
x

 + x

}

≤ sx = sp(x, y)

for all x, y ∈ X and s≥ . On the other hand, we get

p(Tx,Ty) = max

{

x

 + x
,
y

 + y

}

=
x

 + x

and

Mp(x, y) = max

{

p(x, y),p(x,Tx),p(y,Ty),
p(x,Ty) + p(y,Tx)



}

= max

{

p(x, y),p

(

x,
x

 + x

)

,p

(

y,
y

 + y

)

,




(

p

(

x,
y

 + y

)

+ p

(

y,
x

 + x

))}

= max

{

x,x, y,




(

x + max

{

y,
x

 + x

})}

= x.

Thus the inequality p(Tx,Ty) ≤ rMp(x, y) holds for all x, y ∈ X with y ≤ x and for any r ∈

[  , ). Note that we obtain the same conclusion if we assume that x ≤ y. Hence, all the

conditions of Corollary . are satisfied and  is a fixed point of T .

The following example underlines the crucial role of the right-hand side of () in estab-

lishing existence of the fixed point.

Example . Let X = {, , , } and p : X × X → R+ be defined by p(x,x) = 
 for each

x ∈ X, p(, ) = p(, ) = , p(, ) = p(, ) = , p(, ) = p(, ) = 
 and p(y,x) = p(x, y) for
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all x, y ∈ X. Then (X,p) is a complete partial metric space. Also define T : X → X by

T =

(

   

   

)

.

Trivially T has no fixed points, but we try to apply Corollary .. It is easy to check that

the inequality p(y,Tx) ≤ sp(y,x) certainly holds for all x, y ∈ X with s ≥ . Now we note

that, for x =  and y = , we get

p(T,T) = p(, ) = 

and

Mp(, ) = max

{

p(, ),p(,T),p(,T),
p(,T) + p(,T)



}

= max

{

, , ,




(




+




)}

= .

It follows that

p(T,T) = � r = rMp(, ),

whatever r ∈ [, ) is chosen. We conclude that Corollary . is not applicable in this case.

2.2 Result - II

Another interesting characterization of MWP operators is provided by the following the-

orem.

Theorem . Let (X,p) be a complete partial metric space and T : X → CBp(X) be a

multivalued operator. Assume that there exist r, s ∈ [, ), with r < s, such that



 + r
p(x,Tx)≤ p(x, y) ≤



 – s
p(x,Tx) �⇒ Hp(Tx,Ty)≤ rMp(x, y) ()

for all x, y ∈ X, where

Mp(x, y) = max

{

p(x, y),p(x,Tx),p(y,Ty),
p(x,Ty) + p(y,Tx)



}

.

Then T is an MWP operator.

Proof Let r be a real number such that  ≤ r < r < s. Also, let u ∈ X and u ∈ Tu be such

that

p(u,u)≤
 – r

 – s
p(u,Tu).

Then we have



 + r
p(u,Tu) ≤ p(u,Tu)≤ p(u,u) ≤



 – s
p(u,Tu)
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and so, by using condition (), we obtain

p(u,Tu) ≤ Hp(Tu,Tu)

≤ rmax

{

p(u,u),p(u,Tu),p(u,Tu),
p(u,Tu) + p(u,Tu)



}

≤ rmax

{

p(u,u),p(u,Tu),
p(u,Tu) + p(u,u)



}

≤ rmax

{

p(u,u),p(u,Tu),
p(u,u) + p(u,Tu)



}

.

Thus

p(u,Tu) ≤ rmax
{

p(u,u),p(u,Tu)
}

.

Now, if max{p(u,u),p(u,Tu)} = p(u,Tu), then p(u,Tu) ≤ rp(u,Tu) implies that

p(u,Tu) =  and so we obtain

pS(u,Tu) ≤ p(u,Tu) = ,

which further implies that pS(u,Tu) = . In view of Lemma ., u ∈ Tu, and the proof

is finished. On the contrary, if max{p(u,u),p(u,u)} = p(u,u), then we have

p(u,Tu) ≤ rp(u,u).

It follows that there exists u ∈ Tu such that

p(u,u)≤ rp(u,u) and p(u,u) ≤
 – r

 – s
p(u,Tu).

This implies



 + r
p(u,Tu) ≤ p(u,u) ≤



 – s
p(u,Tu).

Now, by using condition (), we get p(u,Tu) ≤ rp(u,u). Continuing this process, we

can construct a sequence {un} in X with the following properties:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

un+ ∈ Tun,

p(un+,Tun+) ≤ rp(un,un+),

p(un+,un+) ≤ rp(un,un+),

p(un+,un+) ≤
–r
–s p(un+,Tun+)

for every n ∈N. Next, from p(un+,un+) ≤ rp(un,un+) we deduce that

lim
n→+∞

p(un,un+) = .

Since

p(un,un) + p(un+,un+) ≤ p(un,un+),
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then we get

lim
n→+∞

p(un,un) =  and lim
n→+∞

p(un+,un+) = .

Proceeding as in the proof of Theorem ., one can show that the sequence {un} is a

Cauchy sequence in (X,p) converging to some z ∈ X with p(z, z) = .

Now, since

p(un,un+) ≤
 – r

 – s
p(un,Tun),

then we have

p(z,un) ≤


 – s
p(un,Tun)

for all n ≥ . Then we assume that there exists a positive integer N such that

p(z,un) <


 + r
p(un,Tun)

holds for every n≥ N . Consequently, we have

p(un,un+) ≤ p(z,un) + p(z,un+) – p(z, z)

<


 + r

[

p(un,Tun) + p(un+,Tun+)
]

<


 + r

[

p(un,Tun) + rp(un,un+)
]

≤


 + r

[

p(un,un+) + rp(un,un+)
]

= p(un,un+),

which is a contradiction. Hence, there exists a subsequence {un(k)} of {un} such that

p(z,un(k)) ≥


 + r
p(un(k),Tun(k))

holds for every k ≥ N . Since p(z,un) ≤

–sp(un,Tun) for all n ≥ , by condition (), we have

Hp(Tz,Tun(k)) ≤ rMp(z,un(k)). This implies

p(z,Tz)

≤ p(un(k)+, z) +Hp(Tun(k),Tz)

≤ p(un(k)+, z)

+ rmax

{

p(un(k), z),p(un(k),Tun(k)),p(z,Tz),
p(un(k),Tz) + p(z,Tun(k))



}

≤ rmax

{

p(un(k), z),p(un(k),un(k)+),p(z,Tz),
p(un(k),Tz) + p(z,un(k)+)



}

.

On passing to the limit as k → +∞, we get

p(z,Tz) ≤ rmax

{

p(z,Tz),
p(z,Tz)



}

.
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Since r < , it follows that

p(z,Tz) = .

Therefore p(z,Tz) =  = p(z, z) and hence by Lemma . we have z ∈ Tz, that is, z is a fixed

point of T . �

In the case of single-valued mappings, Theorem . reduces to the following corollary.

Corollary . Let (X,p) be a complete partial metric space and T : X → X be a single-

valued mapping. Assume that there exists r ∈ [, ) such that



 + r
p(x,Tx)≤ p(x, y) ≤



 – r
p(x,Tx) �⇒ p(Tx,Ty) ≤ rMp(x, y)

for all x, y ∈ X, where

Mp(x, y) = max

{

p(x, y),p(x,Tx),p(y,Ty),
p(x,Ty) + p(y,Tx)



}

.

Then T has a fixed point.

Proof It is easy to prove that for every u ∈ X the sequence {un} defined by un+ = Tun

satisfies the relationship p(un+,un+) ≤ rp(un,un+). Consequently, the sequence {un} is

Cauchy, and there is some point z ∈ X such that limn→+∞ un = z. Proceeding as in the

proof of Theorem ., we can show that

p(z, z) = lim
n→+∞

p(un, z) = lim
n→+∞

p(un,un) = .

Also in view of Theorem ., for all n ≥ N , we can assume p(z,un) ≤ 
+rp(un,un+) for

leading to contradiction. Consequently, there exists a subsequence {un(k)} of {un} such

that

p(z,un(k)) ≥


 + r
p(un(k),un(k)+)

holds for every k ≥N . Therefore, we obtain that

p(un(k)+,Tz)

≤ rmax

{

p(un(k), z),p(un(k),Tun(k)),p(z,Tz),
p(un(k),Tz) + p(z,Tun(k))



}

≤ rmax

{

p(un(k), z),p(un(k),un(k)+),p(z,Tz),
p(un(k), z) + p(z,Tz) + p(z,un(k)+)



}

.

On passing to the limit as k → +∞, we get

p(z,Tz) ≤ rmax

{

p(z,Tz),
p(z,Tz)



}

.
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Since r < , it follows that

p(z,Tz) = 

and so z = Tz, that is, z is a fixed point of T . �

The following example shows that Theorem . is proper extension of the respective

result in standard metric spaces.

Example . Let X = {, , } and p : X × X → R+ be defined by p(, ) = p(, ) = ,

p(, ) = 
 , p(, ) =


 , p(, ) =


 , p(, ) =


 and p(y,x) = p(x, y) for all x, y ∈ X. Then

(X,p) is a complete partial metric space. Also define T : X → CBp(X) by

Tx =

⎧

⎨

⎩

{} if x �= ,

{, } if x = .

Therefore, we get

min
{

p(x,Tx) : x ∈ X \ {}
}

= min
{

p(x, y) : x, y ∈ X and x �= y
}

=




and

max
{

p(x,Tx) : x ∈ X
}

=



.

It follows easily that the inequalities



 + r
p(x,Tx)≤ p(x, y) ≤



 – s
p(x,Tx)

hold for all x, y ∈ X with x �= y and for some  > s > r ≥ 
 . Also the above inequalities hold

for x = y =  with  > s > r ≥ 
 . On the other hand, the above inequalities are not applicable

for x = y ∈ {, }. Clearly we have

Hp(T,T) =Hp(T,T) =Hp(T,T) = p(,T) = p(,T) = p(, ),

Hp(T,T) =Hp(T,T) = p(,T) = p(,T) = p(, ),

p(,T) = min
{

p(, ),p(, )
}

= p(, ),

Hp(T,T) = p(, ).

Finally, by routine calculations and taking  > s > r ≥ 
 , one can show that the inequality

Hp(Tx,Ty) ≤ rMp(x, y)

holds true as for all x, y ∈ X with x �= y, as for x = y = . Thus all the conditions of Theo-

rem . are satisfied and  is a fixed point of T .
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Next, we consider the metric pS induced by the partial metric p. Indeed, we have

pS(x,x) =  for all x ∈ X, pS(, ) = 
 , p

S(, ) = 
 , p

S(, ) = 
 and pS(x, y) = pS(y,x) for all

x, y ∈ X.

We show that Theorem . is not applicable in this case. Indeed, for x =  and y = , the

inequalities



 + r
pS(,T) =



 + r
pS

(

, {, }
)

=


 + r
pS(, ) ≤ pS(, )≤



 – s
pS(,T)

hold true for all r ∈ [, ) with r < s. Therefore, we need to have

HpS (T,T)≤ rMpS (, ).

Unfortunately, this is not the case because

HpS (T,T) =HpS

(

{}, {, }
)

=




and

MpS (, ) = max

{

pS(, ),pS(,T),pS(,T),
pS(,T) + pS(,T)



}

= max

{




, ,




,
 + 





}

=



<



.

Consequently, for any r ∈ [, ) we have

HpS (T,T)� rMpS (, ).

3 Data dependence theorem in partial Hausdorff metric spaces

The aim of this section is to discuss data dependence of a fixed points set for MWP op-

erators on partial metric spaces. Also, this section is motivated by Popescu [], see also

[]. Precisely, we will prove a result for (, r)-contractive multivalued operators in partial

Hausdorff metric spaces.

First, we need the following auxiliary lemma.

Lemma . Let (X,p) be a partial metric space and T : X → CBp(X) be a (, r)-contractive

multivalued operator. If z ∈ Tz, then p(z, z) = .

Proof Since p(z,Tz) = p(z, z), then we have

Hp(Tz,Tz) ≤ rmax

{

p(z, z),p(z,Tz),p(z,Tz),
p(z,Tz) + p(z,Tz)



}

= rp(z, z).

Thus, by definition, we write

p(z, z) ≤ p(z,Tz) ≤ Hp(Tz,Tz) ≤ rp(z, z) < p(z, z)

and hence we deduce that p(z, z) = . �

We recall the following concept.
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Definition . ([]) Let (X,p) be a partial metric space and let φ : X →R+ be a function

on X. Then the function φ is called p-lower semi-continuous on X whenever

lim
n→+∞

p(xn,x) = p(x,x) �⇒ φ(x)≤ lim
n→+∞

infφ(xn) = sup
n≥

inf
m≥n

φ(xm).

Now we state and prove our theorem.

Theorem . Let (X,p) be a partial metric space and T,T : X → CBp(X) be two multi-

valued operators.We suppose that:

(i) Ti is a (, ri)-contractive multivalued operator for i ∈ , ;

(ii) there exists λ >  such that Hp(Tx,Tx)≤ λ for all x ∈ X ;

(iii) the function φ : X →R+ defined by φ(x) = p(x,x) is p-lower semi-continuous.

Then:

(a) Fix(Ti) ∈ CLp(X), i ∈ {, };

(b) T and T are MWP operators and

Hp

(

Fix(T),Fix(T)
)

≤
λ

 – max{r, r}
.

Proof (a) FromTheorem . we have that Fix(Ti) is a nonempty set, i ∈ {, }. Let us prove

that the fixed point set of a (, ri)-contractive multivalued operator Ti is closed. Let xn ∈

Fix(Ti), with n ≥ , be such that limn→+∞ xn = z in (X,p). In view of (iii) and Lemma .,

we have

lim
n→+∞

p(xn, z) = p(z, z) �⇒ p(z, z) ≤ lim
n→+∞

infp(xn,xn) = .

It follows that

p(z, z) = lim
n→+∞

p(xn, z) = lim
n→+∞

p(xn,xn) = .

Also, since xn ∈ Tixn, we have p(z,Tixn) ≤ p(z,xn) and then

p(z,Tiz) ≤ p(z,xn) + p(xn,Tiz) – p(xn,xn)

≤ p(z,xn) +Hp(Tixn,Tiz)

≤ p(z,xn) + rip(xn, z).

Passing to the limit as n→ +∞, we obtain that p(z,Tiz) = . Therefore

p(z,Tiz) =  = p(z, z)

and hence by Lemma . and Tiz ∈ CLp(X) we get z ∈ Tiz, that is, z ∈ Fix(Ti).

(b) From the proof of Theorem . we immediately get that a (, ri)-contractive multi-

valued operator is an MWP operator. For the second conclusion, let q be a real number

such that q > , and x ∈ Fix(T) be arbitrary. Then, by Lemma ., there exists x ∈ Tx

such that

p(x,x) ≤ qHp(Tx,Tx).
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Next, for x ∈ Tx, there exists x ∈ Tx such that

p(x,x) ≤ qHp(Tx,Tx).

Since x ∈ Tx, p(x,Tx) = p(x,x)≤ p(x,x), then we have

p(x,x) ≤ qHp(Tx,Tx) ≤ qrp(x,x).

Iterating this process allows us to construct a sequence of successive approximations for

T starting from x, satisfying the following assertions:

xn+ ∈ Txn and p(xn,xn+) ≤ (qr)
np(x,x) for all n ∈N.

Hence, for all n≥ N andm ≥ , we write

p(xn+m,xn) ≤ p(xn,xn+) + p(xn+,xn+) + · · · + p(xn+m–,xn+m) –
m–
∑

i=n+

p(xi,xi)

≤ p(xn,xn+) + p(xn+,xn+) + · · · + p(xn+m–,xn+m)

≤
(qr)n

 – qr
p(x,x).

Consequently, we get

pS(xn,xn+m) ≤ p(xn,xn+m) ≤
(qr)n

 – qr
p(x,x). ()

Now, choosing  < q < min{ 
r
, 
r

} and passing to the limit as n → +∞, we deduce easily

that the sequence {xn} is Cauchy in (X,pS) and, by Lemma ., {xn} is Cauchy in (X,p).

Then there exists u ∈ X such that

lim
n→+∞

xn = u in
(

X,pS
)

.

Therefore, () and limn→+∞ pS(xn,u) =  imply

p(u,u) = lim
n→+∞

p(xn,u) = lim
n,m→+∞

p(xn,xm) = .

We will prove that u is a fixed point for T. To this aim, suppose that there exists a positive

integer N such that

p(u,Txn) > p(u,xn) for all n≥ N .

This implies that p(u,xn+) > p(u,xn) for all n≥ N , which leads to contradiction since xn →

u as n→ +∞. Hence, there exists a subsequence {xn(k)} such that

p(u,Txn(k)) ≤ p(u,xn(k)) for all k ∈N.
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Next, from

p(u,Tu) ≤ p(xn(k)+,u) +Hp(Txn(k),Tu),

on passing to the limit as k → +∞, we get

p(u,Tu) ≤ lim
k→+∞

p(xn(k)+,u) + lim
k→+∞

Hp(Txn(k),Tu)

≤ lim
k→+∞

rp(xn(k),u) = 

and so u ∈ Fix(T).

By (), passing to the limit asm → +∞, we get

p(xn,u) ≤ lim
m→+∞

[

p(xn,xn+m) + p(xn+m,u) – p(u,u)
]

≤ lim
m→+∞

[

(qr)n

 – qr
p(x,x) + p(xn+m,u)

]

≤
(qr)n

 – qr
p(x,x) for each n ∈N.

Then

p(x,u) ≤


 – qr
p(x,x) ≤

qλ

 – qr
.

Analogously, one can show that, for each u ∈ Fix(T), there exists x ∈ Fix(T) such that

p(u,x) ≤


 – qr
p(u,u) ≤

qλ

 – qr

and hence

Hp

(

Fix(T),Fix(T)
)

≤
qλ

 – max{qr,qr}
.

Finally, passing to the limit as q → +, we obtain the assertion. This concludes the proof.

�

4 Well-posedness of fixed point problems in partial Hausdorff metric spaces

According to [, ], we get the notions of well-posedness of a fixed point problem in

the setting of partial metric spaces.

Definition . (see [, ]) Let (X,p) be a partial metric space and T : X → CBp(X) be

a multivalued operator. Then the fixed point problem is well posed for T with respect to

p if:

(a) Fix(T) = {z};

(b) if xn ∈ X , n ∈N and limn→+∞ p(xn,Txn) = , then limn→+∞ p(xn, z) = .

Definition . (see [, ]) Let (X,p) be a partial metric space and T : X → CBp(X) be

a multivalued operator. Then the fixed point problem is well posed for T with respect to

Hp if:
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(a) SFix(T) = {z};

(b) if xn ∈ X , n ∈N and limn→+∞ Hp(xn,Txn) = , then limn→+∞ p(xn, z) = .

Clearly, (b) of Definition . implies (b) of Definition .. Moreover, from (a) and (a),

that is, Fix(T) = SFix(T) = {z}, we deduce that if the fixed point problem is well posed for

T with respect to p, then it is well posed for T with respect to Hp.

Motivated by the above facts, we will prove the following theorem for (s, r)-contractive

multivalued operators, with s > , in partial metric spaces.

Theorem . Let (X,p) be a partial metric space and T : X → CBp(X) be a multivalued

operator.We suppose that:

() T is an (s, r)-contractive multivalued operator with s≥ ;

() SFix(T) �= ∅.

Then:

(a) Fix(T) = SFix(T) = {z};

(b) the fixed point problem is well posed for T with respect to Hp if s > .

Proof (a) Suppose z ∈ SFix(T). Clearly, z ∈ Fix(T).We show that Fix(T) = {z}. To this aim,

let u ∈ Fix(T) with u �= z. Since p(u,Tz) = p(u, z) ≤ sp(u, z), we getHp(Tz,Tu) ≤ rp(z,u) and

therefore

p(z,u) = p(Tz,u) ≤ Hp(Tz,Tu) ≤ rp(z,u),

which leads to contradiction. Thus, Fix(T) = {z} and so the assertion (a) holds true.

(b) Now, let xn ∈ X, with n ∈ N, be such that limn→+∞ p(xn,Txn) = . We have to show

that limn→+∞ p(xn, z) = . Suppose this is not the case; suppose that p(xn, z) does not con-

verge to zero. Consequently, there exist ǫ >  and a subsequence {xn(k)} such that

p(xn(k), z) ≥ ǫ for all k ∈N.

Now, assume that there exists a subsequence {xn(k(j))} of {xn(k)} with

p(z,Txn(k(j))) ≤ sp(z,xn(k(j))).

Then we get

Hp(Tz,Txn(k(j)))≤ rp(z,xn(k(j))),

and so we write

p(z,xn(k(j))) = p(xn(k(j)),Tz)

≤ p(xn(k(j)),Txn(k(j))) +Hp(Tz,Txn(k(j)))

≤ p(xn(k(j)),Txn(k(j))) + rp(z,xn(k(j))).

The above inequality leads to the following:

ǫ ≤ p(z,xn(k(j))) ≤


 – r
p(xn(k(j)),Txn(k(j))).
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Passing to the limit as j → +∞, since limn→+∞ p(xn,Txn) = , we get the contradiction

ǫ = . Consequently, we deduce that there exists k ∈ N such that

p(z,Txn(k)) > sp(z,xn(k)) for all k ≥ k.

Again, since limn→+∞ p(xn,Txn) = , there exists k ≥ k such that

p(xn(k),Txn(k)) < (s – )ǫ for all k ≥ k.

Finally, for all k ≥ k, we write

(s – )ǫ ≤ (s – )p(z,xn(k))

= sp(z,xn(k)) – p(z,xn(k))

< p(z,Txn(k)) – p(z,xn(k))

≤ p(xn(k),Txn(k)) (by (P) of Definition .)

< (s – )ǫ,

which leads to contradiction. Consequently, we conclude that limn→+∞ p(xn, z) = . �

5 Application to integral equations

The literature is rich with papers focusing on the study of integral operators of various

types: Fredholm, Urysohn, Volterra and others. It is well known that integral operators

provide an important subject of numerous mathematical investigations and are often ap-

plicable in many scientific disciplines as physics, biology and economics. The papers we

refer to essentially present a fixed point approach based on the Banach contraction prin-

ciple and its constructive proof. These results give sufficient conditions for establishing

the existence (and uniqueness) of solution of certain integral operators, see [–].

Here, following this line of research, we prove an existence theorem for the solution

of integral equations by using Corollary .. Precisely, we consider the following integral

equation:

u(t) =
∫ T


K

(

t, s,u(s)
)

ds + g(t), ()

t ∈ I = [,T ], where T > . Also we denote

C(I) := {u : I →R | u is continuous on I},

and define d : C(I)×C(I) →R by

d(u, v) = max
t∈I

∣

∣u(t) – v(t)
∣

∣

for all u, v ∈ C(I), so that (C(I),d) is a complete metric space.

Finally, we define the operator T : C(I) → C(I) by

Tx(t) =
∫ T


K

(

t, s,x(s)
)

ds + g(t)

for all x ∈ C(I) and t ∈ I .
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Then we consider the following hypotheses:

(i) K : I × I ×R →R and g : I →R are continuous;

(ii) there exist α ∈ [, ), β ≥  and a continuous function G : I × I →R+ such that

max
t∈I

∫ T


G(t, s)ds = α,

and the inequality

max
t∈I

∣

∣

∣

∣

∫ T


K

(

t, s,u(s)
)

ds + g(t) – v(t)

∣

∣

∣

∣

≤ β max
t∈I

∣

∣u(t) – v(t)
∣

∣

implies

∣

∣K
(

t, s,u(t)
)

–K
(

t, s, v(t)
)
∣

∣

≤ G(t, s)max

{

∣

∣u(t) – v(t)
∣

∣,

∣

∣

∣

∣

∫ T


K

(

t, s,u(s)
)

ds + g(t) – u(t)

∣

∣

∣

∣

,

∣

∣

∣

∣

∫ T


K

(

t, s, v(s)
)

ds + g(t) – v(t)

∣

∣

∣

∣

,





(
∣

∣

∣

∣

∫ T


K

(

t, s, v(s)
)

ds + g(t) – u(t)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ T


K

(

t, s,u(s)
)

ds + g(t) – v(t)

∣

∣

∣

∣

)}

for all u, v ∈ C(I) and t, s ∈ I .

We will prove the following result.

Theorem . Suppose that hypotheses (i) and (ii) hold. Then the integral equation () has

a unique solution x∗ ∈ C(I).

Proof First we note that the space (C(I),d) is trivially a complete partial metric space with

zero self-distance.

Next, for all u, v ∈ C(I), by (ii), we deduce that

∣

∣Tu(t) – Tv(t)
∣

∣

≤

∫ T



∣

∣K
(

t, s,u(s)
)

–K
(

t, s, v(s)
)
∣

∣ds

≤

∫ T


G(t, s)dsmax

{

∣

∣u(t) – v(t)
∣

∣,
∣

∣u(t) – T
(

u(t)
)
∣

∣,

∣

∣v(t) – T
(

v(t)
)
∣

∣,
|u(t) – T(v(t))| + |v(t) – T(u(t))|



}

,

which, on routine calculations, leads to

d(Tu,Tv) ≤ αMd(u, v).

Therefore, without loss of generality, we can write that

d(v,Tu) ≤ βd(u, v) �⇒ d(Tu,Tv) ≤ αMd(u, v)
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for all u, v ∈ C(I). Thus Corollary . is applicable in this case, and hence the operator T

has a unique fixed point x∗ ∈ C(I). Clearly, x∗ ∈ C(I) is the unique solution of (). �
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26. Di Bari, C, Kadelburg, Z, Nashine, HK, Radenović, S: Common fixed points of g-quasicontractions and related

mappings in 0-complete partial metric spaces. Fixed Point Theory Appl. 2012, 113 (2012)



Jleli et al. Fixed Point Theory and Applications  ( 2015)  2015:52 Page 25 of 25
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