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Abstract: Let (X,d) be a G-metric space, f, a self-map on X and zo € X. Some miscon-

ceptions are brought about in findings of Mustafa et al [2], and a fixed point theorem for a

Chatterjee-type G-contraction on a complete G-metric space is proved. More over, the unique

fixed point p will be its contractive fixed point, in the sense that for each each zo € X, the

f-iterates xo, fxo, ..., f" o, ... converge to p.
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1. Introduction

Let X be a nonempty set and G : X x X x X — R such that

(Gl) G(x,y,z) >0 for all z,y,z € X with G(z,y,2) =0if x =y = 2,

(G2) G(x,z,y) >0 for all z,y € X with = # vy,
(G3) G(x,z,y) < G(x,y,z) for all z,y,z € X with z # y,
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(G4) G(xaya Z) - G(.Q?,Z,y) = G(y,x,z) = G(vaay)
=Gy, z,x) = G(z,y,x) for all z,y,z € X

(G5) G(z,y,2) < G(z,w,w) + G(w,y, z) for all z,y,z,w € X

Then G is called a G-metric on X and the pair (X,G), a G-metric space.
Axiom (G4) reveals that G is symmetric in the three variables z, y and z, and
Axiom (Gb) is referred to as the rectangle inequality (of G). This notion was
introduced by Mustafa and Sims [3] in 2006.

From the definition of G-metric space, it immediately follows that

G(z,y,y) < 2G(x,z,y) for all z,y € X. (1)

We use the following notions, developed in [3]:

Definition 1.1. Let (X,G) be a G-metric space. A G-ball in X is defined
by
Bg(z,r) = {y € X :G(x,y,y) < r}.
It is easy to see that the family of all G-balls forms a base topology, called the
G-metric topology 7(G) on X.

Also
pa(z,y) = G(x,y,y) + G(z,z,y) for all z,y € X. (2)

induces a metric on X, and the G-metric topology coincides with the metric
topology induced by the metric pg. This allows us to readily transform many
concepts from metric space into the setting of G-metric space.

Definition 1.2. A sequence (x,) 22, in a G-metric space (X, G) is said to
be G-convergent with limit p € X if it converges to p in the G-metric topology
7(G).

Lemma 1.1. The following statements are equivalent in a G-metric space
(X,G):

(a) (zy) 52 C X is G-convergent with limit p € X,
(b) lim G(zn,zn,p) =0,
(¢) lim G(zp,p,p) =0

Definition 1.3. A sequence (z,) 2, in a G-metric space (X, G) is said
to be G-Cauchy if lim G(zp,xm,Tm) = 0.

,1M—00



ON SOME MISCONCEPTIONS AND... 791

Definition 1.4. A G-metric space (X, G) is said to be G-complete if every
G-Cauchy sequence in X converges in it.

Definition 1.5. Let (X,G) be a G-metric space. A set S C X is said to
be G-bounded or simply bounded if there exists a positive number M such that
G(z,y,z) < M for all z,y,z € S.

Definition 1.6. Let (X,G) be a G-metric space. We define the diameter
of S C X by diam S = 6(5) = sup{G(x,y,2) : z,y,2 € S}. The set S is
G-bounded if and only if §(5) < oc.

As a part of an extensive research in G-metric spaces, we refer to a couple
of interesting results from [2]. The first of them is:

Theorem 1.1. Let (X,G) be a complete G-metric space and f : X — X
satisfying one of the following conditions:

G(fx, fy, fy) <kmax{G(z, fy, fy), Gy, fz, fz),G(y, fy, fy)} (3)
or

G(fz, fy, fy) <kmax{G(z,z, fy),G(y,y, fx),G(y,y, fy)} (4)

for all z,y,z € X, where 0 < k < 1. Then f has a unique fixed point p and f
is G-continuous at p.

In the proof of Theorem 1.1, the authors used the following notations:

Iy, = max{G(z;,z;,2;): i,j € {0,1,....,n+1}}, neN;
I'=max{I'y: k=n,...m—1} for m > n,

where x,, = "z for each z¢g € X. The authors used the induction to show
that

G(-Tnp Tn+1, anrl) < k"I (5)

Then with I' = max{I'y : k& = n,...,m — 1} for m > n, and the rectangle
inequality, they established

Gln, s wm) < (£5) T (6)
Further, the authors employed the limit as n — oo in (6) to see that

G(Tpn, T,y Ty) — 0. (7)
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That is (xy),-, is a Cauchy sequence.
We have two observations in these arguments. Firstly, the sets
Ap ={G(zs,zj,x5) : 0,5 €{0,1,...,n+1}}, n=1,2,3,... (8)
constitute an expanding sequence of sets of nonnegative real numbers. Hence
max A, < max A, or I';, < T, 41 for all n. 9)
Therefore, I' = max{l,,, ['yy1, ooy Tpm1} = i1
Then for m > n, from the repeated application of the rectangle inequality

and (5), it follows that

G(-Tnpxmu xm)

< G(-Tnp Tn+1, anrl) + G(-rnJrla Tn+2, xn+2) + ...+ G(-Tmflu L, -Tm)

m—n terms

<K' (I+k+- k" )Ty < (ﬁ—"k) L1,

which gives (6).

Definition 1.7. Given xy € X, the orbit at zy is the the sequence of
iterates

O¢(zo) = {x0, 21, ..., Tp, ...}, where x,, = fx,_1 forn > 1. (10)

Remark 1.1. We now claim that the above proof of (7) requires that
Oy¢(x0) at each 29 € X is bounded so that sup[Oy(zg)] = 6 < oo.

If possible, suppose that Of(x¢) is unbounded. Then there exists a positive
integer n such that

G(z1,Tp,xy) > pmax{G(z1,zr,z,) : 0 <7 <n-—1}, (11)
where
u:max{%ﬂk}- (12)
Now from the inequality (3), we have
G(z1,xp, zy) < kmax{G(xg, Tpn,xn),G(Tn—1,71,21), G(Tp_1,Tn,zn)}. (13)

Here M = max{G(xg, zp,xn), G(xn-1,21,21), G(Tp_1,Tpn,Tn)}.
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Case(a): Suppose that M = G(zg, zp, x,). Then (13) gives
G(xlaxnaxn)
k[G(:C(]a :Clu CCl) + G(xla -Tna xn)]
< (ﬁ) G(zo,21,71)
max{G(zg,xy,z,): 0 <r <n}

M
G(xla Tn, xn)a

which is a contradiction.

Case(b): Suppose that M = G(zy,—1,21,21). Then (13) gives

G(z1,Tn, Tp) < kG(Tn-1,21,21) < 2kG(21, Tp—1,Tn—1)
< pmax{G(zg,xr,z;): 0 <r <n} < G(x1, 2y, Ty)

which is again a contradiction.

Case(c): Finally, suppose that M = G(x,—1,Tpn,x,). Then (13) gives

G(-Tlaxn’ -Tn)

which is also a contradiction.
These three contradictions prove that Oy (xg) is bounded and sup[O¢(zo)] =
0 < oo.

Then from (6), it follows that

)
< .
G(-Tn’xmuxm) =1_%

(14)

Applying the limit as n — oo in (14), we get (7). This proves that (), is
a Cauchy sequence.
The second result of [2] is:
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Theorem 1.2. Let (X,G) be a complete G-metric space and f : X — X
satisfying one of the following conditions:

G(fz, fy, fz) <kmax{G(z, fy, fy),G(z, fz, [2),G(y, fz, fr)
Gy, fz,[2),G(z, fx, fx),G(z, fy, fy)} (15)

or

G(fx7 fy7 f’z) Sk maX{G(x7 x? fy)7 G(x7 x? f’z)7 G(y7 y? f‘r)
G(y,y,12),G(2, 2, fx),G(z, 2, [y)} (16)

for all z,y,z € X, where 0 < k < 1. Then f has a unique fixed point p and f
is G-continuous at p.

Remark 1.2. It was claimed in [2] that Theorem 1.2 is a Corollary to
Theorem 1.1, which is a misconception. In fact, the conditions (3) and (4)
follow as particular cases of conditions (15) and (16) with y = z respectively.
Therefore, it is appropriate to assert that Theorem 1.1 is a Corollary to Theorem
1.2. The proof for Theorem 1.2 is just similar to the above proof and is omitted
here.

Remark 1.3. Also if £ = 0, writing z = y = fz in (15) or (16), we see
that G(fx, f?z, f2x) = 0 so that f2x = fx for each € X. That is, every fx
is a fixed point of f Theorem 1.2. In other words, the fixed point is not unique
in Theorem 1.2. Therefore, Theorem 1.2 in its revised form is stated as follows:

Theorem 1.3. Let (X,G) be a G-metric space and f : X — X satisfying
either (15) or (16), where 0 < k < 1. If X is G-complete, then f has a unique
fixed point p.

Omitting the terms G(z, fz, f2), G(y, fz, fz) and G(z, fy, fy) in (15), and
restricting £k to (0,1/3), say 0 <y < 1/3, we get
Corollary 1.1. Let (X,G) be a complete G-metric space and f : X — X

satisfying one of the following conditions:

forall x,y,z € X, (17)
where 0 < v < 1/3. Then f has a unique fixed point.

Since the maximum of three nonnegative numbers cannot exceed their sum,
(17) is weakened as

G(fx, fy, f2) <AG(x, fy, fy) + Gy, [z, f2) + Gz, f, fr)],
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for all z,y,z € X, (18)

where 0 < v < 1/3. This is analogous to Chatterjee’s contraction [1] in metric
space with the choice

p(fz, fy) <c[G(z, fy) + G(y, fx)] for all z,y € X, (19)

where 0 < ¢ < 1/2. We therefore call f satisfying (18), a Chatterjee-type
G-contraction.

In the next section, we shall obtain a fixed point for a Chatterjee-type
G-contraction on a complete G-metric space.

2. Main Result

The notion of G-contractive fixed point was introduced by Phaneendra with
Kumara Swamy in [4]. In fact

Definition 2.1. A fixed point p of f on a G-metric space (X,G) is a
G-contractive fixed point of it if the orbit Of(x¢) = (xo, fzo,..., "0, ...) at
each xo € X is G-convergent with limit p.

It was shown that the unique fixed point of the self-map f with the following
choices is a G-contractive fixed point.

(a) G(fz, fy, fz) < qG(z,y,z) for all z,y,z € X, where 0 < ¢ < 1,
(b) G(fx, fy, fz) < aG(z, fz, fx)+bG(y, fy, fy)+cG(z, [ 2, fz) +eG(z,y,2)

for all z,y,z € X, where a,b,c and e are nonnegative real numbers with
a+b+c+e<l.

We now prove

Theorem 2.1. Let f be a Chatterjee-type contraction on a complete G-
metric space (X, G) with the choice (18). Then f has a unique fixed point p,
which will be its contractive fixed point as well.

Proof. Let zg € X be arbitrary. Define (z,),~; C X by
Tp = fxy_q for n > 1. (20)
Writing © = x,,—; and y = z = z,, in (18) and then using (20) and (G5), we get

G(fxn—lv fxnv fxn) = G(.len, Tn+1, xn—f—l)
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S ’Y[G(xn—la fxna fxn) + G(xna fxna fxn) + G(xna fxn—la fxn—l)]
<7 [G(flfn—la Tn+1, xn-{—l) + G(xna Tn+1, xn—l—l) + G(xna In, xn)]
<7 [G(xn—lv LTy xn) + 2G(5Ena Tn41, xn-i—l)]
S k’G(CCnfl, Tn, xn)u

where k = ﬁ By induction, we have

G(Tn, Tnt1, Tnt1) < k"G(zo,x1,21) for n > 1. (21)
Now for all n,m € N with m > n, by (G5) and (21), we obtain

G(xnaxmaxm) < G(xnaxn-i—laxn—i—l) + G(xn—l—laxn-f—?vxn-i-?)
bt Gl T ) (m— n torms)
< (K" 4 kP 4 k2 o g IN G g, 2, 2)
m—n terms
=k"(1+k+E + -+ K" HG(x0, 71, 71)

m—n terms

" 171]{1_” - G(wo, x1,71)

IN
w

< 1k__nk : G(x()axlaxl)‘
Since k = 1_7—% < 1, applying the limit as n — oo in this, we find that
lim G(xn, Tm, Tm) = 0.

,1M—00
Thus (z,),-, is G-Cauchy sequence in X. Since X is G-Complete, there
exists a point p € X such that (z,) -, is G-convergent to p. That is

lim z,_1 = lim x, =p (22)
n—oo n—oo

Now writing * = z,_1 and y = z = p in (18),

G(fxnfla fp7 fp) = G(:C'rh fpa fp)
< y[G(@n-1, fp. D) + G0, [P, [P) + G, fTn—1, fTn-1)]
<y[G(zn-1, fp. f0) + G(p, fp, D) + G(p, T, 1)

Proceeding the limit as n — oo in this and using (22), and then simplifying, we
get

G(p, fp, fp) < 27¢G(p, fp, D). (23)
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If fp# p, (23) would imply that

0 < G(p, fp, fp) <29G(p, fo, fp) < G(p, fr, fD),

which is a contradiction. Therefore, fp = p. That is p is a fixed point of f.
The uniqueness of the fixed point follows easily from (18).

We finally prove that p is a G-Contractive fixed point of f. In fact, let
1o € X be arbitrary. Writing 2 = f" !z and y = z = p in (18) and using
(G5), we get

G(f"wo,p,p) = G(f"wo, fp, D)

[G(f"~ lwo,fp, fp)+G(p, fp, fp) + G(p, fMwo, f")]
G(f" zo,p.p) + 2G(f"x0,p,D)]

=G Y20, p,p).

VANVAN
=2 2

| /\

Since ﬁ < 1, we see that G(f"xo,p,p) — 0 as n — oo for each o € X. Thus
p is a G-Contractive fixed point of f. O

3. Conclusion

Let (X, d) be a G-metric space, f, a self-map on X and xg € X. Misconceptions
regarding two fixed point theorems of Mustafa et al [2] have been discussed.
Then a fixed point theorem for a Chatterjee-type G-contraction on a complete
G-metric space has been proved. The unique fixed point will be its contractive
fixed point, to which the f-iterates xg, fxo,..., f"xq, ... converge, for each each
Ty € X.
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