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Abstract: Let (X, d) be a G-metric space, f , a self-map on X and x0 ∈ X. Some miscon-

ceptions are brought about in findings of Mustafa et al [2], and a fixed point theorem for a

Chatterjee-type G-contraction on a complete G-metric space is proved. More over, the unique

fixed point p will be its contractive fixed point, in the sense that for each each x0 ∈ X, the

f -iterates x0, fx0, ..., f
nx0, ... converge to p.
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1. Introduction

Let X be a nonempty set and G : X ×X ×X → R such that

(G1) G(x, y, z) ≥ 0 for all x, y, z ∈ X with G(x, y, z) = 0 if x = y = z,

(G2) G(x, x, y) > 0 for all x, y ∈ X with x 6= y,

(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z 6= y,
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(G4) G(x, y, z) = G(x, z, y) = G(y, x, z) = G(z, x, y)
= G(y, z, x) = G(z, y, x) for all x, y, z ∈ X

(G5) G(x, y, z) ≤ G(x,w,w) +G(w, y, z) for all x, y, z, w ∈ X

Then G is called a G-metric on X and the pair (X,G), a G-metric space.
Axiom (G4) reveals that G is symmetric in the three variables x, y and z, and
Axiom (G5) is referred to as the rectangle inequality (of G). This notion was
introduced by Mustafa and Sims [3] in 2006.

From the definition of G-metric space, it immediately follows that

G(x, y, y) ≤ 2G(x, x, y) for all x, y ∈ X. (1)

We use the following notions, developed in [3]:

Definition 1.1. Let (X,G) be a G-metric space. A G-ball in X is defined
by

BG(x, r) =
{
y ∈ X : G(x, y, y) < r

}
.

It is easy to see that the family of all G-balls forms a base topology, called the
G-metric topology τ(G) on X.

Also

ρG(x, y) = G(x, y, y) +G(x, x, y) for all x, y ∈ X. (2)

induces a metric on X, and the G-metric topology coincides with the metric
topology induced by the metric ρG. This allows us to readily transform many
concepts from metric space into the setting of G-metric space.

Definition 1.2. A sequence 〈xn〉
∞
n=1 in a G-metric space (X,G) is said to

be G-convergent with limit p ∈ X if it converges to p in the G-metric topology
τ(G).

Lemma 1.1. The following statements are equivalent in a G-metric space
(X,G):

(a) 〈xn〉
∞
n=1 ⊂ X is G-convergent with limit p ∈ X,

(b) lim
n→∞

G(xn, xn, p) = 0,

(c) lim
n→∞

G(xn, p, p) = 0.

Definition 1.3. A sequence 〈xn〉
∞
n=1 in a G-metric space (X,G) is said

to be G-Cauchy if lim
n,m→∞

G(xn, xm, xm) = 0.
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Definition 1.4. A G-metric space (X,G) is said to be G-complete if every
G-Cauchy sequence in X converges in it.

Definition 1.5. Let (X,G) be a G-metric space. A set S ⊂ X is said to
be G-bounded or simply bounded if there exists a positive number M such that
G(x, y, z) < M for all x, y, z ∈ S.

Definition 1.6. Let (X,G) be a G-metric space. We define the diameter
of S ⊂ X by diam S = δ(S) = sup{G(x, y, z) : x, y, z ∈ S}. The set S is
G-bounded if and only if δ(S) < ∞.

As a part of an extensive research in G-metric spaces, we refer to a couple
of interesting results from [2]. The first of them is:

Theorem 1.1. Let (X,G) be a complete G-metric space and f : X → X
satisfying one of the following conditions:

G(fx, fy, fy) ≤kmax {G(x, fy, fy), G(y, fx, fx), G(y, fy, fy)} (3)

or

G(fx, fy, fy) ≤kmax {G(x, x, fy), G(y, y, fx), G(y, y, fy)} (4)

for all x, y, z ∈ X, where 0 ≤ k < 1. Then f has a unique fixed point p and f
is G-continuous at p.

In the proof of Theorem 1.1, the authors used the following notations:

Γn = max{G(xi, xj , xj) : i, j ∈ {0, 1, ..., n + 1}}, n ∈ N;

Γ = max{Γk : k = n, ...,m− 1} for m > n,

where xn = fnx0 for each x0 ∈ X. The authors used the induction to show
that

G(xn, xn+1, xn+1) ≤ knΓn· (5)

Then with Γ = max{Γk : k = n, ...,m − 1} for m > n, and the rectangle
inequality, they established

G(xn, xm, xm) ≤
(

kn

1−k

)

Γ· (6)

Further, the authors employed the limit as n → ∞ in (6) to see that

G(xn, xm, xm) → 0. (7)
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That is 〈xn〉
∞
n=1 is a Cauchy sequence.

We have two observations in these arguments. Firstly, the sets

An = {G(xi, xj, xj) : i, j ∈ {0, 1, ..., n + 1}}, n = 1, 2, 3, ... (8)

constitute an expanding sequence of sets of nonnegative real numbers. Hence

maxAn ≤ maxAn+1 or Γn ≤ Γn+1 for all n. (9)

Therefore, Γ = max{Γn,Γn+1, ...,Γm−1} = Γm−1.

Then for m > n, from the repeated application of the rectangle inequality
and (5), it follows that

G(xn,xm, xm)

≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2) + ...+G(xm−1, xm, xm)
︸ ︷︷ ︸

m−n terms

≤ kn
(
1 + k + · · ·+ km−n−1

)
Γm−1 ≤

(
kn

1−k

)

Γm−1,

which gives (6).

Definition 1.7. Given x0 ∈ X, the orbit at x0 is the the sequence of
iterates

Of (x0) = {x0, x1, ..., xn, ...}, where xn = fxn−1 for n ≥ 1. (10)

Remark 1.1. We now claim that the above proof of (7) requires that
Of (x0) at each x0 ∈ X is bounded so that sup[Of (x0)] = δ < ∞.

If possible, suppose that Of (x0) is unbounded. Then there exists a positive
integer n such that

G(x1, xn, xn) ≥ µmax{G(x1, xr, xr) : 0 ≤ r ≤ n− 1}, (11)

where

µ = max
{

2k
1−k

, 2k
}

· (12)

Now from the inequality (3), we have

G(x1, xn, xn) ≤ kmax{G(x0, xn, xn), G(xn−1, x1, x1), G(xn−1, xn, xn)}. (13)

Here M = max{G(x0, xn, xn), G(xn−1, x1, x1), G(xn−1, xn, xn)}.
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Case(a): Suppose that M = G(x0, xn, xn). Then (13) gives

G(x1, xn, xn) ≤ kG(x0, xn, xn)

≤ k[G(x0, x1, x1) +G(x1, xn, xn)]

≤
(

k
1−k

)

G(x0, x1, x1)

≤ µmax{G(x0, xr, xr) : 0 ≤ r ≤ n}

< G(x1, xn, xn),

which is a contradiction.

Case(b): Suppose that M = G(xn−1, x1, x1). Then (13) gives

G(x1, xn, xn) ≤ kG(xn−1, x1, x1) ≤ 2kG(x1, xn−1, xn−1)

≤ µmax{G(x0, xr, xr) : 0 ≤ r ≤ n} < G(x1, xn, xn)

which is again a contradiction.

Case(c): Finally, suppose that M = G(xn−1, xn, xn). Then (13) gives

G(x1, xn, xn) ≤ kG(xn−1, xn, xn)

≤ k[G(xn−1, x1, x1) +G(x1, xn, xn)

≤
(

2k
1−k

)

G(x1, xn−1, xn−1)

≤ µmax{G(x0, xr, xr) : 0 ≤ r ≤ n}

< G(x1, xn, xn)

which is also a contradiction.

These three contradictions prove that Of (x0) is bounded and sup[Of (x0)] =
δ < ∞.

Then from (6), it follows that

G(xn, xm, xm) ≤
knδ

1− k
· (14)

Applying the limit as n → ∞ in (14), we get (7). This proves that 〈xn〉
∞
n=1 is

a Cauchy sequence.

The second result of [2] is:
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Theorem 1.2. Let (X,G) be a complete G-metric space and f : X → X
satisfying one of the following conditions:

G(fx, fy, fz) ≤kmax{G(x, fy, fy), G(x, fz, fz), G(y, fx, fx)

G(y, fz, fz), G(z, fx, fx), G(z, fy, fy)} (15)

or

G(fx, fy, fz) ≤kmax{G(x, x, fy), G(x, x, fz), G(y, y, fx)

G(y, y, fz), G(z, z, fx), G(z, z, fy)} (16)

for all x, y, z ∈ X, where 0 ≤ k < 1. Then f has a unique fixed point p and f
is G-continuous at p.

Remark 1.2. It was claimed in [2] that Theorem 1.2 is a Corollary to
Theorem 1.1, which is a misconception. In fact, the conditions (3) and (4)
follow as particular cases of conditions (15) and (16) with y = z respectively.
Therefore, it is appropriate to assert that Theorem 1.1 is a Corollary to Theorem
1.2. The proof for Theorem 1.2 is just similar to the above proof and is omitted
here.

Remark 1.3. Also if k = 0, writing z = y = fx in (15) or (16), we see
that G(fx, f2x, f2x) = 0 so that f2x = fx for each x ∈ X. That is, every fx
is a fixed point of f Theorem 1.2. In other words, the fixed point is not unique
in Theorem 1.2. Therefore, Theorem 1.2 in its revised form is stated as follows:

Theorem 1.3. Let (X,G) be a G-metric space and f : X → X satisfying
either (15) or (16), where 0 < k < 1. If X is G-complete, then f has a unique
fixed point p.

Omitting the terms G(x, fz, fz), G(y, fx, fx) and G(z, fy, fy) in (15), and
restricting k to (0, 1/3), say 0 ≤ γ < 1/3, we get

Corollary 1.1. Let (X,G) be a complete G-metric space and f : X → X
satisfying one of the following conditions:

G(fx, fy, fz) ≤γmax{G(x, fy, fy), G(y, fz, fz), G(z, fx, fx)}

for all x, y, z ∈ X, (17)

where 0 ≤ γ < 1/3. Then f has a unique fixed point.

Since the maximum of three nonnegative numbers cannot exceed their sum,
(17) is weakened as

G(fx, fy, fz) ≤γ[G(x, fy, fy) +G(y, fz, fz) +G(z, fx, fx)],
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for all x, y, z ∈ X, (18)

where 0 < γ < 1/3. This is analogous to Chatterjee’s contraction [1] in metric
space with the choice

ρ(fx, fy) ≤c[G(x, fy) +G(y, fx)] for all x, y ∈ X, (19)

where 0 < c < 1/2. We therefore call f satisfying (18), a Chatterjee-type
G-contraction.

In the next section, we shall obtain a fixed point for a Chatterjee-type
G-contraction on a complete G-metric space.

2. Main Result

The notion of G-contractive fixed point was introduced by Phaneendra with
Kumara Swamy in [4]. In fact

Definition 2.1. A fixed point p of f on a G-metric space (X,G) is a
G-contractive fixed point of it if the orbit Of (x0) = 〈x0, fx0, ..., f

nx0, ...〉 at
each x0 ∈ X is G-convergent with limit p.

It was shown that the unique fixed point of the self-map f with the following
choices is a G-contractive fixed point.

(a) G(fx, fy, fz) ≤ qG(x, y, z) for all x, y, z ∈ X, where 0 ≤ q < 1,

(b) G(fx, fy, fz) ≤ aG(x, fx, fx)+bG(y, fy, fy)+cG(z, fz, fz)+eG(x, y, z)
for all x, y, z ∈ X, where a, b, c and e are nonnegative real numbers with
a+ b+ c+ e < 1.

We now prove

Theorem 2.1. Let f be a Chatterjee-type contraction on a complete G-
metric space (X,G) with the choice (18). Then f has a unique fixed point p,
which will be its contractive fixed point as well.

Proof. Let x0 ∈ X be arbitrary. Define 〈xn〉
∞
n=1 ⊂ X by

xn = fxn−1 for n ≥ 1. (20)

Writing x = xn−1 and y = z = xn in (18) and then using (20) and (G5), we get

G(fxn−1, fxn, fxn) = G(xn, xn+1, xn+1)
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≤ γ
[
G(xn−1, fxn, fxn) +G(xn, fxn, fxn) +G(xn, fxn−1, fxn−1)

]

≤ γ
[
G(xn−1, xn+1, xn+1) +G(xn, xn+1, xn+1) +G(xn, xn, xn)

]

≤ γ
[
G(xn−1, xn, xn) + 2G(xn, xn+1, xn+1)

]

≤ kG(xn−1, xn, xn),

where k = γ
1−2γ · By induction, we have

G(xn, xn+1, xn+1) ≤ knG(x0, x1, x1) for n ≥ 1. (21)

Now for all n,m ∈ N with m > n, by (G5) and (21), we obtain

G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2)

+ · · ·+G(xm−1, xm, xm) (m− n terms)

≤ (kn + kn+1 + kn+2 + · · ·+ kn+(m−n−1)
︸ ︷︷ ︸

m−n terms

)G(x0, x1, x1)

= kn(1 + k + k2 + · · ·+ km−n−1
︸ ︷︷ ︸

m−n terms

)G(x0, x1, x1)

≤ kn · 1−km−n

1−k
·G(x0, x1, x1)

≤ kn

1−k
·G(x0, x1, x1).

Since k = γ
1−2γ < 1, applying the limit as n → ∞ in this, we find that

lim
n,m→∞

G(xn, xm, xm) = 0.

Thus 〈xn〉
∞
n=1 is G-Cauchy sequence in X. Since X is G-Complete, there

exists a point p ∈ X such that 〈xn〉
∞
n=1 is G-convergent to p. That is

lim
n→∞

xn−1 = lim
n→∞

xn = p (22)

Now writing x = xn−1 and y = z = p in (18),

G(fxn−1, fp, fp) = G(xn, fp, fp)

≤ γ
[
G(xn−1, fp, fp) +G(p, fp, fp) +G(p, fxn−1, fxn−1)

]

≤ γ
[
G(xn−1, fp, fp) +G(p, fp, fp) +G(p, xn, xn)

]

Proceeding the limit as n → ∞ in this and using (22), and then simplifying, we
get

G(p, fp, fp) ≤ 2γG(p, fp, fp). (23)
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If fp 6= p, (23) would imply that

0 < G(p, fp, fp) ≤ 2γG(p, fp, fp) < G(p, fp, fp),

which is a contradiction. Therefore, fp = p. That is p is a fixed point of f .
The uniqueness of the fixed point follows easily from (18).

We finally prove that p is a G-Contractive fixed point of f . In fact, let
x0 ∈ X be arbitrary. Writing x = fn−1x0 and y = z = p in (18) and using
(G5), we get

G(fnx0, p, p) = G(fnx0, fp, fp)

≤ γ
[
G(fn−1x0, fp, fp) +G(p, fp, fp) +G(p, fnx0, f

nx)
]

≤ γ
[
G(fn−1x0, p, p) + 2G(fnx0, p, p)

]

≤ γ
1−2γG(fn−1x0, p, p).

Since γ
1−2γ < 1, we see that G(fnx0, p, p) → 0 as n → ∞ for each x0 ∈ X. Thus

p is a G-Contractive fixed point of f .

3. Conclusion

Let (X, d) be a G-metric space, f , a self-map on X and x0 ∈ X. Misconceptions
regarding two fixed point theorems of Mustafa et al [2] have been discussed.
Then a fixed point theorem for a Chatterjee-type G-contraction on a complete
G-metric space has been proved. The unique fixed point will be its contractive
fixed point, to which the f -iterates x0, fx0, ..., f

nx0, ... converge, for each each
x0 ∈ X.
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