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Abstract 

Under the concept of "Industry 4.0", production processes will be pushed to be increasingly interconnected, 
information based on a real time basis and, necessarily, much more efficient. In this context, capacity optimization 
goes beyond the traditional aim of capacity maximization, contributing also for organization’s profitability and value. 
Indeed, lean management and continuous improvement approaches suggest capacity optimization instead of 
maximization. The study of capacity optimization and costing models is an important research topic that deserves 
contributions from both the practical and theoretical perspectives. This paper presents and discusses a mathematical 
model for capacity management based on different costing models (ABC and TDABC). A generic model has been 
developed and it was used to analyze idle capacity and to design strategies towards the maximization of organization’s 
value. The trade-off capacity maximization vs operational efficiency is highlighted and it is shown that capacity 
optimization might hide operational inefficiency.  
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1. Introduction 

The cost of idle capacity is a fundamental information for companies and their management of extreme importance 
in modern production systems. In general, it is defined as unused capacity or production potential and can be measured 
in several ways: tons of production, available hours of manufacturing, etc. The management of the idle capacity 
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1. Introduction 

Due to ever growing global competition, the situation has become mandatory for all business firms for 
maximization of efficiency in operations, and optimum use of resources. Further, the focus on customer and customer 
service has emerged as the new challenging task. In this context, the necessity of aligning the role and concept of 
supply chain management (SCM) with business strategy is to be appreciated. Academicians as well as research 
practitioners are looking at SCM as a prime requisite for firms to compete on cost, quality, delivery, and flexibility. 
Also, SCM has acquired immense attention in the sphere of academic and industry environment. 

Across the liberalized business world, the recent years are seeing a marked shift towards customization and 
globalization. Firms across the world are meeting the increased competition by offering a large variety of products at 
lower costs while delivering them quickly. The process of exercising effective control mechanism for the efficient and 
effective inventory management has become a daunting task for industries. To overcome all these challenges, several 
articles reported coordination mechanisms, establishing coordination amongst the members of the chain for effective 
inventory and shipment decisions.  

The remainder of the work of this paper is divided into four sections. A detailed discussion on the review of 
literature is carried out in section 2. Section 3 deals with the suitable features and assumptions framed, notation used 
and the mathematical model formulation with propositions and proofs. In section 4, a detailed discussion on the 
numerical illustration of the model and the sensitivity analysis is carried out. Finally, the concluding remarks are 
discussed in section 5. 

2. Literature Review 

SC coordination mechanism is a strategy attained amongst the members of the SC to optimize total relevant cost 
or net revenue of the SC. From the literature review, several mathematical models report the SC coordination 
mechanisms with wide variations and assumptions. Majority of the researchers focus their attention in developing 
buyer-vendor coordination models. From the recent past, three level supply chain models constitute the good volume 
of the literature.  

In particular, Xiao et al. [1] discussed revenue sharing contract as a coordination mechanism in a two-level supply 
chain with a single-manufacturer and single-retailer. Chen and Wei [2] examined a two echelon inventory model under 
vendor managed inventory with deteriorating items for optimal decisions like revenue sharing allocation, retail and 
wholesale price, and replenishment quantity. Cao [3] proposed mathematical models for optimal pricing decisions and 
production strategies under revenue sharing contract. Tang and Kouvelis [4] presented a model for joint inventory 
decision making policy with payback period and revenue sharing contract as a coordination mechanism. 

Articles, demonstrating information sharing as the SC coordination mechanism include   Huang and Gangopadhyay 
[5], Sahin and Robinson [6], Hsu et al. [7], Huang et al. [8], Ogier et al. [9], Jonrinaldi et al. [10], etc. Huang et al. [8] 
studied the problem of determining the optimal degree of information sharing to maximize the profit of a two-echelon 
supply chain. More recently, Jonrinaldi et al. [10] proposed an integrated model for production and inventory cycles 
in a closed supply chain of new and reusable bottling packages.  

Further, as it is evident from literature, product demand is the vital component for inventory decision making 
policy. Retail pricing is an important factor in optimizing the revenue/cost of the supply chain [11]. Nagaraju et al. 
[12] presented a two-echelon inventory model to analyse the simultaneous effect of reduced wholesale price index 
and increased consumer price index on gross profit of the SC. In the recent past, articles reporting the inventory and 
shipment decisions under price dependent demand variations include Kumar et al. [13,14], Nagaraju et al. [15,16], Lu 
and Zhou, [17], Kuntian et al. [18], Nagaraju et al. [19]. More recently, Nagaraju et al. [19] studied a two-echelon 
inventory model and demonstrated the optimality of inventory and shipment decisions for optimal net revenue under 
nonlinear price dependent demand.  

Further, many of the researchers have developed multi-echelon inventory models for SC coordination under stock 
dependent demand. Publications reporting SC coordination under stock dependent demand include Chung et al. [20], 
Yang et al. [21], Chakraborty et al. [22], Mashud et al. [23], etc. In particular, Yang et al. [21] demonstrated the 
process of coordination mechanism for a two-echelon inventory system with a single-manufacturer and a single-
retailer under the phenomena of stock-dependent demand rate and trade credit option. More recently, Mashud et al. 
[23] studied an inventory model with the consideration of stock dependent demand, price, partially backlogged 
shortages and two constant deterioration rates.   
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Unlike all the aforementioned papers, this work proposes a joint three echelon inventory model for optimal net 
revenue of the retailer, distributor, manufacturer and supply chain. In the proposed model, product demand is assumed 
as stock dependent and the production rate is finite. Ordering/setup costs, carrying costs and transportation costs are 
considered for model development. Replenishment quantity at the retailer, the number of shipments from the 
manufacturer to distributor and from distributor to retailer are considered as decision variables. With the help of case 
study data, the model is solved using a computer program written in MATLAB. Through sensitivity analysis, the 
model is illustrated for managerial decision making perspective.  

3. Mathematical Model Development 

3.1. Assumptions 

Product demand is linearly decreasing function of stock 
Production rate is finite 
Shipment quantity of each shipment from manufacturer to distributor is same 
Shipment quantity of each shipment from distributor to retailer is same 
Negligible Lead time 

3.2. Notations 

mq  Quantity of the product produced at the manufacturer in each cycle time ( T ) 

1  Number of shipments delivered from manufacturer to distributor in a cycle time ( T ) 

Dq  Quantity of the product delivered from manufacturer to distributor in each shipment 

2  Number of shipments in which Dq is delivered from distributor to retailer  

Rq  Quantity of the product delivered from distributor to retailer in each shipment 

mC  Cost of the product incurred at the manufacturer node (in Rs./unit) 

DC  Cost of the product incurred at the distributor node (in Rs./unit ) 

RC  Cost of the product incurred at the retailer node (in Rs./unit) 

m  Transportation cost incurred to the manufacturer to deliver a shipment to distributor (in Rs./shipment) 

1D  Transportation cost incurred to the distributor to receive a shipment from the manufacturer (in Rs./shipment) 

2D  Transportation cost incurred to the distributor to deliver a shipment to retailer (in Rs./shipment) 

R  Transportation cost incurred to the retailer receive a shipment from distributor (in Rs./shipment) 
D  Annual demand rate of the product ( RD a bq  , where 0, 0b a  ) 

 1 2, ,m Rq    Annual net revenue realised at the manufacturer node (in Rs.) 

 1 2, ,D Rq    Annual net revenue realized at the distributor node (in Rs. ) 

 1 2, ,R Rq    Annual net revenue realized at the retailer node (in Rs.) 

 1 2, ,S Rq    Annual net revenue of the supply chain (in Rs.) 

3.3. Mathematical model formulation 

Annual net revenue of the retailer is obtained by subtracting annual ordering, transportation and carrying costs from 
the annual gross revenue and is expressed as 

      
1 2

1 2

, ,
2

R R R
R R R R R R R

R
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                                                                                       (1) 

Annual net revenue of the distributor is obtained by subtracting annual ordering, transportation and carrying costs 
from the annual gross revenue and is expressed as 
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Annual net revenue of the manufacturer is obtained by subtracting annual setup, transportation and carrying costs 
from the annual gross revenue and is expressed as 

 
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                                     (3) 

The annual net revenue of the supply chain is obtained by adding the annual net revenue of the retailer, distributor and 
manufacturer and is expressed as 
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3.4. Optimality Criteria 

For the known values of 1  and 2 , the necessary condition for maximizing the annual net revenue of the supply 

chain is obtained by carrying the first order partial differentiation of the equation (4) with respect to Rq and is equated 
to zero as shown in equation (5). 
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With further simplification of equation (6), the following expression is obtained. 
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From equation (7), optimal value for Rq is obtained. 
For the known values of 1  and 2 , the sufficient condition for maximizing the annual net revenue of the supply 

chain is obtained by carrying the second order partial differentiation of the equation (4) with respect to Rq as shown 
below. 
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2 2 0                                                                                                                                       (11) 

The annual net revenue of the supply chain is concave in terms of Rq as long as the in equalities shown in equations 
(10) and (11) are satisfied and the second order partial derivative becomes less than zero. 
Similarly, for the known value of Rq , the annual net revenue of the supply chain is concave for the optimal values of 
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Unlike all the aforementioned papers, this work proposes a joint three echelon inventory model for optimal net 
revenue of the retailer, distributor, manufacturer and supply chain. In the proposed model, product demand is assumed 
as stock dependent and the production rate is finite. Ordering/setup costs, carrying costs and transportation costs are 
considered for model development. Replenishment quantity at the retailer, the number of shipments from the 
manufacturer to distributor and from distributor to retailer are considered as decision variables. With the help of case 
study data, the model is solved using a computer program written in MATLAB. Through sensitivity analysis, the 
model is illustrated for managerial decision making perspective.  

3. Mathematical Model Development 

3.1. Assumptions 

Product demand is linearly decreasing function of stock 
Production rate is finite 
Shipment quantity of each shipment from manufacturer to distributor is same 
Shipment quantity of each shipment from distributor to retailer is same 
Negligible Lead time 

3.2. Notations 

mq  Quantity of the product produced at the manufacturer in each cycle time ( T ) 

1  Number of shipments delivered from manufacturer to distributor in a cycle time ( T ) 

Dq  Quantity of the product delivered from manufacturer to distributor in each shipment 

2  Number of shipments in which Dq is delivered from distributor to retailer  

Rq  Quantity of the product delivered from distributor to retailer in each shipment 

mC  Cost of the product incurred at the manufacturer node (in Rs./unit) 

DC  Cost of the product incurred at the distributor node (in Rs./unit ) 

RC  Cost of the product incurred at the retailer node (in Rs./unit) 

m  Transportation cost incurred to the manufacturer to deliver a shipment to distributor (in Rs./shipment) 

1D  Transportation cost incurred to the distributor to receive a shipment from the manufacturer (in Rs./shipment) 

2D  Transportation cost incurred to the distributor to deliver a shipment to retailer (in Rs./shipment) 

R  Transportation cost incurred to the retailer receive a shipment from distributor (in Rs./shipment) 
D  Annual demand rate of the product ( RD a bq  , where 0, 0b a  ) 

 1 2, ,m Rq    Annual net revenue realised at the manufacturer node (in Rs.) 

 1 2, ,D Rq    Annual net revenue realized at the distributor node (in Rs. ) 

 1 2, ,R Rq    Annual net revenue realized at the retailer node (in Rs.) 

 1 2, ,S Rq    Annual net revenue of the supply chain (in Rs.) 

3.3. Mathematical model formulation 

Annual net revenue of the retailer is obtained by subtracting annual ordering, transportation and carrying costs from 
the annual gross revenue and is expressed as 
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Annual net revenue of the distributor is obtained by subtracting annual ordering, transportation and carrying costs 
from the annual gross revenue and is expressed as 
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Annual net revenue of the manufacturer is obtained by subtracting annual setup, transportation and carrying costs 
from the annual gross revenue and is expressed as 
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The annual net revenue of the supply chain is obtained by adding the annual net revenue of the retailer, distributor and 
manufacturer and is expressed as 
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3.4. Optimality Criteria 

For the known values of 1  and 2 , the necessary condition for maximizing the annual net revenue of the supply 

chain is obtained by carrying the first order partial differentiation of the equation (4) with respect to Rq and is equated 
to zero as shown in equation (5). 
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With further simplification of equation (6), the following expression is obtained. 
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From equation (7), optimal value for Rq is obtained. 
For the known values of 1  and 2 , the sufficient condition for maximizing the annual net revenue of the supply 

chain is obtained by carrying the second order partial differentiation of the equation (4) with respect to Rq as shown 
below. 
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2 2 0                                                                                                                                       (11) 

The annual net revenue of the supply chain is concave in terms of Rq as long as the in equalities shown in equations 
(10) and (11) are satisfied and the second order partial derivative becomes less than zero. 
Similarly, for the known value of Rq , the annual net revenue of the supply chain is concave for the optimal values of 
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1  and 2 by satisfying the conditions derived as shown in in equality conditions (12) and (13). 
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4. Numerical Illustration 

In this section, inventory replenishment policies have been demonstrated for a joint three echelon SC with finite 
production rate under stock dependent demand. To illustrate the mechanism of inventory control, a numerical example 
is devised based on a data collected from XYZ manufacturing firm.  

Table 1: Optimal Values of Decision Variables & Objective Function 

Parameter 
Coordinated Model under Stock Dependent Demand 

( a  = 5000, b = 5, P  = 6000) 

Replenishment quantity at retailer, *
Rq  52 

Number of  shipments from distributor to retailer, *
1  6 

Replenishment batch size at the distributor, *
Dq  312 

Number of shipments from manufacturer to distributor, *
2  5 

Production/replenishment batch size at the manufacturer, *
mq  1560 

Annual net revenue of the retailer, *
R  96527.1 

Annual net revenue of the distributor, *
D  148293.5 

Annual net revenue of the manufacturer, *
m  537081.2 

Annual net revenue of the supply chain, *
S  781901.8 

The values of the parameters associated with inventory cost: mA  = Rs. 1600/- per setup, DA  = Rs. 400/- per order, 

RA  = Rs. 400/- per order, mC  = Rs. 300/- per unit, DC  = Rs. 420/- per unit, RC  = Rs. 462/- per unit,  RP  = Rs. 485 
per unit, m  = Rs. 864 per shipment, 1D  = Rs. 216 per shipment, 2D  = Rs. 400 per shipment, R  = Rs. 100 per 
shipment, a  = 5000, b = 5, P  = 6000, k = 0.18 in Rs./Re./year. With the help of this case study data, the model is 
solved and the results are tabulated in Table 1.  

In addition, the sensitivity analysis is carried out in order to study the variation in optimality of decision parameters 
and objective function with respect to variation in model parameters. The values of the model parameters are varied 
at some fixed proportionate ratio and the results are tabulated in Table 2. From this table it is apparent that significant 
variation is observed in the optimality of inventory and shipment decisions with respect to the variation in model 
parameters. Also, the variation in optimality of annual net revenues of the retailer, distributor, manufacturer and SC 
is significant. However, there is no variation in the optimality of inventory and shipment decisions as well as in annual 
net revenue of the manufacturer with respect to the variation in unit cost of the retailer.  

5. Conclusions 

In this research work, a mathematical model is developed for a joint three-level supply chain with a single 
manufacturer, single distributor a single retailer. In the proposed mathematical model, the production rate is assumed 
as finite and the demand is expressed in terms stock level. Ordering/setup costs, carrying costs and transportation costs 
are considered for model development. Optimal inventory and shipment decisions are considered as decision 
variables.  

From the findings of the research, it is concluded that annual net revenue (ANR) of the coordinated SC is concave 
with respect to shipment frequency (SF) from distributor to retailer and retailer’s replenishment quantity. ANR is 
concave with respect to SF from manufacturer to distributor and retailer’s replenishment quantity. Also, ANR is 
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concave with respect to SF from manufacturer to distributor and from distributor to retailer. The variation in optimality 
of inventory and shipment decisions is significant with respect to the variation in model parameters. The variation in 
the optimality of ANR of the retailer, distributor, manufacturer and SC is significant. However, no variation is found 
in the optimality of inventory and shipment decisions as well as in ANR of the manufacturer with respect to the 
variation in unit cost of the retailer. 

Table 2: Sensitivity Analysis 

Parameter (in %) *
Rq  *

1  *
Dq  *

2  *
mq  *

R  *
D  *

m  *
S  

% Variation  

in *
S   

mA  

40  52.0 6 312.0 4 1248.0 96223.2 147989.7 540065.6 784278.5 100.30 
20  53.0 6 318.0 4 1272.0 96278.3 148411.9 538363.9 783054.1 100.15 

0.0  52.0 6 312.0 5 1560.0 96527.1 148293.5 537081.2 781901.8 100.00 
20  52.0 6 312.0 5 1560.0 96527.1 148293.5 536108.9 780929.5 99.88 
40  53.0 6 318.0 5 1590.0 96576.1 148709.7 534647.8 779933.6 99.75 

DA  

40  53.0 6 318.0 4 1272.0 96278.3 149007.5 537172.7 782458.5 100.07 
20  53.0 6 318.0 4 1272.0 96278.3 148709.7 537172.7 782160.7 100.03 

0.0  52.0 6 312.0 5 1560.0 96527.1 148293.5 537081.2 781901.8 100.00 
20  52.0 6 312.0 5 1560.0 96527.1 148050.5 537081.2 781658.7 99.97 
40  52.0 6 312.0 5 1560.0 96527.1 147807.4 537081.2 781415.6 99.94 

RA  

40  53.0 6 318.0 4 1272.0 96873.9 148411.9 537172.7 782458.5 100.07 
20  53.0 6 318.0 4 1272.0 96576.1 148411.9 537172.7 782160.7 100.03 

0.0  52.0 6 312.0 5 1560.0 96527.1 148293.5 537081.2 781901.8 100.00 
20  52.0 6 312.0 5 1560.0 96284.0 148293.5 537081.2 781658.7 99.97 
40  52.0 6 312.0 5 1560.0 96040.9 148293.5 537081.2 781415.6 99.94 

mC  

40  41.0 8 328.0 6 1968.0 95910.5 139628.6 1124688.7 1360227.8 173.96 
20  46.0 7 322.0 5 1610.0 96242.7 144044.1 829828.0 1070114.7 136.86 

0.0  52.0 6 312.0 5 1560.0 96527.1 148293.5 537081.2 781901.8 100.00 
20  63.0 5 315.0 4 1260.0 96211.7 152798.5 247620.9 496631.0 63.52 
40  92.0 3 276.0 4 1104.0 94014.9 158787.7 -36302.0 216500.6 27.69 

DC  

40  52.0 7 364.0 4 1456.0 96440.3 947747.4 -257935.5 786252.1 100.56 
20  51.0 7 357.0 4 1428.0 96381.4 547200.8 140348.5 783930.6 100.26 

0.0  52.0 6 312.0 5 1560.0 96527.1 148293.5 537081.2 781901.8 100.00 
20  51.0 6 306.0 5 1530.0 96470.0 -252662.4 936173.9 779981.4 99.75 
40  54.0 5 270.0 5 1350.0 96383.9 -647633.2 1329578.9 778329.6 99.54 

RC  

40  52.0 6 312.0 5 1560.0 973343.9 -727658.5 537081.2 782766.7 100.11 
20  52.0 6 312.0 5 1560.0 534935.5 -289682.5 537081.2 782334.2 100.06 

0.0  52.0 6 312.0 5 1560.0 96527.1 148293.5 537081.2 781901.8 100.00 
20  52.0 6 312.0 5 1560.0 -341881.4 586269.5 537081.2 781469.4 99.94 
40  52.0 6 312.0 5 1560.0 -780289.8 1024245.5 537081.2 781036.9 99.89 

RP  

40  - - - - - - - - - - 

20  78.0 4 312.0 4 1248.0 -351771.1 156464.7 522196.5 326890.1 41.81 
0.0  52.0 6 312.0 5 1560.0 96527.1 148293.5 537081.2 781901.8 100.00 
20  43.0 7 301.0 5 1505.0 560012.4 142000.5 542313.8 1244326.6 159.14 
40  37.0 8 296.0 5 1480.0 1029001.7 135570.7 545812.7 1710385.2 218.75 

m  

40  53.0 5 265.0 5 1325.0 96337.9 149831.6 541539.0 787708.5 100.74 
20  54.0 5 270.0 5 1350.0 96383.9 150272.7 537966.1 784622.7 100.35 

0.0  52.0 6 312.0 5 1560.0 96527.1 148293.5 537081.2 781901.8 100.00 
20  51.0 7 357.0 4 1428.0 96381.4 146307.5 536631.7 779320.5 99.67 
40  52.0 7 364.0 4 1456.0 96440.3 146709.9 533884.1 777034.2 99.38 
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1  and 2 by satisfying the conditions derived as shown in in equality conditions (12) and (13). 
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4. Numerical Illustration 

In this section, inventory replenishment policies have been demonstrated for a joint three echelon SC with finite 
production rate under stock dependent demand. To illustrate the mechanism of inventory control, a numerical example 
is devised based on a data collected from XYZ manufacturing firm.  

Table 1: Optimal Values of Decision Variables & Objective Function 

Parameter 
Coordinated Model under Stock Dependent Demand 

( a  = 5000, b = 5, P  = 6000) 

Replenishment quantity at retailer, *
Rq  52 

Number of  shipments from distributor to retailer, *
1  6 

Replenishment batch size at the distributor, *
Dq  312 

Number of shipments from manufacturer to distributor, *
2  5 

Production/replenishment batch size at the manufacturer, *
mq  1560 

Annual net revenue of the retailer, *
R  96527.1 

Annual net revenue of the distributor, *
D  148293.5 

Annual net revenue of the manufacturer, *
m  537081.2 

Annual net revenue of the supply chain, *
S  781901.8 

The values of the parameters associated with inventory cost: mA  = Rs. 1600/- per setup, DA  = Rs. 400/- per order, 

RA  = Rs. 400/- per order, mC  = Rs. 300/- per unit, DC  = Rs. 420/- per unit, RC  = Rs. 462/- per unit,  RP  = Rs. 485 
per unit, m  = Rs. 864 per shipment, 1D  = Rs. 216 per shipment, 2D  = Rs. 400 per shipment, R  = Rs. 100 per 
shipment, a  = 5000, b = 5, P  = 6000, k = 0.18 in Rs./Re./year. With the help of this case study data, the model is 
solved and the results are tabulated in Table 1.  

In addition, the sensitivity analysis is carried out in order to study the variation in optimality of decision parameters 
and objective function with respect to variation in model parameters. The values of the model parameters are varied 
at some fixed proportionate ratio and the results are tabulated in Table 2. From this table it is apparent that significant 
variation is observed in the optimality of inventory and shipment decisions with respect to the variation in model 
parameters. Also, the variation in optimality of annual net revenues of the retailer, distributor, manufacturer and SC 
is significant. However, there is no variation in the optimality of inventory and shipment decisions as well as in annual 
net revenue of the manufacturer with respect to the variation in unit cost of the retailer.  

5. Conclusions 

In this research work, a mathematical model is developed for a joint three-level supply chain with a single 
manufacturer, single distributor a single retailer. In the proposed mathematical model, the production rate is assumed 
as finite and the demand is expressed in terms stock level. Ordering/setup costs, carrying costs and transportation costs 
are considered for model development. Optimal inventory and shipment decisions are considered as decision 
variables.  

From the findings of the research, it is concluded that annual net revenue (ANR) of the coordinated SC is concave 
with respect to shipment frequency (SF) from distributor to retailer and retailer’s replenishment quantity. ANR is 
concave with respect to SF from manufacturer to distributor and retailer’s replenishment quantity. Also, ANR is 
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concave with respect to SF from manufacturer to distributor and from distributor to retailer. The variation in optimality 
of inventory and shipment decisions is significant with respect to the variation in model parameters. The variation in 
the optimality of ANR of the retailer, distributor, manufacturer and SC is significant. However, no variation is found 
in the optimality of inventory and shipment decisions as well as in ANR of the manufacturer with respect to the 
variation in unit cost of the retailer. 

Table 2: Sensitivity Analysis 

Parameter (in %) *
Rq  *

1  *
Dq  *

2  *
mq  *

R  *
D  *

m  *
S  

% Variation  

in *
S   

mA  

40  52.0 6 312.0 4 1248.0 96223.2 147989.7 540065.6 784278.5 100.30 
20  53.0 6 318.0 4 1272.0 96278.3 148411.9 538363.9 783054.1 100.15 

0.0  52.0 6 312.0 5 1560.0 96527.1 148293.5 537081.2 781901.8 100.00 
20  52.0 6 312.0 5 1560.0 96527.1 148293.5 536108.9 780929.5 99.88 
40  53.0 6 318.0 5 1590.0 96576.1 148709.7 534647.8 779933.6 99.75 

DA  

40  53.0 6 318.0 4 1272.0 96278.3 149007.5 537172.7 782458.5 100.07 
20  53.0 6 318.0 4 1272.0 96278.3 148709.7 537172.7 782160.7 100.03 

0.0  52.0 6 312.0 5 1560.0 96527.1 148293.5 537081.2 781901.8 100.00 
20  52.0 6 312.0 5 1560.0 96527.1 148050.5 537081.2 781658.7 99.97 
40  52.0 6 312.0 5 1560.0 96527.1 147807.4 537081.2 781415.6 99.94 

RA  

40  53.0 6 318.0 4 1272.0 96873.9 148411.9 537172.7 782458.5 100.07 
20  53.0 6 318.0 4 1272.0 96576.1 148411.9 537172.7 782160.7 100.03 

0.0  52.0 6 312.0 5 1560.0 96527.1 148293.5 537081.2 781901.8 100.00 
20  52.0 6 312.0 5 1560.0 96284.0 148293.5 537081.2 781658.7 99.97 
40  52.0 6 312.0 5 1560.0 96040.9 148293.5 537081.2 781415.6 99.94 

mC  

40  41.0 8 328.0 6 1968.0 95910.5 139628.6 1124688.7 1360227.8 173.96 
20  46.0 7 322.0 5 1610.0 96242.7 144044.1 829828.0 1070114.7 136.86 

0.0  52.0 6 312.0 5 1560.0 96527.1 148293.5 537081.2 781901.8 100.00 
20  63.0 5 315.0 4 1260.0 96211.7 152798.5 247620.9 496631.0 63.52 
40  92.0 3 276.0 4 1104.0 94014.9 158787.7 -36302.0 216500.6 27.69 

DC  

40  52.0 7 364.0 4 1456.0 96440.3 947747.4 -257935.5 786252.1 100.56 
20  51.0 7 357.0 4 1428.0 96381.4 547200.8 140348.5 783930.6 100.26 

0.0  52.0 6 312.0 5 1560.0 96527.1 148293.5 537081.2 781901.8 100.00 
20  51.0 6 306.0 5 1530.0 96470.0 -252662.4 936173.9 779981.4 99.75 
40  54.0 5 270.0 5 1350.0 96383.9 -647633.2 1329578.9 778329.6 99.54 

RC  

40  52.0 6 312.0 5 1560.0 973343.9 -727658.5 537081.2 782766.7 100.11 
20  52.0 6 312.0 5 1560.0 534935.5 -289682.5 537081.2 782334.2 100.06 

0.0  52.0 6 312.0 5 1560.0 96527.1 148293.5 537081.2 781901.8 100.00 
20  52.0 6 312.0 5 1560.0 -341881.4 586269.5 537081.2 781469.4 99.94 
40  52.0 6 312.0 5 1560.0 -780289.8 1024245.5 537081.2 781036.9 99.89 

RP  

40  - - - - - - - - - - 

20  78.0 4 312.0 4 1248.0 -351771.1 156464.7 522196.5 326890.1 41.81 
0.0  52.0 6 312.0 5 1560.0 96527.1 148293.5 537081.2 781901.8 100.00 
20  43.0 7 301.0 5 1505.0 560012.4 142000.5 542313.8 1244326.6 159.14 
40  37.0 8 296.0 5 1480.0 1029001.7 135570.7 545812.7 1710385.2 218.75 

m  

40  53.0 5 265.0 5 1325.0 96337.9 149831.6 541539.0 787708.5 100.74 
20  54.0 5 270.0 5 1350.0 96383.9 150272.7 537966.1 784622.7 100.35 

0.0  52.0 6 312.0 5 1560.0 96527.1 148293.5 537081.2 781901.8 100.00 
20  51.0 7 357.0 4 1428.0 96381.4 146307.5 536631.7 779320.5 99.67 
40  52.0 7 364.0 4 1456.0 96440.3 146709.9 533884.1 777034.2 99.38 
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Table 2: Sensitivity Analysis (Continued) 

The rate of decrease in ANR of the SC is same with respect to the variation in ordering cost of the distributor and 
retailer. It is also concluded that the rate of decrease in ANR of the SC is more with respect to variation in setup cost 
of the manufacturer rather than ordering cost of the distributor and retailer. The rate of decrease in ANR of the SC is 
more with respect to transportation cost incurred to distributor to deliver the shipment to the retailer whereas rate of 
decrease in net revenue is less with the distributor transportation cost incurred to receive the goods from manufacturer.   
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Table 2: Sensitivity Analysis (Continued) 

The rate of decrease in ANR of the SC is same with respect to the variation in ordering cost of the distributor and 
retailer. It is also concluded that the rate of decrease in ANR of the SC is more with respect to variation in setup cost 
of the manufacturer rather than ordering cost of the distributor and retailer. The rate of decrease in ANR of the SC is 
more with respect to transportation cost incurred to distributor to deliver the shipment to the retailer whereas rate of 
decrease in net revenue is less with the distributor transportation cost incurred to receive the goods from manufacturer.   
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