
On the application of the classic Kessler and Berry schemes
in Large Eddy Simulation models with a particular emphasis
on cloud autoconversion, the onset time of precipitation
and droplet evaporation

S. Ghosh, P. R. Jonas

Department of Physics, UMIST, Manchester, M60 1QD, UK Fax: +44 161 200 3941

Received: 30 June 1997 / Revised: 5 December 1997 /Accepted: 8 December 1997

Abstract. Many Large Eddy Simulation (LES) models
use the classic Kessler parameterisation either as it is or
in a modi®ed form to model the process of cloud water
autoconversion into precipitation. The Kessler scheme,
being linear, is particularly useful and is computation-
ally straightforward to implement. However, a major
limitation with this scheme lies in its inability to predict
di�erent autoconversion rates for maritime and conti-
nental clouds. In contrast, the Berry formulation over-
comes this di�culty, although it is cubic. Due to their
di�erent forms, it is di�cult to match the two solutions
to each other. In this paper we single out the processes
of cloud conversion and accretion operating in a deep
model cloud and neglect the advection terms for
simplicity. This facilitates exact analytical integration
and we are able to derive new expressions for the time of
onset of precipitation using both the Kessler and Berry
formulations. We then discuss the conditions when the
two schemes are equivalent. Finally, we also critically
examine the process of droplet evaporation within the
framework of the classic Kessler scheme. We improve
the existing parameterisation with an accurate estima-
tion of the di�usional mass transport of water vapour.
We then demonstrate the overall robustness of our
calculations by comparing our results with the experi-
mental observations of Beard and Pruppacher, and ®nd
excellent agreement.
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1 Introduction

Representations of microphysical processes that control
the partition of water between clouds and precipitation

are crucial to the realistic predictions of cloud models
including the large eddy simulation (LES) models.

Kessler (1969) pioneered the introduction of the
e�ect of varying updraughts into cloud models. In his
approach, all water is ®rst condensed as cloud water,
with small drop size (roughly 5±30 lm) and negligible
terminal velocity. Then a process called autoconversion
begins. This involves the formation of precipitation
particles either by the aggregation of several cloud
particles or by the action of giant salt nuclei, or similar
processes. Water clouds can persist for a long time
without precipitating and various measurements show
that cloud water contents �1 g mÿ3 are usually associ-
ated with precipitation (Mason, 1957; Singleton and
Smith, 1960).

Two di�erent autoconversion schemes are widely
used (Simpson and Wiggert, 1969):

dM

dt
� k1�mÿ a� g mÿ3 sÿ1 ; �1�

and

dM

dt
� m2

60 5� 0:0366Nb

mDb

� � g mÿ3 sÿ1 ; �2�

where Eq. (1) is due to Kessler (1969) and Eq. (2) to
Berry (1968). M and m are the precipitation water
content and the cloud water contents, respectively, k1
the autoconversion rate �sÿ1�, a the autoconversion
threshold �g mÿ3�, Nb and Db are the droplet number
density �no.cmÿ3� and droplet relative dispersion at the
cloud base. We shall ®rst discuss the implications of the
Kessler formula.

2 The Kessler autoconversion scheme

Kessler assumed that the rate of autoconversion in-
creases with the cloud water content but is zero for some
values below the threshold a, below which cloud
conversion does not occur. The parameter k1 is theCorrespondence to: S. Ghosh
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reciprocal of the 1=e ``conversion time'' of the cloud
water.

In models which use the Kessler scheme, the conver-
sion of cloud water to precipitation does not start until
the cloud content produced in saturated updraughts has
exceeded a. Thereafter, the cloud water responds to its
accretion by relatively large precipitation particles in
addition to processes of vertical advection and conden-
sation.

The real atmosphere's analogue to the autoconver-
sion threshold can be height dependent. There abounds
considerable arbitrariness with regard to the choice of
appropriate values for k1 and a, although the recom-
mended value for k1 by Kessler is 10ÿ3, actual values of
a can only be ascertained from experiments which are
often di�cult to conduct. In the absence of such
supporting experimental data various modellers have
used various combinations of values for k1 and a. In
some of our recent LES modelling studies (Jonas and
Ghosh, 1997) we modelled a stratocumulus cloud widely
studied during the EUCREX (European Cloud and
Radiation Experiment) mission 204 of 18 April 1994.
We found that with an adopted value of 10ÿ4 sÿ1 for k1
when a is unrealistically set at 1:0 g kgÿ1, there was no
evidence of precipitation and the liquid water path
(LWP) showed a slow increase to the end of the
simulation. It should be noted that the microphysical
parameterisations are applied at each point and this
implies that the average cloud water content may be less
that the autoconversion threshold. Only when a was
lowered to 0:3 g kgÿ1 was there a gradual decrease in
the LWP, indicating the initiation of precipitation in the
simulation. In Table 1 we show the maximum layer
averaged rain mass for the model stratocumulus cloud
after 4 h of simulation.

From Table 1 we ®nd that the rain mass increases
with lower values of a and the simulations correspond-
ingly showed that the cloud liquid water content
increased with increasing values of a.

The parameter k1 is the rate of autoconversion to
precipitation of cloud content in excess of the threshold
a. When k1 is large, the approach to steady state is
hastened once m > a; when k1 is small, the cloud content
continues to increase longer in the updraughts after
precipitation has started (especially if the accretion
process is also weak). Decreasing the autoconversion
coe�cient k1 a�ects the precipitation development in
much the same way as does increasing the conversion
threshold a. This is clear from Kessler (1969, Figs. 12.7
and 12.8) where the cloud and precipitation pro®les
corresponding to k1 � 10ÿ3 and 10ÿ5 in Fig. 12.8 of that

paper are virtually identical with a � 0:5 and 2.0 in
Fig. 12.7.

From the preceding paragraphs it is clear that
Kessler's treatment of the autoconversion process,
although very useful and amenable to incorporation
into cloud models straightforwardly, is rather intuitive.
Berry (1968) on the other hand has treated the process
more rigorously, and this we discuss in the next section.

3 The Berry autoconversion scheme

Berry's equation [Eq. (2)] is developed theoretically
from a model of initial cloud growth by condensation
and coalescence of cloud-sized particles with each other.
The early droplet spectrum near the cloud base has a
number concentration of Nb drops cmÿ3 and a relative
dispersion Db determined by the condensation nucleus
spectrum. The relative dispersion is de®ned as

Db �
ra

�a
; �3�

where ra is the standard deviation of the droplet radii
and �a is the mean. Equation (2) corresponds to a choice
of the 200-lm boundary between cloud and precipita-
tion drops. This is realistic for the following reasons:

1. A drop of 200 lm diameter has a terminal velocity of
1±2 m sÿ1 and is thus beginning to fall at a speed
comparable to cumulus updraughts. It can survive a
fall of several hundred metres in subsaturated air
without complete evaporation.

2. Most 10-cm radars begin to show an echo of a cloud
when numerous drops of about this size are present
(Simpson and Wiggert, 1969).

Jonas and Mason (1974) studied the evolution of
droplet spectra by the combined e�ects of condensation
and coalescence in cumulus clouds. Their computed
spectra closely resemble measured spectra and repro-
duce the bimodal structure observed by Warner (1969).
Their study reveals that the onset of precipitation in
continental clouds containing a high cloud condensation
nucleus concentration depends on the values used for
the collection e�ciency. Due to enhanced turbulence the
growth rate of larger drops would increase signi®cantly.

The work of Jonas and Mason (1974) further
validates the results of Berry (1968). Berry (1968) ®nds
that the initial droplet distribution generated just above
the cloud base by condensation in a warm cumulus
cloud sets the stage for future droplet growth by
collection. If these droplets are large or the spread of
the distribution broad, the rate at which precipitation
droplets will be formed is fast. In a cloud which has a
limited lifetime governed by the mesoscale circulation
this initial rate of droplet growth may make the
di�erence between rain and no rain.

Twenty-eight typical, condensation-produced spectra
were used to cover a range of droplet number and
relative dispersion. The subsequent growths were found
to ®t a pattern of two distinct regions ± initial and ®nal,
with the boundary between the two regimes at a radius

Table 1. Rainmass with varying autoconversion thresholds in a
simulated stratocumulus cloud from Jonas and Ghosh (1997)

a g kg)1 rainmass g kg)1

1.0 0.0
0.3 1.810)3

0.2 2.510)3

S. Ghosh, P. R. Jonas: On the application of the classic Kessler and Berry schemes 629



of 40 lm ± an approximate radius of those droplets
which contain most of the liquid water (Berry, 1968).

In the initial growth region, the elapsed time `T '
required for the drops to attain a radius of 40 lm,
excluding the e�ects of collection, has been calculated by
Berry (1968). The ¯ux of cloud water passing r � 40 lm
averaged over many parcels at various stages of devel-
opment is just the cloud water content of the parcel Lc
divided by the time `T ', which is the autoconversion rate
given in Eq. (2).

Upon examining Eqs. (1) and (2) it becomes clear
that Berry's (1968) formula, although empirical, ac-
counts for the important microphysical parameters like
the droplet number density and the relative dispersion,
whereas the Kessler scheme does not. Other than by
comparison of the predictions of a cloud model with
®eld experiments there can be no direct way to link the
values of k1 and a in the Kessler formula in Eq. (1) with
the microphysical parameters of the cloud.

The Kessler formula is linear in m while the Berry
formula is cubic; as a result the Kessler scheme is more
straightforward to use in LES models. Since both
Eqs. (1) and (2) represent the same physical process,
one way to link the value of k1 and/or a in Eq. (1) with
microphysical parameters would be to use Eq. (2) to
optimise the choice of k1 and a for a particular
simulation. In this way one would be able indirectly to
incorporate the e�ects of the number density and the
relative dispersion without altering the basic structure of
the Kessler scheme used within the framework of an
LES model.

An important feature of Berry's equation (2) is that a
di�erent autoconversion rate is predicted for maritime
and for continental clouds. Typically for maritime
clouds Nb � 50 cmÿ3, Db � 0:366 and for a continental
cloud Nb � 2000 cmÿ3, Db � 0:146 (Simpson and Wig-
gert, 1969). The stratocumulus cloud studied extensively
during the EUCREX mission [and also by us in our LES
modelling (Joans and Ghosh, 1997)] has the number

density and the relative dispersion in between the
maritime and the continental extremes. For this cloud
Nb � 200 cmÿ3, Db � 0:24 (Pawlowska and Brenguier,
1996), suggesting that although the number concentra-
tion is not as high as that of a continental cloud, it had
at some stage of its development passed over pollution
sources. These features are illustrated in Fig. 1, where
we have shown the rate of change of cloud water content
(dm/dt) as a function of m for both the Kessler and the
Berry formulations. In the unmodi®ed Kessler formu-
lation [shown as Kessler (original)] k1 � 10ÿ3 sÿ1 and
this is more representative of a maritime cloud. This is
clearly evident when we compare this graph with the
graph corresponding to the Berry (maritime) case.
Figure 1 clearly illustrates that the autoconversion rates
of maritime clouds are vastly di�erent from those of
continental clouds. We also show the rate of change of
the cloud water amount for a cloud with microphysical
properties in between these limits [Berry (intermediate)].
We have used the Berry scheme directly as well as the
optimised Kessler scheme with k1 � 5:46� 10ÿ4, where
it now becomes clear that with this procedure one can
achieve comparable results from both schemes.

One of the important physical parameters that could
possibly link the two parameterisation schemes is the
time of onset of precipitation. This is discussed in the
following section, where we also discuss the procedure
for optimising the Kessler scheme in conjunction with
the Berry scheme.

4 On the onset of precipitation of a uniform cloud

We consider cloud conversion and accretion operating
in a deep model cloud of water content m and neglect the
advection terms for the sake of simplicity. Changes in
cloud and precipitation water content then arise as a
result of autoconversion and collection of cloud drops
by precipitation.

4.1 The Kessler formulation

The equation describing the amount of cloud water can
be expressed as

dM

dt
� ÿ dm

dt
� k1�mÿ a� � k02mM

7=8 ; �4�

where k1 > 0 when m > a and k02 > 0. The constant
k02 � k2EN

1=8
0 where E is the collection e�ciency and

k2 � 6:96� 10ÿ4 (Kessler, 1969).
Since there is no vertical motion we also require that

M � m � m0; 0 � t � 1 ; �5�
where m0 is the amount of cloud water when t � 0 and
since

M7=8 ' M ; �6�
dm

dt
� k02m

2 ÿ �k1 � k02m0�m� k1a ; �7�Fig. 1. Rate of change of cloud water content calculated from the
classic Kessler (1969) and Berry (1968) schemes
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or,

t �
Z m

m0

dm

k02m
2 ÿ �k1 � k02m0�m� k1a

: �8�

Integration of this equation will give us a handle on
the time of onset of precipitation. A convenient measure
would be to evaluate the time over which m reduces
from m0 to m0=e (this can be easily obtained from plots
of m as a function of t).

In order to integrate Eq. (8) we set

k02 � C ;

ÿ �k1 � k02m0� � 2B ;

k1a � A ;

and we have

t � ÿ 1
������������������

AC ÿ B2
p tanÿ1 cm� B

������������������

AC ÿ B2
p

� �m0

m

�9�

when

AC > B2 ; �10�

or

t � ÿ 1

2
������������������

B2 ÿ AC
p ln

Cm� Bÿ
������������������

B2 ÿ AC
p

Cm� Bÿ
������������������

B2 ÿ AC
p

" #m0

m

�11�

when

B2 > AC : �12�
From the two new solutions given by Eqs. (9) and

(11) it is clear that the times of onset of precipitation will
vary according to the conditions imposed by Eqs. (10)
and (12) which are functions of the autoconversion
coe�cient k1, the autoconversion threshold a, the initial
cloud water amount m0 and the accretion coe�cient k02.

In Fig. 2a we examine the e�ect of the initial cloud
water content with ®xed values of the autoconversion
coe�cient �k1 � 5:45� 10ÿ4 sÿ1� and threshold
�a � 0:3 g mÿ3�. We ®nd that with lower initial cloud
water content the onset times are longer. Note that the
kinks in the curves show the region when m � a, below
which point only the process of accretion is operative.

In Fig. 2b we ®x m0 at 1 g mÿ3 and a at 0:3 g mÿ3

and examine the e�ect of varying k1. For low values of
k1, the precipitation onset times are large as is expected.
In Fig. 2c we examine the e�ect of varying the
autoconversion threshold and ®nd that the onset times
are higher for larger threshold values.

4.2 The Berry formulation

In the Berry formulation (Berry, 1968) the equation
equivalent to Eq. (4) is

dM

dt
� ÿdm

dt
� m2

60 5� 0:0366Nb

mDb

� �� k02mM
7=8 : �13�

Fig. 2a±c. Time of onset of precipitation calculated from the analytical
solutions of Eqs. (9) and (11) using the Kessler (1969) scheme.a E�ect
of varying initial cloud water content with ®xed autoconversion
coe�cient and threshold. b E�ect of varying autoconversion
coe�cient with ®xed initial cloud water content and autoconversion
threshold. c E�ect of varying autoconversion threshold with ®xed
initial cloud water content and autoconversion coe�cient
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Typically, Nb � 200 cmÿ3, m � 0:5 g mÿ3, and
Db � 0:24 and for this case 0:0366Nb

mDb
� 5:0, and therefore

approximating Eq. (13) we can write

dM

dt
� ÿdm

dt
' k1m

3 � k02mM ; �14�

where k1 � 60� 0:0366Nb=Db.
Hence,

t � ÿ
Z m

m�0

dm

k1m3 ÿ k02m
2 � k02mm0

: �15�

Further by setting

k02m0 � A0 ;

ÿ k02 � 2B0 ;

k1 � C0

we obtain for the case when B
02 > A0C0

t � 1

A0 ln�m�� �m0

m ÿ 1

2A0 ln A0 � 2B0m� C0m2
� �m0

m

ÿ B0

2A0
����������������������

B
02 ÿ A0C 0

p

� ln
C0m� B0 ÿ

���������������������

B
02 ÿ A0C0

p

C0m� B0 �
���������������������

B
02 ÿ A0C0

p
" #m0

m

:

�16�

As an illustrative example, as we have seen before, for
the EUCREX stratocumulus cloud, Nb � 200 cmÿ3,
Db � 0:24; this yields k1 � 5:46� 10ÿ4 sÿ1. Setting
N0 � 107, E � 1:0, we obtain k2 � 5:22� 10ÿ3. For an
initial cloud water content of 1 g mÿ3, we ®nd that
A0C0 < B

02 and therefore indeed Eq. (16) is valid.
In contrast for typical maritime clouds Nb � 10 cmÿ3,

Db � 0:4, yielding k1 � 1:82� 10ÿ2 sÿ1. For this situa-
tion A0C0 > B

02 and we obtain a di�erent solution:

t � 1

A0 ln�m�� �m0

m ÿ 1

2A0 ln A0 � 2B0m� C0m2
� �m0

m

ÿ B0

2A0
���������������������

B
02 ÿ A0C0

p tanÿ1 C0m� B0
���������������������

A0C0 ÿ B
02

p
� �m0

m

: �17�

Equations (16) and (17) are also two new solutions
and predict di�erent onset times for microphysical
parameters appropriate for continental and maritime
clouds and also provide useful insights on the relative
importance of the processes of autoconversion and
accretion.

In Fig. 3a we show cloud water content as a function
of time for a typical continental cloud, a maritime cloud,
and a cloud with microphysical properties in between
these two extremes such as the EUCREX stratocumu-
lus. The curves are obtained from the solutions in
Eqs. (16) and (17) and show that the onset times of
precipitation for a continental cloud is � 1200 s as
compared to 600 s for a maritime cloud.

In Fig. 3b we show the e�ect of initial cloud water
content with Nb � 200 cmÿ3 and Db � 0:24. Larger
initial cloud water content yields smaller onset times.
This trend is also observed from the Kessler formulation
(see Fig. 2a).

One of the objectives of this analysis is to establish an
equivalence between the classic Kessler parameterisation
and the Berry (1968) parameterisation. Although the
Berry (1968) parameterisation is able to di�erentiate
between maritime and continental clouds, it is not as
widely used in many LES models. Most bulk-paramete-
rised cloud models continue to utilise some modi®ed
version of the Kessler scheme [for example Rutledge and
Hobbs (1983); the widely used U.K. Meteorological
O�ce LES model (Derbyshire et al., 1994)].

With the present analysis we are now in a position
judiciously to specify the autoconversion coe�cient and
the threshold in any cloud model using the Kessler
scheme rather than use arbitrary values. We suggest that
when cloud microphysical observations are available,
the observed values should be used as far as possible for
the purposes of model constrainment. Then we recom-
mend the use of the Berry (1968) formulation, Eq. (2), to
calculate the autoconversion rate. Assuming that
Eqs. (1) and (2) are identical rates, one can now

Fig. 3a, b. Time of onset of precipitation calculated from the analytical
solutions of Eqs. (16) and (17) using the Berry (1968) scheme. a Cloud
water content for di�erent cloud types. b E�ect of varying initial cloud
water content with Nb � 200 cmÿ3, Db � 0:24
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calculate k1 with a prescribed value of a, or vice versa. In
this way we need to specify one rather than two
adjustable parameters.

For example if we assume that a � 0:33 kg mÿ3 then
we obtain a value of k1 � 5:46� 10ÿ4 sÿ1 as the correct
input to the Kessler scheme. This enables one also to
ascertain the conditions under which the two schemes
can yield nearly identical cloud water contents. We show
this in Fig. 4, where we obtain nearly the same cloud
water content as a function of time. Using this approach
we ®nd signi®cant improvements in the predictive
capacities of our LES modelling of the EUCREX
stratocumulus cloud.

In this context it is worth mentioning that Weinstein
(1970) showed from a sensitivity analysis that the
autoconversion threshold a is a crucial parameter.
Rutledge and Hobbs (1983) deduced a value of
7� 10ÿ4 kg kgÿ1 � 0:56� 10ÿ4 kg mÿ3 from airborne
observations of cloud and rainwater contents in warm
stratiform clouds. From the procedure just discussed
with the above value of a the calculated value of k1 to be
used in a cloud model involving the Kessler scheme
turns out to be 1:08� 10ÿ3 sÿ1, very close to the value
of 1:00� 10ÿ3 sÿ1 used by Rutledge and Hobbs (1983).
This example demonstrates the overall simplicity of the
outlined procedure.

In the next section we examine the process of
raindrop evaporation within the framework of the
Kessler scheme and include an accurate estimation of
the di�usion coe�cient of water vapour used in the
scheme.

5 Improved parameterisation for the evaporation
of raindrops with an accurate estimation
of di�usional mass transport of water vapour

In order to account for the rate of change of mass of an
evaporating raindrop one ®nds that various paramete-

rised expressions are frequently used in numerical
models, particularly in LES models. Many of these
models incorporate the calculations of Kessler (1969). A
careful evaluation of this scheme reveals that some of
the parameterisations involved with the quanti®cation
of the droplet evaporation term are directly dependent
on the di�usion coe�cient of water vapour. Modellers
use di�usion data reported under laboratory conditions
which are often di�erent from atmospheric conditions.
Secondly, many models, and in particular some of the
LES models ignore the temperature di�erence between
the evaporating droplet and the environmental air. In
this paper we re-evaluate the evaporation term involved
in the Kessler (1969) scheme by calculating the exact
value of the di�usion coe�cient of water vapour
(accounting also for the ®nite dipole moment of water
vapour) and taking account of the temperature di�er-
ence between the drop and the ambient air. We compare
our results with the observations of Kinzer and Gunn
(1951), with Kessler (1969), and also with the more
recent and de®nitive observations of Beard and Prup-
pacher (1971). Signi®cant improvements are obtained by
using our approach and our results agree very well with
the observations of Beard and Pruppacher (1971).

5.1 On the evaporation of a rain droplet

For an evaporating drop, if one assumes that over a
limited range the saturation vapour density at the
surface of the drop is a linear function of the absolute
temperature, then

qa ÿ qb ' qb
1ÿ U

U

� �

ÿ �Tb ÿ Ta�
dq

dT

� �

s

; �18�

where U is the fractional relative humidity and �dq=dT �s
is the mean slope of the saturation vapour density-
temperature curve determined at the temperature of the
drop and the environment, qa and qb are the saturation
density of water vapour at the temperature of the drop,
and the density of water vapour in the environmental air
(Kinzer and Gunn, 1951).

Also, since

U � qb
qa

; �19�

qa ÿ qb ' qa�1ÿ U� ÿ �Tb ÿ Ta�
dq

dT

� �

s

: �20�

In Eqs. (18) and (20), �Tb ÿ Ta� is the temperature
di�erence between the evaporating drop and the envi-
ronment. From the experimental observations of Kinzer
and Gunn (1951), it was found that the temperature of
the freely falling drops are very close to the wet-bulb
temperature.

Equation (20) can be used to estimate the vapour
density di�erence from which the evaporation rate is
determined only when

�Tb ÿ Ta�
dq

dT

� �

s

< qa�1ÿ U� : �21�Fig. 4. Equivalence of the optimised Kessler (1969) scheme and the
Berry (1968) scheme for Nb � 200 cmÿ3, Db � 0:24
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From the measurements of the variation of satura-
tion density of water vapour (Mason, 1957; Smithsonian
Tables, 1958) it is clear that �dq=dT �s increases rapidly
with increasing temperatures. Using representative val-
ues of the relevant quantities we ®nd that Eq. (21) is true
for temperatures colder than the freezing point of water.
In this study we are mainly concerned with layer clouds
without ice.

From a record of the temperature measurements of a
stratocumulus cloud studied during the EUCREX
measurements (Pawlowska and Brenguier, 1996), it is
found that the temperature within the cloud ranged
between ÿ0:5 �C and 0 �C. From a summary of obser-
vations on non-freezing layer clouds in mid-latitudes, it
is known that drizzle may often fall from clouds which
contain no ice crystals and is therefore produced by
coalescence of droplets. For supercooled clouds in
which no ice crystals were detected, about 30% were
colder than ÿ12 �C, only 12% colder than ÿ16 �C, and
only 5% colder than: ÿ20 �C. Continuous precipitation
can be maintained only if the cloud water is replenished
by a persistent vertical motion fed, perhaps over a large
region, by low-level convergence in the wind ®eld
(Mason, 1957).

From the preceding paragraph we ®nd that for a vast
majority of layer clouds over the mid-latitudes, we must
be concerned with temperatures ranging from 0 �C to
about ÿ10 �C, a temperature range safely applicable to
use Eq. (20).

Some of the LES codes currently in use, including the
U.K. Meteorological O�ce LES code (Derbyshire et al.,
1994) use the Kessler (1969) scheme for parameterising
the evaporation rate of precipitation, and this is based
on the measurements of Kinzer and Gunn (1951). These
authors, however, report measurements covering a
temperature range of 0±40 �C. Hence, using the Kinzer
and Gunn (1951) measurements to derive empirical
parameterisations for the raindrop evaporation calcula-
tions at low temperatures (particularly sub-zero tem-
peratures) is likely to yield inaccurate results. In fact,
Kessler (1969) points out that his estimation of
Dv�qb ÿ qa� (where Dv is the di�usivity of water vapour
in air) could involve an error bar as large as 40%. It is
possible that this error can be greatly reduced if the term
D�qb ÿ qa� is estimated as accurately as possible.

We shall ®rst estimate the magnitude of the temper-
ature di�erence between the drop and the ambient air,
for the conditions typical to stratocumulus clouds
observed over the mid-latitudes. For the EUCREX
observations of 18 April 1994, the relative humidity was
� 70%.

Assuming Tb ÿ Ta ' Tb ÿ Tw, where Tw is the wet-
bulb temperature, and neglecting the weak dependence
of L (latent heat of condensation) on the temperature
(Rogers and Yau, 1989),

Tb ÿ Tw � L

Cp

�Ws ÿ W � ; �22�

where W and Ws are the water vapour mixing ratio and
the saturation mixing ratio, respectively.

We can also write,

Tb ÿ Tw � L

Cp

Ws�1ÿ U� : �23�

Typically L
Cp

� 2:5� 103 K, and for U � 0:7 and

Ws � 4� 10ÿ3 kg kgÿ1 between 800±900 mb and at
temperatures between 0±4 �C, we ®nd that
Tb ÿ Tw � 3 �C. This temperature di�erence is often
not accounted for in many of the LES codes. Neglecting
the temperature di�erence, we have the following
approximate relationship:

qa ÿ qb ' qa�1ÿ U� : �24�
However, as we have seen earlier, in cold and humid
conditions, a temperature di�erence of � 3 �C can
contribute signi®cantly to the saturation vapour density
di�erence at the surface of the drop, and it is more
appropriate not to assume that the drop is at the same
temperature as the environment. In Table 2 we show the
saturated vapour density di�erence at varying temper-
atures including the contribution of the temperature
di�erence using Eq. (20) and compare this with the case
when the temperature di�erence is neglected [using the
approximate Eq. (24)]. In this table we show results
corresponding to a relative humidity of 70% . The last
column of this table shows the percentage error that
would be encountered if the temperature di�erence is
not accounted for.

From Table 2 we ®nd that at a relative humidity of
70% and within a temperature range of ÿ10 �C to 5 �C,
a typical temperature range encountered in many
clouds, it is very important to account for the temper-
ature di�erence between the evaporating droplet and the
environment.

The rate of change of mass of a freely falling water
drop in g sÿ1 is given by

dMi

dt
� 4pa 1� F

s

� �� �

�Dv�qa ÿ qb�� ; �25�

where a is the drop radius, s is the equivalent thickness
of the transition shell outside the drop, F , a dimension-
less factor, and Dv the di�usion coe�cient. Kinzer and
Gunn's tabulation of the ®rst term shows that this term
is nearly independent of the ambient temperature and
humidity and can be ®tted to an accuracy of about
�20% (Kessler, 1969) by:

4pa 1� F

s

� �

� 2:24� 103D8=5 ; �26�

Table 2 Saturated water vapour density di�erence as a function of
temperature

T ,
°C

�Tb ÿ Ta�,
°C

�qa ÿ qb�
[Eq. (20)]

�qa ÿ qb�
[Eq. (24)]

%error

)10 1.345 0.5346 0.7074 24.42
) 5 1.983 0.6648 1.0221 34.96

0 2.879 0.7375 1.4541 49.28
5 4.121 0.6423 2.0391 68.50
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where D � 2a is the drop diameter in metres.
According to Kessler (1969), the second term is

related linearly to the saturation de®cit a as

Dv�qa ÿ qb� � 10ÿ5a �g mÿ1 sÿ1� : �27�
Since the ®rst term in square brackets in Eq. (25) is
independent of the temperature and the humidity, the
parameterisation in Eq. (26) is adequately represented.
However, the second term in square brackets in Eq. (25)
does strongly depend upon the temperature and the
relative humidity. Hence it is very important to para-
meterise this term as accurately as possible and prefer-
ably in a manner that can allow one to incorporate the
temperature dependence.

Using Eq. (24) we can write

Dv�qa ÿ qb� ' Dvqa�1ÿ U� : �28�

When one compares Eqs. (27) and (28), it is found
that in order for Eq. (27) to be dimensionally correct,
the right-hand side of Eq. (27) should involve a factor
that should have the units of a di�usion coe�cient
�L2Tÿ1�. Indeed, the factor 10ÿ5 on the right-hand side
should have units of Dv, and this is possible when
Dv � 0:1 cm2 sÿ1. Or, in other words, the Kessler (1969)
scheme as described in Eq. (27) implicitly assumes that
the di�usion coe�cient of water vapour in air is equal to
0:1 cm2 sÿ1. However, the observed values of the
di�usion coe�cient of water vapour in air are much
higher. For example, at 0 �C Dv � 0:2 cm2 sÿ1 (Smith-
sonian Tables, 1958). Assuming a value of 0:1 cm2 sÿ1

would therefore at the very least underpredict the
evaporation rate by a factor of 2.

However, the most accurate procedure is to use
Eq. (20) and one now obtains:

Dv�qa ÿ qb� ' Dv qa�1ÿ U� ÿ �Tb ÿ Ta�
dq

dT

� �

s

� �

:

�29�
Thus, an immediate and obvious improvement to the
Kessler (1969) microphysical scheme would be to use
Eq. (29) instead of Eq. (27). Experimental values of
di�usion coe�cients are usually reported for laboratory
conditions only, and modellers are often constrained by
the availability of di�usion coe�cient data relevant to
the real atmosphere, particularly as a function of
altitude. Hence, it would be very useful if one could
calculate the di�usion coe�cients theoretically at any
desired level in the atmosphere as a function of both
temperature and pressure instead of adopting arbitrarily
prescribed values.

In the next section we show the use of a 6±12
Lennard-Jones model to obtain the binary di�usivity of
water vapour in air. Although the method is described in
Ghosh (1993) and Ghosh et al. (1995) we outline the
general procedure for the sake of completeness. In this
study however, we have extended the original routines
described in Ghosh (1993) and Ghosh et al. (1995) to
account for the dipole moment of water, since H2O is a
strongly polar molecule with a dipole moment of 1.8
Debyes.

5.2 The Lennard-Jones method

The theory describing di�usion in binary gas mixtures at
low to moderate pressure has been well developed and
the results are credited to Chapman and Enskog.
Simpli®ed versions can be found in standard textbooks
of physical chemistry (e.g. Maitland et al., 1982). Based
on the kinetic theory, the di�usion coe�cient may be
expressed as (Reid et al., 1987):

DAB � 0:00266T 3=2

PM
1=2
AB r2ABXD

; �30�

where,

MA, MB � molecular weights of A and B,
MAB � 2��1=MA � 1=MB��ÿ1

,
T � temperature, K,
P � pressure, bar,
rAB � characteristic length, AÊ ,
XD � diffusion collision integral, dimensionless,
DAB � diffusion coe�cient, cm2 sÿ1.

The key to the use of Eq. (30) is the selection of an
intermolecular force law and the evaluation of XD. Reid
and Sherwood (1958) emphasise that of all the available
methods for correlating the intermolecular energy w
between twomolecules to the distance of separation r, the
most accurate method is that given by Lennard-Jones:

w � 4�
r

r

� �12

ÿ r

r

� �6
� �

; �31�

with � and r as the characteristic Lennard-Jones energy
and length, respectively. To use Eq. (30) some rule must
be chosen to obtain rAB from rA and rB. Also, it can be
shown that XD is a function only of kT=�AB (k being
Boltzmann's constant), where again some rule must be
selected to relate �AB to �A and �B. The following simple
rules are usually employed:

�AB � �A�B� �1=2 ; �32�

rAB � rA � rB� �=2 : �33�
XD is tabulated as a function of kT=� for the 6±12

Lennard-Jones potential and various analytical approx-
imations are also available. We used the relation of
Neufeld et al. (1972):

XD � A

�T ��B
� C

exp�DT �� �
E

exp�FT �� �
G

exp�HT �� ;

�34�
where,
T � � kT=�AB, A � 1:06036, B � 0:15610, C � 0:19300,
D � 0:47635, E � 1:03587, F � 1:52996, G � 1:76474
and H � 3:89411.

Application of the Chapman-Enskog theory to the
viscosity of pure gases has led to the determination of
many values of � and r (Reid et al., 1987; Bzowski et al.,
1990).
Polar gases. If one or both components of a gas mixture
are polar, a modi®ed Lennard-Jones relation, such as
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the Stockmayer potential, is often used. A di�erent
collision integral relation becomes necessary and Le-
nnard-Jones r and � values are not su�cient (Reid et al.,
1987).

A modi®ed collision integral XD is now given as
(Reid et al., 1987)

XD � XD[Eq.(34)]�
0:19d2AB

T � ; �35�

where T � � kT
�AB

and d � 1:94�103l2p
VbTb

,

lp � dipole moment, debyes,

Vb � liquid molar volume at the normal boiling point,
cm3 molÿ1,
Tb � normal boiling point (1 atm), K

�

k
� 1:18�1� 1:3d2�Tb ; �36�

r � 1:585Vb

1� 1:3d2

� �1=3

; �37�

dAB � �dAdB�1=2 ; �38�
�AB
k

� �A
k

�B
k

� �1=2
; �39�

rAB � �rArB�1=2 : �40�
For H2O, Vb � 18:7 cm3 molÿ1, Tb � 375:15 K; and

using the foregoing relations we ®nd that dH2O � 0:9,
��
k
�H2O

� 903:97 K and rH2O � 2:43 AÊ .

5.3 Re-evaluation of the droplet evaporation term

Using the preceding formulation we are able to calculate
a typical di�usivity pro®le of water vapour. In order to
do this we needed temperature and pressure pro®les. We
used the U.K. Meteorological O�ce LES model con-
strained with EUCREX temperature observations. This
is shown in Fig. 5, from which we clearly ®nd that the
di�usion coe�cient of water vapour between 900±
1200 m (a typical region where the stratocumulus clouds
are observed) is 0:2 cm2 sÿ1. In the same ®gure we have
also shown the temperature pro®le.

Having obtained the di�usivity pro®le for water
vapour we shall now compare our estimation of the term
Dv�qa ÿ qb� using Eq. (29) instead of Eq. (27) with those
of Kinzer and Gunn (1951) and Beard and Pruppacher
(1971). These authors report their experimental values
of their estimation of Dv�qa ÿ qb� at a pressure of one
atmosphere for varying relative humidities as well as
temperatures. We have used their results for a temper-
ature of 0 �C corresponding to the conditions relevant to
the stratocumulus cloud simulated by the LES code.
This is shown in Fig. 6, where the results of the Kessler
(1969) scheme are also shown. We observe excellent
agreement between the observations of Beard and
Pruppacher (1971) and the present approach. We ®nd
that whereas in the Kessler parameterisation one

observes an overall underprediction, in our analysis we
have much better agreement at all humidity levels.

Unfortunately, there are no experimental data avail-
able for a comparison also at lower temperatures (e.g. at
ÿ10 �C).

The analysis in this section clearly points to the
importance of aiming towards accurate mass transport
estimates involved in cloud microphysical processes, and
in particular this study demonstrates the usefulness of
the Lennard-Jones model for an accurate estimation of
the di�usion coe�cient ± a coe�cient that one frequent-
ly encounters in mass-transfer calculations.

6 Conclusions

In this paper we have carefully examined the process of
cloud autoconversion as described in the classic Kessler

Fig. 5. Calculated di�usivity pro®le of H2O using the Lennard-Jones
model and the temperature pro®le from the LES model

Fig. 6. Dv�qa ÿ qp� as a function of relative humidity

636 S. Ghosh, P. R. Jonas: On the application of the classic Kessler and Berry schemes



(1969) and Berry (1968) schemes. We discuss in detail
the applicability of these schemes in LES models. We are
also able to derive new analytical expressions for the
time of onset of precipitation using both the Kessler and
Berry formulations. We then discuss the conditions
when the two schemes are equivalent. Our study
demonstrates that by ®rst calculating the autoconver-
sion coe�cient as a function of droplet number density
and droplet dispersion using the Berry (1968) scheme,
one can then calculate the autoconversion threshold
rather than arbitrarily specify two adjustable parameters
in the Kessler formula. In this way one can still use the
simple and linear Kessler formula in LES models and
also indirectly incorporate the e�ects of di�erent cloud
types via the Berry (1968) formulation as described.

Finally, we also critically examine the process of
droplet evaporation within the framework of the classic
Kessler scheme. We improve the existing parameterisa-
tion with an accurate estimation of the di�usional mass
transport of water vapour. We then demonstrate the
overall robustness of our calculations by comparing our
results with the experimental observations of Beard and
Pruppacher (1971). This comparison shows an excellent
agreement.
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