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We study the discrete Painlevé equations that can be obtained as limits from the

equations associated with the affine Weyl group E
(1)

8
. We obtain equations associated

with the groups E
(1)

7
and E

(1)

6
as well as linearisable systems. In the E

(1)

7
and E

(1)

6
cases,

we obtain several new discrete Painlevé equations along with equations which can be

related to the ones already known. The same is true for linearisable systems. In the

case of new linearisable mappings, we present their explicit linearisation. Published

by AIP Publishing. [http://dx.doi.org/10.1063/1.4978330]

I. INTRODUCTION

The Sakai classification1 of rational surfaces associated with affine root systems provided the

key for the systematic classification of discrete Painlevé equations, the latter being obtained by the

translation part of an affine Weyl group. As shown by Sakai, the discrete Painlevé equations can be

organised in a degeneration cascade starting from the systems associated with the affine Weyl group

E
(1)

8
. Given a group one can derive the generic equation, corresponding to a straight line evolution

on a lattice associated with the group. However, many more discrete equations exist, corresponding

to more complicated trajectories. This last remark led to a working definition of what is a discrete

Painlevé equation. As we noted in Ref. 2, a discrete Painlevé equation is a mapping obtained by the

periodic repetition of a non-closed pattern in a lattice associated with an affine Weyl group belonging

to the degeneration cascade of E
(1)

8
.

Deriving the discrete Painlevé equations associated with a given affine Weyl group, even if one

limits oneself to simple trajectories, is a very tall order. Still, this is a project that the present authors

have successfully completed for most of the lower groups of the E
(1)

8
degeneration cascade.3,4 On the

other hand, when it comes to the E
(1)

8
group itself, the results have been hard to obtain because of the

extreme richness of this group, a fact that makes the calculations extremely bulky from the outset.

However, in the last one or two years, a series of breakthrough have rendered the calculations for E
(1)

8

-related systems more manageable.5–7

The basic method for the derivation of discrete Painlevé equations is the one we have dubbed

deautonomisation.8 For the practical implementation of this method, one starts from an integrable

autonomous mapping and assumes that the parameters which enter it are functions of the independent

variable. Their precise form is then fixed through the application of a discrete integrability criterion.

For the latter, singularity confinement or algebraic entropy or a combination thereof9 are the usual

choice.

In the case of E
(1)

8
-related equations, three different types of discrete systems exist, additive, mul-

tiplicative and elliptic, in which the independent variable appears linearly, exponentially, or through

the argument of an elliptic function. In what follows, we shall focus our analysis on the equations of

additive type and explain how the results obtained can be transcribed to the multiplicative and elliptic

cases. The generic additive E
(1)

8
-related equation has the form10

a)Author to whom correspondence should be addressed. Electronic mail: grammaticos@imnc.in2p3.fr
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(xn − xn+1 + (zn + zn+1)2)(xn − xn−1 + (zn + zn−1)2) + 4xn(zn + zn+1)(zn + zn−1)

(zn + zn−1)(xn − xn+1 + (zn + zn+1)2) + (zn + zn+1)(xn − xn−1 + (zn + zn−1)2)

= 2
x4

n + σ2x3
n + σ4x2

n + σ6xn + σ8

σ1x3
n + σ3x2

n + σ5xn + σ7

, (1)

where zn is equal to αn+ β and σk are the degree-k elementary symmetric functions of the quantities

zn + κ
i
n, where κi are eight parameters which are, generically, functions of the independent variable.

Starting from this equation, one can obtain several more through a simplification process, where one

assumes that a common factor drops out from the numerator and denominator of the right-hand side.

This simplification is implemented in the autonomous form of the equation whereupon one proceeds

to deautonomisation. (This process was called “degeneracy” in older publications of ours,3 a term we

prefer now not to use lest it be confused with the term “degeneration.”11) What is remarkable is that

all the equations obtained through the simplification process are still associated with the group E
(1)

8
,

in the sense that the geometry of their transformations is governed by that group. Equations related

to E
(1)

8
and obtained in this way have been the object of Ref. 12.

In this paper we shall concentrate on a different procedure. Here we shall consider the limits of

the equations of the form (1) when parameters in the right-hand side are put to infinity. These limiting

procedures, which materialise the degeneration process referred to in the previous paragraph, have

as a consequence to yield equations associated with groups that lie lower in the degeneration cascade

of E
(1)

8
. A rule of thumb concerning the identification of the affine Weyl group a given equation is

associated with is to count the free parameters appearing in the coefficients of the various terms.

A word of caution is mandatory here. Given the fact that x scales like z2 one can apply a scaling

factor on the secular part of zn = αn and put the parameter α to 1 (unless α was 0 to begin with, in

which case we do not have a discrete Painlevé equation but a mapping with periodic coefficients).

More generally one should always take into account the possible gauge freedom and eliminate any

superfluous parameter before a definitive count.

When too many parameters disappear because of the limits, the resulting system is not a discrete

Painlevé equation any more, but rather a linearisable equation.13 The linearisability of the equations

obtained is assessed through the study of the degree growth of the iterates of the initial condition,

the details of the growth providing a hint as to the precise method of linearisation of the equation at

hand.

II. A FACTORISED REPRESENTATION OF THE E
(1)

8
-RELATED EQUATIONS

Given the form (1) of the general additive (difference) discrete Painlevé equation associated

with the affine Weyl group E
(1)

8
, it is clear that it does not easily lend itself to deautonomisation type

calculations using integrability criteria. For instance, in order to perform the singularity analysis of

Equation (1), we must solve for xn+1 in terms of xn and xn☞1 and look for the singularities which are

defined as the values of xn for which xn+1 is independent of xn☞1. We obtain for the latter an equation

of degree 8 which at this level does not appear to be tractable. Similar difficulties arise when one tries

to implement an algebraic entropy approach.

However there exists a way to simplify the calculations. It is based on the introduction of an

ancillary variable ξ such that

xn = ξ
2
n . (2)

Using this variable, we find that we can rearrange Equation (1) and bring it to the form12

xn+1 − (ξn − zn − zn+1)2

xn+1 − (ξn + zn + zn+1)2

xn−1 − (ξn − zn − zn−1)2

xn−1 − (ξn + zn + zn−1)2
=

∏8
i=1

(κin + zn − ξn)
∏8

i=1
(κin + zn + ξn)

. (3)

What is interesting here is that both the left and right hand sides of (3) are expressed in a factorised

form. This, very convenient, form was also obtained by Kajiwara, Noumi, and Yamada in Ref. 5,

through a different approach, but with the introduction of the same ancillary variable.

In order to show how the form (3) is convenient for singularity analysis, we perform it in the

general case assuming that no a priori constraints exist on the κin. We remark that xn+1 is independent
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of xn☞1 whenever the right-hand side of (3) vanishes or diverges. Assume that the value of ξn is

such that the right-hand sign vanishes, i.e., ξn = κ
i
n + zn, something that must be balanced by the

vanishing of the left-hand side. This leads to ξn+1 = κ
i
n − zn+1 (neglecting a choice of sign which

is immaterial). Iterating, we find that the denominator of the second factor of the left-hand side

vanishes. We balance this by requiring that the denominator of the right-hand side also vanishes.

We obtain thus the condition κi
n+1
+ κin = 0, i.e., κi change sign at each iteration. The singularity is

indeed confined since a computation of the value of ξn+2 shows that it does depend on the initial

conditions. We would have obtained the same result by considering the singularities related to the

vanishing of the denominator of (3). However this does not exhaust all possible singularities: another

singularity exists when ξn becomes infinite. Since we are dealing with the general case, we require

that the singularity be confined in one step, i.e., that xn+1 be obtained from the initial conditions. This

leads to the constraint

zn+1 − 2zn + zn−1 =
1

2

8
∑

i=1

κin. (4)

Since the κin change sign at each iteration, it is possible, by introducing the appropriate gauge in zn, to

bring the right-hand side of (4) to zero, i.e.,
∑8

i=1
κin = 0 and obtain from (4) the solution zn = αn+ β.

Having the form (3) for the general E
(1)

8
-related equation, we can use it in order to perform all

possible limits and simplifications.

III. A FIRST SERIES OF LIMITS

As already announced, this paper is devoted to the study of the various limits of (1) or equivalently

of (3). Clearly the right-hand side of (3) assumes a simpler form if we consider that some of the κi

go to infinity. The simplest such limit is obtained by assuming that two of the κ, say κ8 and κ7, go to

infinity in such a way so as to keep their sum finite. In this case Equation (3) takes the form

xn+1 − (ξn − zn − zn+1)2

xn+1 − (ξn + zn + zn+1)2

xn−1 − (ξn − zn − zn−1)2

xn−1 − (ξn + zn + zn−1)2
=

∏6
i=1

(κin + zn − ξn)
∏6

i=1
(κin + zn + ξn)

. (5)

Going back to a form (1), we find

(xn − xn+1 + (zn + zn+1)2)(xn − xn−1 + (zn + zn−1)2) + 4xn(zn + zn+1)(zn + zn−1)

(zn + zn−1)(xn − xn+1 + (zn + zn+1)2) + (zn + zn+1)(xn − xn−1 + (zn + zn−1)2)

= 2
x3

n + σ2x2
n + σ4xn + σ6

σ1x2
n + σ3xn + σ5

, (6)

where σk are the elementary symmetric functions of the quantities zn + κ
i
n, constructed now on the

6 remaining κi. As in the general case, the κi obey the condition κi
n+1
+ κin = 0, which means that

they change sign at each iteration. In order to obtain the precise n-dependence of zn, we consider the

singularity where ξn becomes infinite. The minimal singularity pattern here is {∞,∞}, which means

that the memory of the initial conditions is restored in xn+2. We perform the calculation in the specific

gauge where
∑6

i=1
κin = 0 and find for the confinement condition

zn+2 − zn+1 − zn + zn−1 = 0, (7)

the solution of which is zn = αn + β + γ(−1)n. We remark that the equation has exactly 7 degrees of

freedom and it is associated with the affine Weyl group E
(1)

7
.

Next we proceed to consider the equations obtained from (5) through simplifications. As already

explained in Ref. 3, the simplifications must be implemented on the autonomous mapping. We start

thus from Equation (5) with constant z and κi. A simplification in the right-hand side of the relevant

equation occurs when two of the κi are related through

κi + κj + 2z= 0. (8)

Further simplifications are of course possible and they also lead to equations associated with the

affine Weyl group E
(1)

7
. Once the desired simplifications of the right-hand side of (5) have been
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performed, one can proceed to the deautonomisation of the remaining equation assuming that z and

κi are functions of the independent variable. The integrability constraints can be obtained by the

application of the singularity confinement criterion.

A. A single simplification

We start with the case of a single simplification (by imposing a constraint of the form (8) on κ6

an κ5). Before proceeding further and in order to minimise the use of upper indices, we use the letters

a, b, c, d in lieu of the remaining κi. We start by studying the constraint of the confinement of the

singularity pattern {∞,∞}. We find readily

an + bn + cn + dn + an+1 + bn+1 + cn+1 + dn+1 = 2(zn+2 + zn−1). (9)

The singularity analysis can then be pursued along the lines described in Ref. 12. We assume that we

enter a singularity by ξn = κ
i
+ z and exit through−κj − z after M steps and similarly for the remaining

parameters after N, P, Q steps respectively. Combining the constraints we find that we must have

M + N + P + Q = 6. This means that only two distinct integrable classes may exist corresponding to

(M, N, P, Q) = (3, 1, 1, 1), (2, 2, 1, 1).

Class (M, N, P, Q) = (3, 1, 1, 1)

Two cases can be distinguished here.

In the first one, we enter the singularity with ξn = an + zn and exit through ☞an+3 ☞ zn+3, i.e., after

three steps, while all remaining singularities entering through bn + zn, cn + zn, dn + zn exit through

☞bn+1 ☞ zn+1, ☞cn+1 ☞ zn+1, ☞dn+1 ☞ zn+1 after one step. (In fact the three singularities entering

through bn + zn, cn + zn, dn + zn may exit through any permutation of the three exiting values without

this changing the conclusions. Thus the choice made here does not lead to loss of generality. Such

generality preserving choices will be tacitly made in the analyses that follow in this section and in

the next one.) For the singularities related to b, c, d, the constraint is the same as in the general case,

i.e., bn + bn+1 = 0, cn + cn+1 = 0, dn + dn+1 = 0. The singularity involving an leads to the following

confinement constraint an + an+3 = 2(zn+1 + zn+2). Combining the constraints on the a, b, c, d with

(9), we obtain for zn the condition

zn+4 − zn+3 − zn + zn−1 = 0 (10)

with solution zn = αn + β + φ4(n). Here and in what follows, we use the symbol φm to denote a

periodic function φm(n + m)= φm(n) with period m given by

φm(n)=

m−1
∑

ℓ=1

ǫ
(m)

ℓ
exp

(

2iπℓn

m

)

. (11)

Notice that the summation starts at 1 instead of 0, since, given the expressions below, the constant

term can be absorbed through a redefinition of the secular term αn + β, and thus, φm introduces

(m ☞ 1) parameters. Using (9), we can express an in terms of the zn as an = 2(zn+1 ☞ zn + zn☞1), up to

a gauge choice.

In the second case, we enter the singularity at an + zn and exit through ☞bn+3 ☞ zn+3 after three

steps. Moreover the singularities bn + zn, cn + zn, dn + zn exit through ☞cn+1 ☞ zn+1, ☞an+1 ☞ zn+1,

☞dn+1 ☞ zn+1 after one step. We have thus the confinement constraints an + bn+3 = 2(zn+1 + zn+2) and

bn + cn+1 = 0, cn + an+1 = 0, dn + dn+1 = 0. We find thus an = bn☞2, cn = ☞bn☞1 and find for bn the

relation bn+3 ☞ bn+1 = 2(zn+1 ☞ zn☞1). We obtain for zn the equation

zn+3 − zn+2 − zn−3 + zn−4 = 0 (12)

the solution of which is zn = αn + β + φ6(n). The equation for bn can be integrated to bn = zn−2 +

zn+4 + φ2(n). Note that the term φ2(n) in bn can be eliminated by a gauge choice that redefines the

(☞1)n term in φ6(n) and dn.

Class (M, N, P, Q) = (2, 2, 1, 1)

Here we have four distinct cases.

In the first one, we enter the singularity at an + zn and exit through ☞an+2 ☞ zn+2 after two

steps, and similarly for b, while we enter at cn + zn and dn + zn to exit after just one step through
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☞cn+1 ☞ zn+1 and ☞dn+1 ☞ zn+1, respectively. Hence the constraints an + an+2 = 2zn+1, bn + bn+2 = 2zn+1,

cn + cn+1 = 0, dn + dn+1 = 0. We find an = bn + χ4(n) where we have introduced the periodic function

χ2m which obeys the equation χ2m(n + m) + χ2m(n)= 0. It has a period 2m while involving only m

parameters and can be expressed in terms of roots of unity as

χ2m(n)=

m
∑

ℓ=1

η
(m)

ℓ
exp

(

iπ(2ℓ − 1)n

m

)

. (13)

Using (9) we find for bn the expression 2bn = zn+2 + zn+1 − 2zn + zn−1 + zn−2 − χ4(n) leading to the

equation for zn

zn+4 − zn+2 − zn+1 + zn−1 = 0. (14)

Its integration gives zn = αn+ β+φ3(n)+φ2(n). Again the φ2(n) term can be eliminated by the proper

choice of gauge, which redefines b, c, and d.

In the second case, we enter the singularity at an + zn and exit through ☞an+2 ☞ zn+2 after two

steps, while the singularity bn + zn exits through ☞cn+2 ☞ zn+2 and the singularities cn + zn, dn + zn

exit through ☞dn+1 ☞ zn+1, ☞bn+1 ☞ zn+1 after one step. We have thus the constraints an + an+2 = 2zn+1,

bn + cn+2 = 2zn+1, cn + dn+1 = 0, dn + bn+1 = 0. This means that cn = ☞dn+1 and bn = ☞dn☞1 while the

second constraint can be rewritten as dn+2 + dn☞2 + 2zn = 0. Using (9) and an appropriate gauge, we

find an = 2(zn+1 ☞ zn + zn☞1) + dn+1 ☞ dn + dn☞1 and a second equation for dn and zn only

dn+1 − 2dn + dn−1 = 2(zn+2 − zn+1 − zn−1 + zn−2). (15)

Using the two equations relating dn to zn, we find finally

zn+4 − zn+3 − zn−3 + zn−4 = 0. (16)

The latter can be integrated to zn = αn + β + φ7(n). Solving Equation (15) we find dn =−zn + 3φ7(n)

+ 2(φ7(n + 1) + φ7(n − 1)).

In the third case, the singularities an + zn, bn + zn exit through ☞bn+2 ☞ zn+2, ☞cn+2 ☞ zn+2 after

two steps, while the singularities cn + zn, dn + zn exit through ☞an+1 ☞ zn+1, ☞dn+1 ☞ zn+1 after one

step. We have thus an + bn+2 = 2zn+1, bn + cn+2 = 2zn+1, cn + an+1 = 0, dn + dn+1 = 0. We find readily

that an = ☞cn☞1 and bn = 2zn☞1 + cn☞3. This gives two equations for cn and zn and eliminating c we

find for zn the equation

zn+4 − zn+3 − zn+2 + zn+1 + zn − zn−1 − zn−2 + zn−3 = 0 (17)

the solution of which, up to a gauge, is zn = αn + β + χ8(n) and find for cn the expression

cn = 2α + φ2(n) + 2(χ8(n − 1) − χ8(n + 2)).

The fourth and last case again has singularities an + zn, bn + zn exiting through ☞bn+2 ☞ zn+2,

☞cn+2 ☞ zn+2 after two steps but now the singularities cn + zn, dn + zn exit through ☞dn+1 ☞ zn+1, ☞an+1

☞ zn+1 after one step. We have now the constraints an + bn+2 = 2zn+1, bn + cn+2 = 2zn+1, cn + dn+1

= 0, dn + an+1 = 0. Thus an = ☞dn☞1, cn = ☞dn+1 and bn = 2zn+1 + dn+3 = 2zn☞1 + dn☞3. Using (9) we

find for zn the equation

zn+4 − zn+2 − zn−1 + zn−3 = 0 (18)

the solution of which, with an appropriate gauge, is zn = 3αn + β + φ5(n) and we find for dn the

expression dn =−2αn + γ + φ2(n) − 2φ5(n + 2) − 2φ5(n − 2).

B. Double simplification

Next we consider the case of two simplifications, which is the maximum possible here. Again

in order to minimise the use of upper indices, we use the letters a, b for the remaining κi. Studying

the constraint of the confinement of the singularity pattern {∞,∞}, we find

an + bn + an+1 + bn+1 = 2(zn+2 + zn+1 + zn + zn−1). (19)

Following the same logic as in the case of a single simplification above, we find the constraint

M + N = 6 and three distinct integrable classes, corresponding to (M, N) = (5, 1), (4, 2), (3, 3).

Class (M, N) = (5, 1)
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Here we enter the singularity at an + zn and exit through ☞an+5 ☞ zn+5 after 5 steps, while the

singularity bn + zn exits through ☞bn+1 ☞ zn+1 in just one step. This leads to an + an+5 = 2(zn+4 + zn+3

+ zn+2 + zn+1) and bn + bn+1 = 0. Using (19) together with the constraints for an, bn, we obtain for zn

the equation

zn+6 − zn+3 − zn+2 + zn−1 = 0. (20)

Its solution is zn = αn + β + φ3(n) + φ4(n) and since bn = φ2(n) we can obtain an as an = 2(zn+1

+ zn☞1) ☞ bn.

Class (M, N) = (4, 2)

In this class, we exit the singularity an + zn at ☞an+4 ☞ zn+4 after four steps, while the singularity

bn + zn exits through ☞bn+2 ☞ zn+2 in two steps. We have now an + an+4 = 2(zn+3 + zn+2 + zn+1) and

bn + bn+2 = 2zn+1. Combining these constraints with (19), we find the equation for zn,

zn+5 + zn+4 − zn+2 − zn+1 − zn − zn−1 + zn−3 + zn−4 = 0. (21)

The solution is zn = αn + β + φ3(n) + φ5(n), up to an unimportant gauge, while an, bn are given by

an = zn+4 + zn+3 ☞ zn + zn☞3 + zn☞4 and bn = ☞zn+3 + zn+1 + zn + zn☞1 ☞ zn☞3.

Class (M, N) = (3, 3)

Here both singularities an + zn, bn + zn exit after three steps through ☞an+3 ☞ zn+3, ☞bn+3 ☞ zn+3.

We have an + an+3 = 2(zn+2 + zn+1) and bn + bn+3 = 2(zn+2 + zn+1) which means that bn = an +2χ6(n).

We obtain for zn the equation

zn+4 − zn+2 − zn+1 + zn−1 = 0 (22)

the solution of which, up to gauge, is zn = αn + β + φ3(n) while an is given by an = zn+1 + zn−1

+ φ2(n) − χ6(n).

C. Linearisable cases

Having exhausted the cases obtained from (5) by simplification, we proceed now to a second

limit taking another pair of κi to infinity in which case we have just a ratio of four products at the

right-hand side. The corresponding form (1) is now

(xn − xn+1 + (zn + zn+1)2)(xn − xn−1 + (zn + zn−1)2) + 4xn(zn + zn+1)(zn + zn−1)

(zn + zn−1)(xn − xn+1 + (zn + zn+1)2) + (zn + zn+1)(xn − xn−1 + (zn + zn−1)2)
= 2

x2
n + σ2xn + σ4

σ1xn + σ3

,

(23)

where, again, the symmetric functions are constructed using only the four remaining κ. The con-

straints of the parameters κi remain the same, i.e., they change sign at each iteration the singularity.

It turns out that the resulting equation is linearisable and thus it is not necessary to implement addi-

tional confinement constraints.14 As a consequence, the singularity ξn =∞ need not confine and

thus zn remains an arbitrary function of n. Equation (23) was first identified in Refs. 15 and 16 and

its detailed integration was given in Ref. 17 (Equation (83) in that reference). Since the right-hand

side of (23) is a ratio of a quadratic over a linear polynomial, a simplification is possible, lead-

ing to a linear right-hand side. Again a linearisable equation is obtained. We give directly its final

form

(xn − xn+1 + (zn + zn+1)2)(xn − xn−1 + (zn + zn−1)2) + 4xn(zn + zn+1)(zn + zn−1)

(zn + zn−1)(xn − xn+1 + (zn + zn+1)2) + (zn + zn+1)(xn − xn−1 + (zn + zn−1)2)

= ζn+1 + 2ζn + ζn−1 +
xn + a + b(−1)n

ζn+1 + 2ζn + ζn−1

, (24)

where ζn is a free function of n and zn = ζn+1 + ζn−1. The detailed integration of (24) was given in

Ref. 17 (Equation (90) in that reference). Both Equations (23) and (24) belong to the class that we

have dubbed linearisable equations of the third kind.

The final limit consists in taking another pair of κi to infinity. We find readily

(xn − xn+1 + (zn + zn+1)2)(xn − xn−1 + (zn + zn−1)2) + 4xn(zn + zn+1)(zn + zn−1)

(zn + zn−1)(xn − xn+1 + (zn + zn+1)2) + (zn + zn+1)(xn − xn−1 + (zn + zn−1)2)
= zn +

xn + a

zn

, (25)
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where a is constant and zn is again a free function of n. It was first identified in Ref. 16 where it was

shown that it is linearisable of Gambier type. Its transformation to the “standard” Gambier equation

(xn + xn+1)(xn + xn−1)= fn(x2
n − 1), where f n is a free function of n, was also presented in Ref. 16.

IV. A SECOND SERIES OF LIMITS

In Sec. III, we have considered limits which can be obtained systematically from the general form

of (3) by taking an even number of the parameters κ to infinity. This resulted always to equations of

the form (3) where the right-hand side was a ratio of products of an even number of terms. However

the possibility of taking an odd (but greater than 1) number of κ to infinity while ensuring that their

sum is finite should also be considered. The simplest case is when three of the κ are chosen in this

way in which case Equation (3) becomes

xn+1 − (ξn − zn − zn+1)2

xn+1 − (ξn + zn + zn+1)2

xn−1 − (ξn − zn − zn−1)2

xn−1 − (ξn + zn + zn−1)2
=

∏5
i=1

(κin + zn − ξn)
∏5

i=1
(κin + zn + ξn)

. (26)

Written in the form of (1) this equation becomes

(xn − xn+1 + (zn + zn+1)2)(xn − xn−1 + (zn + zn−1)2) + 4xn(zn + zn+1)(zn + zn−1)

(zn + zn−1)(xn − xn+1 + (zn + zn+1)2) + (zn + zn+1)(xn − xn−1 + (zn + zn−1)2)
= 2
σ1x2

n + σ3xn + σ5

x2
n + σ2xn + σ4

,

(27)

where σk are now the elementary symmetric functions of the quantities zn + κ
i
n, constructed now on

the 5 remaining κi, the latter obeying again the condition κi
n+1
+ κin = 0. The singularity at when ξn

becomes infinite must also be considered resulting to a minimal singularity pattern {∞,∞}. Working

in the gauge where
∑5

i=1
κin = 0 and find the confinement condition

zn+2 − zn+1 − zn + zn−1 = 0 (28)

with solution zn = αn + β + γ(−1)n. Thus Equation (26), or equivalently (27), has exactly 6 degrees

of freedom and it is associated with the affine Weyl group E
(1)

6
(and the same is true for all equations

obtained below by deautonomisation after simplifications).

A. A single simplification

Just as in Section III we start by considering a single simplification in the right-hand side of (26).

Again we introduce the letters a, b, c for the remaining parameters κi. The confinement constraint

for the singularity {∞,∞} is simply

an + bn + cn + an+1 + bn+1 + cn+1 = 2(zn+2 + zn−1). (29)

The singularity analysis is performed, schematically, as before. We assume that the singularities of

the form κi + z are exited through −κj − z after M, N, or P steps. This leads to the constraint M + N

+ P = 5 which means that two distinct integrable classes do exist with (M, N, P) = (3, 1, 1), (2, 2, 1).

Class (M, N, P) = (3, 1, 1)

Two distinct cases exist here.

In the first one, we enter the singularity with ξn = an + zn and exit through ☞an+3 ☞ zn+3, i.e., after

three steps, while the remaining singularities entering through bn + zn, cn + zn exit through ☞bn+1

☞ zn+1, ☞cn+1 ☞ zn+1 after one step. We find the constraints an + an+3 = 2(zn+1 + zn+2), bn + bn+1 = 0,

and cn + cn+1 = 0. We obtain thus for zn the equation

zn+4 − zn+3 − zn + zn−1 = 0 (30)

with solution zn = αn + β + φ4(n) and an = 2(zn+1 ☞ zn + zn☞1).

In the second case, we enter the singularity at an + zn and exit by ☞bn+3 ☞ zn+3 after three steps

while the singularities entering through bn + zn, cn + zn exit through ☞cn+1 ☞ zn+1, ☞an+1 ☞ zn+1 after

one step. The confinement constraints become an + bn+3 = 2(zn+1 + zn+2), bn + cn+1 = 0, and cn + an+1

= 0. Combining these constraints with (29) we find for zn the equation

zn+6 − zn+5 − zn + zn−1 = 0 (31)
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the solution of which is zn = αn + β + φ6(n), and for bn the expression bn = zn+4 + zn☞2.

Class (M, N, P) = (2, 2, 1)

Again two distinct cases exist here.

In the first case, we enter the singularities an + zn, bn + zn and exit through ☞an+2 ☞ zn+2, ☞bn+2

☞ zn+2 after two steps while cn + zn exits through ☞cn+1 ☞ zn+1 after one step. The confinement

constraints are now an + an+2 = 2zn+1, bn + bn+2 = 2zn+1, and cn + cn+1 = 0. Combining these

constraints with (29), we find to zn the equation

zn+4 − zn+2 − zn+1 + zn−1 = 0 (32)

the solution of which, up to a gauge, is zn = αn + β + φ3(n). For the remaining parameters, we find

an = zn+1 + zn−1 − zn + χ4(n) and bn = zn+1 + zn−1 − zn − χ4(n).

In the second case, we enter the singularities an + zn, bn + zn and exit through ☞bn+2 ☞ zn+2,

☞cn+2 ☞ zn+2 after two steps while cn + zn exits through ☞an+1 ☞ zn+1 after one step. The constraints

are now an + bn+2 = 2zn+1, bn + cn+2 = 2zn+1, and cn + an+1 = 0. We find for zn the equation

zn+6 − zn+5 − zn+4 + zn+3 + zn+2 − zn+1 − zn + zn−1 = 0 (33)

with solution (up to a gauge) zn = αn+ β+ χ8(n). We have for bn the expression bn = zn+4+zn−4+φ2(n),

whereupon an, cn can be computed from the confinement constraints.

B. Double simplification

In the case of a double, i.e., maximal, simplification, we have necessarily M = 5. Here we exit

the singularity an + zn through ☞an+5 ☞ zn+5, i.e., after 5 steps, the confinement constraint being an

+ an+5 = 2(zn+4 + zn+3 + zn+2 + zn+1). On the other hand from the confinement of the singularity

{∞,∞}, we have an + an+1 = 2(zn+2 + zn+1 + zn + zn☞1) or, by the proper gauge choice, an = 2(zn+1

+ zn☞1). We obtain thus the equation for zn,

zn+6 − zn+3 − zn+2 + zn−1 = 0 (34)

the solution of which is zn = αn + β + φ3(n) + φ4(n).

C. Linearisable cases

Next we take a further limit by assuming that 5 of the κi are infinite. The resulting equation in

form (1) is now

(xn − xn+1 + (zn + zn+1)2)(xn − xn−1 + (zn + zn−1)2) + 4xn(zn + zn+1)(zn + zn−1)

(zn + zn−1)(xn − xn+1 + (zn + zn+1)2) + (zn + zn+1)(xn − xn−1 + (zn + zn−1)2)
= 2
σ1xn + σ3

xn + σ2

,

(35)

where, again, the symmetric functions are constructed using only the three remaining κi (which obey

always the condition κi
n+1
+ κin = 0). Here we are in the presence of a linearisable equation, which in

the gauge
∑3

i=1
κin = 0 can be written in a more convenient form as

(xn − xn+1 + (zn + zn+1)2)(xn − xn−1 + (zn + zn−1)2) + 4xn(zn + zn+1)(zn + zn−1)

(zn + zn−1)(xn − xn+1 + (zn + zn+1)2) + (zn + zn+1)(xn − xn−1 + (zn + zn−1)2)

=

6znxn + 2z3
n + 2azn + b(−1)n

xn + 3z2
n + a

. (36)

This is an equation which has not been previously encountered. A study of its degree growth suggests

that (36) belongs to the family of linearisable equations of third kind. The linearisation of the latter

type equations can be obtained by noticing that their discrete derivative with respect to some constant

has a common factor with the discrete derivative of a linear equation with respect to some other

constant. It turns out that this is indeed the case for (36). We find that when we take the discrete

derivative of (36) with respect to b, i.e., eliminating b between (36) and its up-shift, the resulting

third-order mapping has a common factor with the discrete derivative of the linear equation

(k(−1)n − zn)

(

xn+1 − xn

zn+1 + zn

+

xn−1 − xn

zn−1 + zn

− zn+1 − 2zn − zn−1

)

− (xn + 3z2
n + a)= 0 (37)
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with respect to k. Following the procedure detailed in Ref. 18, it is possible to construct the solution

of (36) starting from the solution of the linear Equation (37). The way to do this is quite simple. One

starts from an initial condition where two x’s are given, say xn☞1 and xn. Using (36) one obtains xn+1

which allows one to compute the value of k in (37). It suffices now to solve the linear equation in

order to obtain xn for all n, constructing thus the solution of (36).

Since the right-hand side of (36) is homographic, a simplification is possible, leading to a right-

hand side equal simply to 6z. Once the equation is simplified, we proceed to its deautonomisation.

Requiring that the degree growth of the iterates be linear leads to constraints which can best be

expressed if we introduce an auxiliary function qn, which is an arbitrary function of n. We find

thus

(xn − xn+1 + (zn + zn+1)2)(xn − xn−1 + (zn + zn−1)2) + 4xn(zn + zn+1)(zn + zn−1)

(zn + zn−1)(xn − xn+1 + (zn + zn+1)2) + (zn + zn+1)(xn − xn−1 + (zn + zn−1)2)
= 2(qn+1 + qn + qn−1),

(38)

where zn is related to qn through zn = qn+1 + qn☞1 ☞ qn. We can linearise (38) just as we did in the

case of (36). We introduce the linear equation

(k(−1)n
+ qn−1)

(

xn+1 − xn

zn+1 + zn

− zn+1 − zn

)

+ (k(−1)n
+ qn+1)

(

xn−1 − xn

zn−1 + zn

− zn−1 − zn

)

+ xn − (qn+1 + qn − qn−1)(qn−1 + qn − qn+1)= 0 (39)

and take its discrete derivative with respect to k obtaining a third order mapping for xn. Since (38)

does not possess any visible parameter which would have allowed us to take a discrete derivative,

we simply obtain xn☞1 and xn+2 from (38) and its up-shift respectively, expressed in terms of xn+1,

xn and show that the third-order equation obtained from (39) is identically satisfied. This allows us

to construct the solution of (38) once the solution of the linear Equation (39) is known. However it is

interesting at this point to propose a slightly different method of linearisation. We start by introducing

the Miura transformation

xn =
1

4
(yn + 4qn+1)(yn−1 − 4qn−1) + (qn+1 + qn + qn−1)2, (40a)

yn =
xn+1 − xn

zn+1 + zn

− qn+2 − 2qn+1 + 2qn + qn−1 (40b)

and obtain from (38) the following equation for yn:

yn+1 = yn−1

yn + 4qn+1

yn − 4qn

. (41)

This is an equation first obtained in Ref. 19 where it was shown that it is linearisable and belongs

to the family of Gambier mappings. The linearisation of the non-autonomous case was given in

Ref. 20.

The last equation is obtained by assuming that 7 among the κi go to infinity. The resulting

equation is then

(xn − xn+1 + (zn + zn+1)2)(xn − xn−1 + (zn + zn−1)2) + 4xn(zn + zn+1)(zn + zn−1)

(zn + zn−1)(xn − xn+1 + (zn + zn+1)2) + (zn + zn+1)(xn − xn−1 + (zn + zn−1)2)
= 2(zn + κ

1
n). (42)

However since κ1
n+1
+ κ1n = 0 and on the left-hand side zn appears on through sums zn + zn±1, the

parameter κ1 can be absorbed into zn which means that, without loss of generality, we can put κ1 = 0

in the right-hand side of (42). Next we introduce the ancillary variable yn through yn = (−1)n(xn − z2
n)

and find for yn the equation

(yn+1 + yn)(yn + yn−1)= (−1)nyn(zn+1 + zn)(zn + zn−1). (43)

This is a linearisable equation of Gambier type identified in Ref. 15. Its integration was presented in

Ref. 21.
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V. CONCLUSIONS

The exploration of the domain of discrete Painlevé equations associated with the affine Weyl

group E
(1)

8
using the deautonomisation method was first made possible through the introduction of

what we called the trihomographic representation. The advantage of the latter resided in the fact

that it was well adapted to singularity analysis. However when it came to studying the general E
(1)

8
-

related equation, the trihomographic representation started showing its limit, leading to prohibitively

cumbersome calculations. This led us to the proposal of a new representation which, using an ancillary

dependent variable, allows us to write the E
(1)

8
discrete Painlevé equations in a factorised form perfectly

suitable for singularity analysis. The usefulness of this method was materialised in Ref. 12 where

we derived the E
(1)

8
-related equations obtained from the general one through a process of successive

simplifications.

In this paper, we decided to proceed in a different direction and study the equations obtained

from the general E
(1)

8
one by taking some of the parameters to infinity. This limiting procedure led

us to the equations that are not associated with E
(1)

8
any more, but rather with groups lying lower

in the E
(1)

8
degeneration cascade. Thus in Section III we obtained equations associated with E

(1)

7

while in Section IV the equations obtained were associated with E
(1)

6
. All discrete Painlevé equations

obtained in this paper are new with a minor exception concerning two equations, namely, the first

case of the class (2,2,1,1) and the single case of the class (3,3), for which we have derived in Ref. 16

a non-autonomous form, limiting ourselves to the secular dependence of the parameters (Equations

(170) and (51) in that paper). Here we have extended that result obtaining the full freedom of the

parameters. Implementing a second or a third limit to (1) led to linearisable equations. Typically

the equations obtained after a second limit belonged to the class of linearisable mappings of the

third kind, according to our nomenclature, while a third limit resulted in equations of Gambier type.

The third-kind linearisable equations obtained in Section IV were never derived before and thus we

confirmed their linearisability by showing how they can be effectively linearised.

While the present paper focused on the equations of additive type, extending the results to

multiplicative equations is tractable as explained in Ref. 22. (It goes without saying that none of the

results presented here can be extended to the elliptic case, the latter being exclusively associated with

E
(1)

8
). Moreover our paper focused on mappings written as a single equation involving one dependent

variable, i.e., “symmetric” systems in the QRT23 terminology. It would be interesting, in the light

of our results in Refs. 21 and 24, to study the case of QRT asymmetric forms, in particular the ones

we have dubbed “strongly” asymmetric. While this is definitely an interesting future project, it will

have to wait till the analogous studies for equations associated with the affine Weyl group E
(1)

7
are

completed.
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