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Abstract

The goal of this present paper is to study some new inequalities for a class of

differentiable functions connected with Chebyshev’s functionals by utilizing a

fractional generalized weighted fractional integral involving another function G in the

kernel. Also, we present weighted fractional integral inequalities for the weighted and

extended Chebyshev’s functionals. One can easily investigate some new inequalities

involving all other type weighted fractional integrals associated with Chebyshev’s

functionals with certain choices of ω(θ ) and G(θ ) as discussed in the literature.

Furthermore, the obtained weighted fractional integral inequalities will cover the

inequalities for all other type fractional integrals such as Katugampola fractional

integrals, generalized Riemann–Liouville fractional integrals, conformable fractional

integrals and Hadamard fractional integrals associated with Chebyshev’s functionals

with certain choices of ω(θ ) and G(θ ).
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1 Introduction

The Chebyshev functional [1] for two integrable functions U and V on [v1, v2] is defined

by

T(U ,V) =
1

v1 – v2

∫ v2

v1

U (ϑ)V(ϑ)dϑ

–
1

v1 – v2

(∫ v2

v1

U (ϑ)dϑ

)

1

v1 – v2

(∫ v2

v1

V(ϑ)dϑ

)

. (1.1)

The weighted Chebyshev functional (WCF in short) [1] for two integrable functions U

and V on [v1, v2] is defined by

T(U ,V ,�) =

∫ v2

v1

�(ϑ)dϑ

∫ v2

v1

�(ϑ)(ϑ)(ϑ)dϑ

–

∫ v2

v1

�(ϑ)(ϑ)dϑ

∫ v2

v1

�(ϑ)V(ϑ)dϑ , (1.2)
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where the function � is positive and integrable on [v1, v2]. Applications of (1.2) can be

found in the field of probability and statistical problems. Also, applications of functional

(1.2) can be found in the field of differential and integral equations. The readermay consult

[2–4].

Dragomir [5] defined the following inequality for two differentiable functions U and V :

∣

∣T(U ,V ,�)
∣

∣ ≤
∥

∥U ′
∥

∥

∥

∥V ′
∥

∥

[∫ v2

v1

�(ϑ)dϑ

∫ v2

v1

ϑ2
�(ϑ)dϑ –

(∫ v2

v1

ϑ�(ϑ)dϑ

)2]

,

where U ′,V ′ ∈ L∞(v1, v2) and the function � is positive and integrable on [v1, v2]. The re-

searchers have studied the functionals (1.1) and (1.2) and established certain remarkable

inequalities by employing different techniques. We refer the reader to [5–21]. The ex-

istence and uniqueness of a miscible flow equation through porous media with a non-

singular fractional derivative, unified integral inequalities comprising pathway operators,

certain results comprising the weighted Chebyshev functional using pathway fractional

integrals and integral inequalities associated with Gauss hypergeometric function frac-

tional integral operator can be found in [22–25].

Elezovic et al. [26] proved the following inequality for WCF:

∣

∣T(U ,V ,�)
∣

∣ ≤
1

2

(∫ v2

v1

∫ v2

v1

�(ξ )�(ζ )|ξ – ζ |
1
p′
+ 1
q′

∣

∣

∣

∣

∫ ξ

ζ

∣

∣U ′(ϑ)
∣

∣

p
dϑ

∣

∣

∣

∣

r
p

dξ dζ

)
1
r

×

(∫ v2

v1

∫ v2

v1

h(ξ )h(ζ )|ξ – ζ |
1
p′
+ 1
q′

∣

∣

∣

∣

∫ ξ

ζ

∣

∣V ′(ϑ)
∣

∣

q
dϑ

∣

∣

∣

∣

r
q

dξ dζ

)
1
r′

≤
1

2

∥

∥U ′
∥

∥

∥

∥V ′
∥

∥

(∫ v2

v1

∫ v2

v1

�(ξ )h(ζ )|ξ – ζ |
1
p′
+ 1
q′ dξ dζ

)

, (1.3)

where U ′ ∈ Lp([v1, v2]), V
′ ∈ Lq([v1, v2]), p,q, r > 1, 1

p
+ 1

p′ = 1, 1
q
+ 1

q′ = 1 and 1
r
+ 1

r′
= 1.

In [9], the authors established the following fractional integral inequality for Chebyshev

functional (1.2):

2
∣

∣Iα
�(τ )Iα

�UV(θ ) – Iα
�U (θ )Iα

�V(θ )
∣

∣

≤
‖U ′‖p ‖V ′‖q

Ŵ2(α)

∫ θ

0

∫ θ

0

(θ – ϑ)α–1(θ – ζ )α–1|ϑ – ζ |�(ϑ)�(ζ )dϑ dζ ,

where U ′ ∈ Lp([0,∞[), V ′ ∈ Lq([0,∞[), p,q > 1, 1
p
+ 1

q
= 1.

The extended Chebyshev functional [27, 28] is defined by

T̃
(

U ,V ,�,�′
)

=

∫ v2

v1

�
′(ϑ)dϑ

∫ v2

v1

�(ϑ)U (ϑ)V(ϑ)dϑ

+

∫ v2

v1

�(ϑ)dϑ

∫ v2

v1

�
′(ϑ)U (ϑ)V(ϑ)dϑ

–

∫ v2

v1

�(ϑ)U (ϑ)dϑ

∫ v2

v1

�
′(ϑ)V(ϑ)dϑ

–

∫ v2

v1

�
′(ϑ)U (ϑ)dϑ

∫ v2

v1

�(ϑ)V(ϑ)dϑ . (1.4)
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Recently the researchers [29–38] presented certain remarkable inequalities by considering

certain type of fractional integrals.

This paper is designed as follows.

In Sect. 2, we present some well-known definitions. Section 3 is devoted to the weighted

fractional integral inequalities associatedwithChebyshev’s functionals (1.1) and (1.2) con-

cerning another function G in the kernel. In Sect. 4, we give some new weighted fractional

integral inequalities associated with weighted and extended Chebyshev’s functionals (1.3)

and (1.4) with respect to another function G in the kernel. Finally, we discuss concluding

remarks in Sect. 5.

2 Preliminaries

In this section, we present the preliminaries and definitions.

Definition 2.1 ([39, 40]) The function U is said to be in the space Lp,r[0,∞[ if

Lp,r[0,∞[=

{

U : ‖U‖Lp,r [0,∞[ =

(∫ s

r

∣

∣U (ϑ)
∣

∣

p
ϑ r dϑ

)
1
p

< ∞, 1≤ p <∞, r ≥ 0

}

. (2.1)

Applying r = 0 in (2.1) gives

Lp[0,∞[=

{

U : ‖U‖Lp[0,∞[ =

(∫ s

r

∣

∣U (ϑ)
∣

∣

p
dϑ

)
1
p

< ∞, 1≤ p < ∞

}

.

Definition 2.2 ([41]) Let the function U ∈ V1[0,∞[ and suppose that the function G is

positive, increasing andmonotone on [0,∞[ and having continuous derivativeG ′ on [0,∞[

with G(0) = 0. Then the function �1 defined on [0,∞[ (Lebesgue real-valued measurable

function) will be in the space X
p
G
(0,∞), (1≤ p < ∞) if

‖U‖Xp
G
=

(∫ s

r

∣

∣U (ϑ)
∣

∣

p
G ′(ϑ)dϑ

)
1
p

< ∞, 1 ≤ p < ∞.

When p = ∞, then

‖U‖X∞
G
= ess sup

0≤ϑ<∞

[

G ′(ϑ)U (ϑ)
]

.

Remark 2.1 Note that:

i. if we set G(ϑ) = ϑ for 1≤ p < ∞, then the space X
p
G
(0,∞) will coincide with the space

Lp[0,∞[,

ii. if G(ϑ) = lnϑ for 1 ≤ p < ∞, then the space X
p
G
(0,∞) will coincide with the space

Lp,r[1,∞[.

Definition 2.3 The Riemann–Liouville (R-L) fractional integrals (left- and right-sided)

I
κ
v1
and I

κ
v2
of order κ > 0, for a function U (θ ) are, respectively, given by

I
κ
v1
U (θ ) =

1

Ŵ(κ)

∫ θ

v1

(θ – ϑ)κ–1U (ϑ)dϑ , v1 < θ , (2.2)
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and

I
κ
v2
U (θ ) =

1

Ŵ(κ)

∫ v2

θ

(ϑ – θ )κ–1U (ϑ)dϑ , v2 > θ , (2.3)

where Ŵ is denoted by the well-known gamma function [42].

Definition 2.4 The one-sided R-L fractional integral Iκ
0 of order κ > 0, for a function U (θ )

is given by

I
κ
0U (θ ) =

1

Ŵ(κ)

∫ θ

0

(θ – ϑ)κ–1U (ϑ)dϑ , v1 < θ . (2.4)

Definition 2.5 ([43, 44]) Let the function U be an integrable in X
p
� (0,∞) and suppose the

function G is positive, increasing and monotone on [0,∞) and having continuous deriva-

tive on [0,∞) such that G(0) = 0. Then the generalized R-L left- and right-sided fractional

integrals of a function U concerning another function G are, respectively, defined by

(

G
Iv1

κU
)

(θ ) =
1

Ŵ(κ)

∫ θ

v1

(

G(θ ) – G(ϑ)
)κ–1

G ′(ϑ)�1(ϑ)dϑ , v1 < θ , (2.5)

and

(

G
I

κ
v2
U

)

(θ ) =
1

Ŵ(κ)

∫ v2

θ

(

G(ϑ) – G(θ )
)κ–1

G ′(ϑ)�(ϑ)dϑ , θ < v2, (2.6)

where κ ∈C with ℜ(κ) > 0.

Definition 2.6 ([45]) Let the function U be an integrable in X
p
� (0,∞) and suppose the

function G is positive, increasing and monotone on [0,∞) and having continuous deriva-

tive on [0,∞) such that G(0) = 0. Then the left-sided weighted fractional integral of a func-

tion U concerning another function G is defined by

(

G
v1
Iκ

ωU
)

(θ ) =
ω–1(θ )

Ŵ(κ)

∫ θ

v1

(

G(θ ) – G(ϑ)
)κ–1

ω(ϑ)G ′(ϑ)U (ϑ)dϑ , v1 < θ , (2.7)

where κ ,∈C with ℜ(κ) > 0.

Remark 2.2 The following new weighted fractional integrals can be easily obtained:

i. setting G(θ ) = θ in Definition 2.6, we get the followingweighted R-L fractional integral:

(

v1I
κ
ωU

)

(θ ) =
ω–1(θ )

Ŵ(κ)

∫ θ

v1

(θ – ϑ)κ–1ω(ϑ)U (ϑ)dϑ , v1 < θ .

ii. setting G(θ ) = ln θ in Definition 2.6, then we get the following weighted Hadamard frac-

tional integral operator:

(

x1I
κ
ωU

)

(θ ) =
ω–1(θ )

Ŵ(κ)

∫ θ

v1

(ln θ – lnϑ)κ–1ω(ϑ)U (ϑ)
dϑ

ϑ
, v1 < θ .
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iii. setting G(θ ) = θη

η
, η > 0 in Definition 2.6, then we obtain the following weighted

Katugampola fractional integral:

(

v1I
κ
ωU

)

(θ ) =
ω–1(θ )

Ŵ(κ)

∫ θ

v1

(

θη – ϑη

η

)κ–1

ω(ϑ)U (ϑ)
dϑ

ϑ1–η
, v1 < θ .

Similarly, one can obtain other type of weighted fractional integrals.

Remark 2.3 The following new weighted fractional integrals can be easily obtained:

i. setting ω(θ ) = 1 and G(θ ) = θ in Definition 2.6, we get (2.2),

ii.setting ω(θ ) = 1 in Definition 2.6, then it will reduce to the left-sided generalized R-L

fractional integral operator (2.5),

iii. setting ω(θ ) = θu and G(θ ) = ln θ in Definition 2.6, then it will reduce to the left-sided

Hadamard integral operator [43, 44],

iv. setting G(θ ) = θη

η
, η > 0 and ω(θ ) = 1 in Definition 2.6, then it will reduce to the left-

sided Katugampola [40] fractional integral,

v. setting ω(θ ) = 1 and G(θ ) = θα+s

α+s
(where α ∈ (0, 1], s ∈R and α + s 	= 0) in Definition 2.6,

then it reduces to the left-sided generalized fractional conformable integral given by [46],

vi. setting ω(θ ) = 1 and G(θ ) = (θ–x1)
α

α
, α > 0 in Definition 2.6, then it reduces to the

fractional conformable integral defined by Jarad et al. [47].

In this paper, we consider the following one-sided generalized weighted fractional inte-

gral.

Definition 2.7 Let the function U be an integrable in the space X
p
U
(0,∞) and suppose the

function G is positive, increasing and monotone on [0,∞) and having continuous deriva-

tive on [0,∞) such that G(0) = 0. Then the one-sided generalized weighted fractional in-

tegral of the function �1 concerning another function G in the kernel is defined by

(

G
ωI

κ
0U

)

(θ ) =
ω–1(θ )

Ŵ(κ)

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1

ω(ϑ)G ′(ϑ)U (ϑ)dϑ . (2.8)

3 Weighted fractional integral inequalities associated with Chebyshev’s

functional

In this section, we present weighted fractional integral inequalities for a class of differen-

tiable functions connected with Chebyshev’s functional (1.1).

Theorem 1 Let the two function U and V be differentiable on [0,∞) such that U ′,V ′ ∈

L∞([0,∞[) and assume that the function G is increasing, positive and monotone on [0,∞[

and having continuous derivative on [0,∞[ such that G(0) = 0. Then, for all θ > 0, κ > 0,

the following weighted fractional integral inequality holds:

∣

∣

GIκ
0 ω(θ )GωI

κ
0UV(θ ) –

G
ωI

κ
0U (θ )

G
ωI

κ
0V(θ )

∣

∣

≤
∥

∥U ′
∥

∥

∞

∥

∥V ′
∥

∥

∞

[

GIκ
0 ω(θ )GωI

κ
0 θ2 –

(

G
ωI

κ
0 θ

)2]
, (3.1)

where GIκ
0 ω(θ ) is defined by

GIκ
0 ω(θ ) =

ω–1(θ )

Ŵ(κ)

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1

ω(ϑ)G ′(ϑ)dϑ .



Rahman et al. Advances in Difference Equations         ( 2021)  2021:18 Page 6 of 19

Proof Let us define

H(ϑ , ζ ) =
(

U (ϑ) – U (ζ )
)(

V(ϑ) – V(ζ )
)

; ϑ , ζ ∈ (0, θ ). (3.2)

Multiplying (3.2) by ω–1(θ )
Ŵ(κ)

(G(θ ) – G(ϑ))κ–1G ′(ϑ)ω(ϑ) and then integrating with respect to

ϑ over (0, θ ) and applying (2.7), we have

ω–1(θ )

Ŵ(κ)

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1

G ′(ϑ)ω(ϑ)H(ϑ , ζ )dϑ

= G
ωI

κ
0UV(θ ) – U (ζ )GωI

κ
0V(θ ) – V(ζ )GωI

κ
0U (θ ) + U (ζ )V(ζ )GIκ

0 ω(θ ). (3.3)

Again, multiplying (3.3) by ω–1(θ )
Ŵ(κ)

(G(θ ) – G(ζ ))κ–1G ′(ζ )ω(ζ ) and then integrating with re-

spect to ζ over (0, θ ), we have

ω–2(θ )

Ŵ2(κ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

G ′(ϑ)ω(ϑ)G ′(ζ )ω(ζ )H(ϑ , ζ )dϑ dζ

= 2
(

GIκ
0 ω(θ )GωI

κ
0UV(θ ) –

G
ωI

κ
0U (θ )

G
ωI

κ
0V(θ )

)

. (3.4)

Also, on the other hand, we have

H(ϑ , ζ ) =

∫ ζ

ϑ

∫ ζ

ϑ

U ′(x)V ′(y)dxdy. (3.5)

Since the functions U ′(x),V ′(y) ∈ L∞([0,∞[), we have

∣

∣H(ϑ , ζ )
∣

∣ ≤

∣

∣

∣

∣

∫ ζ

ϑ

U ′(x)dx

∣

∣

∣

∣

∣

∣

∣

∣

∫ ζ

ϑ

V ′(y)dy

∣

∣

∣

∣

≤
∥

∥U ′
∥

∥

∞

∥

∥V ′
∥

∥

∞
(ϑ – ζ )2. (3.6)

Thus, we can write

ω–2(θ )

Ŵ2(κ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

G ′(ϑ)ω(ϑ)G ′(ζ )ω(ζ )
∣

∣H(ϑ , ζ )
∣

∣dϑ dζ

≤
‖U ′‖∞ ‖V ′‖∞ω–2(θ )

Ŵ2(κ)

×

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

G ′(ϑ)ω(ϑ)G ′(ζ )ω(ζ ) (3.7)

×
(

ϑ2 – 2ϑζ + ζ 2
)

dϑ dζ .

From (3.7), we estimate the following inequality:

ω–2(θ )

Ŵ2(κ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

G ′(ϑ)ω(ϑ)G ′(ζ )ω(ζ )
∣

∣H(ϑ , ζ )
∣

∣dϑ dζ

≤ 2
∥

∥U ′
∥

∥

∞

∥

∥V ′
∥

∥

∞

[

GIκ
0 ω(θ )GωI

κ
0 θ2 –

(

G
ωI

κ
0 θ

)2]
. (3.8)

Hence, from (3.4) and (3.8), we get the desired proof. �
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Corollary 1 Let the two function U and V be differentiable on [0,∞) such that U ′,V ′ ∈

L∞([0,∞[) and assume that the function G is increasing, positive and monotone on [0,∞[

and having continuous derivative on [0,∞[ such that G(0) = 0. Then, for all θ > 0, κ > 0,

the following fractional integral inequality holds:

∣

∣

∣

∣

(G(θ ))κ

Ŵ(κ + 1)
GIκ

0UV(θ ) –
GIκ

0U (θ )
GIκ

0V(θ )

∣

∣

∣

∣

≤
∥

∥U ′
∥

∥

∞

∥

∥V ′
∥

∥

∞

[

(G(θ ))κ

Ŵ(κ + 1)
GIκ

0 θ2 –
(

GIκ
0 θ

)2
]

,

where GIκ
0 (1) is defined by

GIκ
0 (1) =

1

Ŵ(κ)

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1

G ′(ϑ)dϑ ,

(G(θ ))κ

Ŵ(κ + 1)
,

(

G(0) = 0
)

.

Theorem 2 Let the two function U and V be differentiable on [0,∞) such that U ′,V ′ ∈

L∞([0,∞[) and suppose that the function G is increasing, positive and monotone on [0,∞[

and having continuous derivative on [0,∞[ such that G(0) = 0. Then, for all θ > 0, κ , μ > 0,

the following weighted fractional integral inequality holds:

∣

∣

GI
μ
0 ω(θ )GωI

κ
0UV(θ ) +

GIκ
0 ω(θ )GωI

μ
0 UV(θ )

– G
ωI

κ
0U (θ )

G
ωI

μ
0 V(θ ) –

G
ωI

μ
0 U (θ )

G
μI

κ
0V(θ )

∣

∣

≤
∥

∥U ′
∥

∥

∞

∥

∥V ′
∥

∥

∞

[

GIκ
0 ω(θ )GωI

μ
0 θ2 – 2

(

G
ωI

κ
0 θ

)(

G
ωI

μ
0 θ

)

+ GI
μ
0 ω(θ )GωI

κ
0 θ2

]

. (3.9)

Proof Multiplying (3.3) by ω–1(θ )
Ŵ(μ)

(G(θ ) – G(ζ ))μ–1G ′(ζ )ω(ζ ) and then integrating with re-

spect to ζ over (0, θ ) and using (2.7), we have

ω–2(θ )

Ŵ(κ)Ŵ(μ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)μ–1

× G ′(ϑ)ω(ϑ)G ′(ζ )ω(ζ )H(ϑ , ζ )dϑ dζ

= GI
μ
0 ω(θ )GωI

κ
0UV(θ ) +

GIκ
0 ω(θ )GωI

μ
0 UV(θ )

– G
ωI

κ
0U (θ )

G
ωI

μ
0 V(θ ) –

G
ωI

μ
0 U (θ )

G
μI

κ
0V(θ ). (3.10)

Using (3.6), we get

ω–2(θ )

Ŵ(κ)Ŵ(μ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)μ–1

× G ′(ϑ)ω(ϑ)G ′(ζ )ω(ζ )
∣

∣H(ϑ , ζ )
∣

∣dϑ dζ

≤
‖U ′‖∞ ‖V ′‖∞ω–2(θ )

Ŵ(κ)Ŵ(μ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)μ–1

× G ′(ϑ)ω(ϑ)G ′(ζ )ω(ζ )
(

ϑ2 – 2ϑζ + ζ 2
)

dϑ dζ . (3.11)

From (3.10) and (3.11), we get the desired proof. �
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Corollary 2 Let the two functions U and V be differentiable on [0,∞) such that U ′,V ′ ∈

L∞([0,∞[) and assume that the function G is increasing, positive and monotone on [0,∞[

and having continuous derivative on [0,∞[ such that G(0) = 0. Then, for all θ > 0, κ , μ > 0,

the following fractional integral inequality holds:

∣

∣

∣

∣

(G(θ ))μ

Ŵ(μ + 1)
GIκ

0UV(θ ) +
(G(θ ))κ

Ŵ(κ + 1)
GI

μ
0 UV(θ )

– GIκ
0U (θ )

GI
μ
0 V(θ ) –

GI
μ
0 U (θ )

GIκ
0V(θ )

∣

∣

∣

∣

≤
∥

∥U ′
∥

∥

∞

∥

∥V ′
∥

∥

∞

[

(G(θ ))μ

Ŵ(μ + 1)
GIκ

0 θ2 – 2
(

GIκ
0 θ GI

μ
0 θ

)

+
(G(θ ))κ

Ŵ(κ + 1)
GI

μ
0 θ2

]

.

Remark 3.1 If we put κ = μ in Theorem 2, then we obtain Theorem 1.

Theorem 3 Let the two function U and V be differentiable on [0,∞) with V ′(τ ) 	= 0 and

assume that the function G is increasing, positive and monotone on [0,∞[ and having con-

tinuous derivative on [0,∞[ such thatG(0) = 0 and let there existM > 0 such that U ′(θ )
V ′(θ )

≤ M.

Then, for all θ > 0, κ , μ > 0, the following weighted fractional integral inequality holds:

∣

∣

GI
μ
0 ω(θ )GωI

κ
0UV(θ ) +

GIκ
0 ω(θ )GωI

μ
0 UV(θ )

– G
ωI

κ
0U (θ )

G
ωI

μ
0 V(θ ) –

G
ωI

μ
0 U (θ )

G
ωI

κ
0V(θ )

∣

∣

≤ M
[

GIκ
0 ω(θ )GωI

μ
0 V

2(θ ) – 2G
ωI

μ
0 V(θ )

G
ωI

κ
0V(θ ) +

GI
μ
0 ω(θ )GωI

κ
0V

2(θ )
]

. (3.12)

Proof Suppose that the functions U and V satisfy the hypothesis of Theorem 3. Then, for

every ϑ , ζ ∈ [0, θ ]; u 	= v, θ > 0, there exists a constant c between ϑ and ζ such that

U (ϑ) – U (ζ )

V(ϑ) – V(ζ )
=
U ′(c)

V ′(c)
.

Thus, for every ϑ , ζ ∈ [0, θ ], we have

∣

∣U (ϑ) – U (ζ )
∣

∣ ≤ M
∣

∣V(ϑ) – V(ζ )
∣

∣.

It follows that

∣

∣H(ϑ , ζ )
∣

∣ ≤ M
(

V(ϑ) – V(ζ )
)2
.

Therefore, we get

ω–2(θ )

Ŵ(κ)Ŵ(μ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)μ–1

× G ′(ϑ)ω(ϑ)G ′(ζ )ω(ζ )
∣

∣H(ϑ , ζ )
∣

∣dϑ dζ

≤
ω–2(θ )M

Ŵ(κ)Ŵ(μ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)μ–1

G ′(ϑ)ω(ϑ)G ′(ζ )ω(ζ )

×
(

V2(ϑ) – 2V(ϑ)V(ζ ) + V2(ζ )
)

dϑ dζ . (3.13)

Hence from (3.13), we get the desired inequality. �
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Setting ω = 1 in Theorem 4, then we led to the following new result in terms of general-

ized fractional integral concerning another function G in the kernel.

Corollary 3 Let the two function U and V be differentiable on [0,∞) with V ′(τ ) 	= 0 and

assume that the function G is increasing, positive and monotone on [0,∞[ and having con-

tinuous derivative on [0,∞[ such thatG(0) = 0 and let there existM > 0 such that U ′(θ )
V ′(θ )

≤ M.

Then, for all θ > 0, κ , μ > 0, the following fractional integral inequality holds:

∣

∣

∣

∣

(G(θ ))μ

Ŵ(μ + 1)
GIκ

0UV(θ ) +
(G(θ ))κ

Ŵ(κ + 1)
GI

μ
0 UV(θ )

– GIκ
0U (θ )

GI
μ
0 V(θ ) –

GI
μ
0 U (θ )

GIκ
0V(θ )

∣

∣

∣

∣

≤ M

[

(G(θ ))μ

Ŵ(μ + 1)
GIκ

0V
2(θ ) – 2GI

μ
0 V(θ )

GIκ
0V(θ ) +

(G(θ ))κ

Ŵ(κ + 1)
GI

μ
0 V

2(θ )

]

.

Corollary 4 Let the two function U and V be differentiable on [0,∞) with V ′(τ ) 	= 0 and

assume that the function G is positive,monotone and increasing on [0,∞[ and having con-

tinuous derivative on [0,∞[ such that G(0) = 0 and suppose there exists M > 0 such that
U ′(θ )
V ′(θ )

≤ M. Then, for all θ > 0, κ > 0, the following weighted fractional integral inequality

holds:

∣

∣

GIκ
0 ω(θ )GωI

κ
0UV(θ ) –

G
ωI

κ
0U (θ )

G
ωI

κ
0V(θ )

∣

∣

≤ M
[

GIκ
0 ω(θ )GωI

κ
0V

2(θ ) –
(

G
ωI

κ
0V(θ )

)2]
. (3.14)

Proof By considering κ = μ in Theorem 3, we get the desired corollary. �

Remark 3.2 If we consider ω(θ ) = 1 and G(θ ) = θ in Theorems 1–3, then we get the results

proved earlier by Dahmani [48].

Now, we present the generalization of Theorems 1 and 2.

Theorem 4 Let the two function U and V be differentiable and having same sense of vari-

ations on [0,∞) and the function � be a positive on [0,∞). Assume that the function G

is positive,monotone and increasing on [0,∞[ and having continuous derivative on [0,∞[

with G(0) = 0. IfU ′,V ′ ∈ L∞([0,∞[), then the following weighted fractional inequality holds

for all θ > 0, κ > 0;

0≤ G
ωI

κ
0 �(θ )

G
ωI

κ
0 �UV(θ ) –

G
ωI

κ
0 �U (τ )

G
ωI

κ
0 �V(θ )

≤
∥

∥U ′
∥

∥

∞

∥

∥V ′
∥

∥

∞

[

G
ωI

κ
0 �(θ )

G
ωI

κ
0 θ2

�(τ ) –
(

G
ωI

κ
0 θ�(θ )

)2]
. (3.15)

Proof Define

H(ϑ , ζ ) =
(

U (ϑ) – U (ζ )
)(

V(ζ ) – V(ζ )
)

;ϑ , ζ ∈ (0, θ ), θ > 0

= U (ϑ)V(ϑ) – U (ϑ)V(ζ ) – U (ζ )V(ϑ) + U (ζ )V(ζ ). (3.16)
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Since the functions U and V satisfy the hypothesis of Theorem 4, we have

H(ϑ , ζ )≥ 0.

Multiplying both sides of (3.16) by ω–1(θ )
Ŵ(κ)

(G(θ )–G(ϑ))κ–1G ′(ϑ)ω(ϑ)�(ϑ) and then integrat-

ing with respect to ϑ over (0, θ ) and using (2.7), we have

ω–1(θ )

Ŵ(κ)

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1

G ′(ϑ)ω(ϑ)�(ϑ)H(ϑ , ζ )dϑ

= G
ωI

κ
0 �UV(θ ) – V(ζ )GωI

κ
0 �U (θ ) – V(ζ )Gω

G
ωI

κ
0 �V(θ )

+ U (ζ )V(ζ )GωI
κ
0 �(θ ) ≥ 0. (3.17)

Again, multiplying (3.17) ω–1(θ )
Ŵ(κ)

(G(θ ) – G(ζ ))κ–1G ′(ζ )ω(ζ )�(ζ ) and then integrating with

respect to ζ over (0, θ ) and using (2.7), we get

ω–2(θ )

2Ŵ2(κ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

× G ′(ϑ)ω(ϑ)G ′(ζ )ω(ζ )�(ϑ)�(ζ )H(ϑ , ζ )dϑ dζ

= G
ωI

κ
0 �(θ )

G
ωI

κ
0 �UV(θ ) –

G
ωI

κ
0 �U (θ )

G
ωI

κ
0 �V(θ )≥ 0. (3.18)

From (3.6), it follows that

ω–2(θ )

2Ŵ2(κ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

× G ′(ϑ)ω(ϑ)G ′(ζ )ω(ζ )�(ϑ)�(ζ )
∣

∣H(ϑ , ζ )
∣

∣dϑ dζ

≤
‖U ′‖∞‖V ′‖∞ω–2(θ )

2Ŵ2(κ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

× G ′(ϑ)ω(ϑ)G ′(ζ )ω(ζ )�(ϑ)�(ζ )
(

ϑ2 – 2ϑζ + ζ 2
)

dϑ dζ . (3.19)

Consequently, it follows

ω–2(θ )

2Ŵ2(κ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

× G ′(ϑ)ω(ϑ)G ′(ζ )ω(ζ )�(ϑ)�(ζ )
∣

∣H(ϑ , ζ )
∣

∣dϑ dζ

≤ 2
∥

∥U ′
∥

∥

∞

∥

∥V ′
∥

∥

∞

[

G
ωI

κ
0 �(θ )

G
ωI

κ
0 θ2

�(θ ) –
(

G
ωI

κ
0 θ�(θ )

)2]
. (3.20)

According to (3.18) and (3.20), we get the desired proof. �

ApplyingTheorem4 forω = 1,we obtain the following new result in terms of generalized

fractional integral with respect to another function G in the kernel.

Corollary 5 Let the two function U and V be differentiable and having same sense of vari-

ations on [0,∞) and the function � be a positive on [0,∞). Assume that the function G is

increasing, positive and monotone on [0,∞[ and having continuous derivative on [0,∞[
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such that G(0) = 0. If U ′,V ′ ∈ L∞([0,∞[), then the following fractional inequality holds for

all θ > 0, κ > 0:

0≤ GIκ
0 �(θ )

GIκ
0 �UV(θ ) –

GIκ
0 �U (τ )

GIκ
0 �V(θ )

≤
∥

∥U ′
∥

∥

∞

∥

∥V ′
∥

∥

∞

[

GIκ
0 �(θ )

GIκ
0 θ2

�(τ ) –
(

GIκ
0 θ�(θ )

)2]
.

Remark 3.3 By considering �(θ ) = 1 in Theorem 4, we get Theorem 1. Similarly, taking

ω(θ ) = 1 and G(θ ) = θ , we obtain the result of Dahmani [49].

Theorem 5 Let the two function U and V be differentiable and having same sense of vari-

ations on [0,∞) and the function � be a positive on [0,∞). Suppose that the function G is

increasing, positive and monotone on [0,∞[ and having continuous derivative on [0,∞[

such that G(0) = 0. If U ′,V ′ ∈ L∞([0,∞[), then the following weighted fractional inequality

holds for all θ > 0, κ ,μ > 0:

0≤ G
ωI

κ
0 �(θ )

G
ωI

μ
0 �UV(θ ) +

G
ωI

μ
0 �(θ )

G
ωI

κ
0 �UV(θ )

– G
ωI

κ
0 �U (θ )

G
ωI

μ
0 �V(θ ) –

G
ωI

μ
0 �U (θ )

G
ωI

κ
0 �V(θ )

≤
∥

∥U ′
∥

∥

∞

∥

∥V ′
∥

∥

∞

[

G
ωI

κ
0 �(θ )

G
ωI

μ
0 θ2

�(θ )

– 2
(

G
ωI

κ
0 θ�(θ )GωI

μ
0 θ�(θ )

)

+ G
ωI

μ
0 �(θ )

G
ωI

κ
0 θ2

�(θ )
]

. (3.21)

Proof Multiplying both sides of (3.18) by ω–1(θ )
Ŵ(μ)

(G(θ ) – G(ζ ))μ–1G ′(ζ )ω(ζ )�(ζ ) and then

integrating with respect to ζ over (0, θ ) and using (2.7), we get

ω–2(θ )

Ŵ(κ)Ŵ(μ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)μ–1

× G ′(ϑ)ω(ϑ)G ′(ζ )ω(ζ )�(ϑ)�(ζ )H(ϑ , ζ )dϑ dζ

= G
ωI

κ
0 �(θ )

G
ωI

μ
0 �UV(θ ) +

G
ωI

μ
0 �(θ )

G
ωI

κ
0 �UV(θ )

– G
ωI

κ
0 �U (θ )

G
ωI

μ
0 �V(θ ) –

G
ωI

μ
0 �U (θ )

G
ωI

κ
0 �V(θ )≥ 0. (3.22)

From Eqs. (3.5) and (3.6), we have

ω–2(θ )

Ŵ(κ)Ŵ(μ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)μ–1

× G ′(ϑ)ω(ϑ)G ′(ζ )ω(ζ )�(ϑ)�(ζ )
∣

∣H(ϑ , ζ )
∣

∣dϑ dζ

≤
‖U ′‖∞‖V ′‖∞ω–2(θ )

Ŵ(κ)Ŵ(μ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)μ–1

× G ′(ϑ)ω(ϑ)G ′(ζ )ω(ζ )�(ϑ)�(ζ )
(

ϑ2 – 2ϑζ + ζ 2
)

dϑ dζ

=
∥

∥U ′
∥

∥

∞

∥

∥V ′
∥

∥

∞

[

G
ωI

κ
0 �(θ )

G
ωI

μ
0 θ2

�(θ ) – 2
(

G
ωI

κ
0 θ�(θ )GωI

μ
0 θ�(θ )

)

+ G
ωI

μ
0 �(θ )

G
ωI

κ
0 θ2

�(θ )
]

. (3.23)

Hence from (3.22) and (3.23), we get the desired proof. �
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ApplyingTheorem5 forω = 1,we obtain the following new result in terms of generalized

fractional integral with respect to another function G in the kernel.

Corollary 6 Let the two function U and V be differentiable and having same sense of vari-

ations on [0,∞) and the function � be a positive on [0,∞). Assume that the function G is

increasing, positive and monotone on [0,∞[ and having continuous derivative on [0,∞[

with G(0) = 0. If U ′,V ′ ∈ L∞([0,∞[), then the following fractional inequality holds for all

θ > 0, κ ,μ > 0:

0≤ GIκ
0 �(θ )

GI
μ
0 �UV(θ ) +

GI
μ
0 �(θ )

GIκ
0 �UV(θ )

– GIκ
0 �U (θ )

GI
μ
0 �V(θ ) –

GI
μ
0 �U (θ )

GIκ
0 �V(θ )

≤
∥

∥U ′
∥

∥

∞

∥

∥V ′
∥

∥

∞

[

GIκ
0 �(θ )

GI
μ
0 θ2

�(θ ) – 2
(

GIκ
0 θ�(θ )GI

μ
0 θ�(θ )

)

+ GI
μ
0 �(θ )

GIκ
0 θ2

�(θ )
]

.

Remark 3.4 Taking κ = μ in Theorem 5, we get Theorem 4. Similarly, taking h(θ ) = 1 in

Theorem 5, we get Theorem 2.

4 Weighted fractional integral inequalities associated with the weighted and

the extended Chebyshev functionals

The following results presented in this section related to extended, weighted Chebyshev

functionals.

Theorem 6 Let the two function U and V be differentiable on [0,∞) and the function

� be positive and integrable on [0,∞). Assume that the function G is increasing, positive

and monotone on [0,∞[ and having continuous derivative on [0,∞[ such that G(0) = 0. If

U ′ ∈ Lp([0,∞[), V ′ ∈ Lq([0,∞[), p,q, r > 1 with 1
p
+ 1

p′ = 1, 1
q
+ 1

q′ = 1 and 1
r
+ 1

r′
= 1, then the

following weighted fractional integral inequality holds for all τ > 0, α,β > 0;

2|GωI
κ
0 �(θ )

G
ωI

κ
0 �UV(θ ) –

G
ωI

κ
0 �U (θ )

G
ωI

κ
0 �V(θ )|

≤

(

‖U ′‖rpω
–r(θ )

Ŵr(κ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

× G ′(ϑ)ω(ϑ)G ′(ζ )ω(ζ )�(ϑ)�(ζ )|ϑ – ζ |
1
p′
+ 1
q′ dϑ dζ

)
1
r

×

(

‖V ′‖r
′

q ω–r′ (θ )

Ŵr′ (κ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

× G ′(ϑ)ω(ϑ)G ′(ζ )ω(ζ )�(ϑ)�(ζ )|ϑ – ζ |
1
p′
+ 1
q′ dϑ dζ

)
1
r′

≤
‖U ′‖p‖V

′‖qω
–2(θ )

Ŵ2(κ)

(∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

× G ′(ϑ)ω(ϑ)G ′(ζ )ω(ζ )�(ϑ)�(ζ )|ϑ – ζ |
1
p′
+ 1
q′ dϑ dζ

)

. (4.1)
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Proof Let us define

H(ϑ , ζ ) =
(

U (ϑ) – U (ζ )
)(

V(ϑ) – U (ζ )
)

;ϑ , ζ ∈ (0, θ )

= U (ϑ)V(ϑ) – U (ϑ)V(ζ ) – U (ζ )V(ϑ) + U (ζ )V(ζ ). (4.2)

Multiplying (4.2) by ω–1(θ )
Ŵ(κ)

(G(θ )–G(ϑ))κ–1G ′(ϑ)ω(ϑ)�(ϑ) and then integratingwith respect

to ϑ over (0, θ ) and using (2.7), we get

ω–1(θ )

Ŵ(κ)

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1

G ′(ϑ)ω(ϑ)�(ϑ)H(ϑ , ζ )dϑ

= G
ωI

κ
0 �UV(θ ) – V(ζ )GωI

κ
0 �U (θ ) – U (ζ )GωI

κ
0 �V(θ ) + U (ζ )V(ζ )GωI

κ
0 �(θ ). (4.3)

Again, multiplying (4.3) by ω–1(θ )
Ŵ(κ)

(G(θ ) – G(ζ ))κ–1G ′(ζ )ω(ζ )�(ζ ) and then integrating with

respect to ζ over (0, θ ) and using (2.7), we get

ω–2(θ )

Ŵ2(κ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1

×
(

G(θ ) – G(ζ )
)κ–1

G ′(ϑ)ω(ϑ)�(ϑ)G ′(ζ )ω(ζ )�(ζ )H(ϑ , ζ )dϑ dζ

= 2
(

G
ωI

κ
0 �(θ )

G
ωI

κ
0 �UV(θ ) –

G
ωI

κ
0 �U (θ )

G
ωI

κ
0 �V(θ )

)

. (4.4)

Also, on the other hand, we have

H(ϑ , ζ ) =

∫ ϑ

ζ

∫ ϑ

ζ

U ′(u)V ′(v)dudv. (4.5)

By employing the Hölder inequality, we have

∣

∣U (ϑ) – V(ζ )
∣

∣ ≤ |ϑ – ζ |
1
p′

∣

∣

∣

∣

∫ ϑ

ζ

∣

∣U ′(u)
∣

∣

p
du

∣

∣

∣

∣

1
p

(4.6)

and

∣

∣V(ϑ) – V(ζ )
∣

∣ ≤ |ϑ – ζ |
1
q′

∣

∣

∣

∣

∫ ϑ

ζ

∣

∣V ′(v)
∣

∣

q
dv

∣

∣

∣

∣

1
q

. (4.7)

Then H can be calculated as

∣

∣H(ϑ , ζ )
∣

∣ ≤ |ϑ – ζ |
1
p′
+ 1
q′

∣

∣

∣

∣

∫ ϑ

ζ

∣

∣U ′(u)
∣

∣

p
du

∣

∣

∣

∣

1
p
∣

∣

∣

∣

∫ ϑ

ζ

∣

∣V ′(v)
∣

∣

q
dv

∣

∣

∣

∣

1
q

. (4.8)

Therefore, from (4.4) and (4.8), we can write

2|GωI
κ
0 �(θ )

G
ωI

κ
0 �UV(θ ) –

G
ωI

κ
0 �U (θ )

G
ωI

κ
0 �V(θ )|

=
ω–2(θ )

Ŵ2(κ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1

×
(

G(θ ) – G(ζ )
)κ–1

G ′(ϑ)ω(ϑ)�(ϑ)G ′(ζ )ω(ζ )�(ζ )
∣

∣H(ϑ , ζ )
∣

∣dϑ dζ



Rahman et al. Advances in Difference Equations         ( 2021)  2021:18 Page 14 of 19

≤
ω–2(θ )

Ŵ2(κ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

G ′(ϑ)ω(ϑ)�(ϑ)G ′(ζ )ω(ζ )�(ζ )

× |ϑ – ζ |
1
p′
+ 1
q′

∣

∣

∣

∣

∫ ϑ

ζ

∣

∣U ′(u)
∣

∣

p
du

∣

∣

∣

∣

1
p
∣

∣

∣

∣

∫ ϑ

ζ

∣

∣V ′(v)
∣

∣

q
dv

∣

∣

∣

∣

1
q

dϑ dζ . (4.9)

Applying the Hölder inequality for a double integral to (4.9), we obtain

2|GωI
κ
0 �(θ )

G
ωI

κ
0 �UV(θ ) –

G
ωI

κ
0 �U (θ )

G
ωI

κ
0 �V(θ )|

≤
ω–2(θ )

Ŵ2(κ)

(∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

G ′(ϑ)ω(ϑ)�(ϑ)G ′(ζ )ω(ζ )�(ζ )

× |ϑ – ζ |
1
p′
+ 1
q′

∣

∣

∣

∣

∫ ϑ

ζ

∣

∣U ′(u)
∣

∣

p
du

∣

∣

∣

∣

r
p

dϑ dζ

)
1
r

×

(∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

G ′(ϑ)ω(ϑ)�(ϑ)G ′(ζ )ω(ζ )�(ζ )

× |ϑ – ζ |
1
p′
+ 1
q′

∣

∣

∣

∣

∫ ϑ

ζ

∣

∣V ′(v)
∣

∣

q
dv

∣

∣

∣

∣

r′

q

dϑ dζ

)
1
r′

. (4.10)

Now, using the following properties

∣

∣

∣

∣

∫ ϑ

ζ

∣

∣U ′(u)
∣

∣

p
du

∣

∣

∣

∣

≤
∥

∥U ′
∥

∥

p

p
and

∣

∣

∣

∣

∫ ϑ

ζ

∣

∣V ′(v)
∣

∣

q
dv

∣

∣

∣

∣

≤
∥

∥V ′
∥

∥

q

q
, (4.11)

then (4.10) can be written as

2| β
I

αh(τ ) β
I

αhfg(τ ) – β
I

αhf (τ ) β
I

αhg(τ )|

≤

(

‖U ′‖rpω
–r(θ )

Ŵr(κ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

G ′(ϑ)ω(ϑ)�(ϑ)

× G ′(ζ )ω(ζ )�(ζ )|ϑ – ζ |
1
p′
+ 1
q′ dϑ dζ

)
1
r
(

‖V ′‖r
′

p ω–r′ (θ )

Ŵr′ (κ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1

×
(

G(θ ) – G(ζ )
)κ–1

G ′(ϑ)ω(ϑ)�(ϑ)G ′(ζ )ω(ζ )�(ζ )|ϑ – ζ |
1
p′
+ 1
q′ dϑ dζ

)
1
r′

. (4.12)

From (4.12), we get

2| β
I

αh(τ ) β
I

αhfg(τ ) – β
I

αhf (τ ) β
I

αhg(τ )|

≤
‖U ′‖p‖V

′‖qω
–2(θ )

Ŵ2(κ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

× G ′(ϑ)ω(ϑ)G ′(ζ )ω(ζ )�(ϑ)�(ζ )|ϑ – ζ |
1
p′
+ 1
q′ dϑ dζ ,

which completes the desired proof. �

By considering ω(θ ) = 1 in Theorem 6, we get the following new result in terms of gen-

eralized fractional integral concerning another function G in the kernel.
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Corollary 7 Let the two functions U and V be differentiable on [0,∞) and the function

� be positive and integrable on [0,∞). Assume that the function G is increasing, positive

and monotone on [0,∞[ and having continuous derivative on [0,∞[ such that G(0) = 0. If

U ′ ∈ Lp([0,∞[), V ′ ∈ Lq([0,∞[), p,q, r > 1 with 1
p
+ 1

p′ = 1, 1
q
+ 1

q′ = 1 and 1
r
+ 1

r′
= 1, then the

following fractional integral inequality holds for all θ > 0, κ > 0;

2|GIκ
0 �(θ )

GIκ
0 �UV(θ ) –

GIκ
0 �U (θ )

GIκ
0 �V(θ )|

≤

(

‖U ′‖rp

Ŵr(κ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

G ′(ϑ)G ′(ζ )�(ϑ)�(ζ )

× |ϑ – ζ |
1
p′
+ 1
q′ dϑ dζ

)
1
r

×

(

‖V ′‖r
′

q

Ŵr′ (κ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

G ′(ϑ)G ′(ζ )�(ϑ)�(ζ )

× |ϑ – ζ |
1
p′
+ 1
q′ dϑ dζ

)
1
r′

≤
‖U ′‖p‖V

′‖q

Ŵ2(κ)

(∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

G ′(ϑ)G ′(ζ )�(ϑ)�(ζ )

× |ϑ – ζ |
1
p′
+ 1
q′ dϑ dζ

)

.

Remark 4.1 Setting ω(θ ) = 1 and G(θ ) = θ in Theorem 6, we get the inequality proved by

Dahmani et al. [50]. Similarly, if we consider κ = ω(θ ) = 1 and G(θ ) = θ in Theorem 6, we

get the inequality (1.3) on [0, θ ].

Theorem 7 Let the two functions U and V be differentiable on [0,∞) and let the two

functions � and �′ be positive and integrable on [0,∞). Suppose that the function G is

increasing, positive and monotone on [0,∞[ and having continuous derivative on [0,∞[

such that G(0) = 0. If U ′ ∈ Lp([0,∞[), V ′ ∈ Lq([0,∞[), p,q, r > 1 with 1
p
+ 1

p′ = 1, 1
q
+ 1

q′ = 1

and 1
r
+ 1

r′
= 1, then the following weighted fractional integral inequality holds for all τ > 0,

α,β > 0:

2|GωI
κ
0 �

′(θ )GωI
κ
0 �UV(θ ) –

G
ωI

κ
0 �U (θ )

G
ωI

κ
0 �

′V(θ ) – G
ωI

κ
0 �

′U (θ )GωI
κ
0 �V(θ )

+ G
ωI

κ
0 �

′(θ )GωI
κ
0 �

′UV(θ )|

≤

(

‖U ′‖rpω
–r(θ )

Ŵr(κ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

G ′(ϑ)ω(ϑ)

× G ′(ζ )ω(ζ )�(ϑ)�′(ζ )|ϑ – ζ |
1
p′
+ 1
q′ dϑ dζ

)
1
r

×

(

‖V ′‖r
′

q ω–r′ (θ )

Ŵr′ (κ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

G ′(ϑ)ω(ϑ)

× G ′(ζ )ω(ζ )�(ϑ)�′(ζ )|ϑ – ζ |
1
p′
+ 1
q′ dϑ dζ

)
1
r′
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≤
‖U ′‖p‖V

′‖qω
–2(θ )

Ŵ2(κ)

(∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

G ′(ϑ)ω(ϑ)

× G ′(ζ )ω(ζ )�(ϑ)�′(ζ )|ϑ – ζ |
1
p′
+ 1
q′ dϑ dζ

)

. (4.13)

Proof Multiplying (4.3) by ω–1(θ )
Ŵ(κ)

(G(θ ) – G(ζ ))κ–1G ′(ζ )ω(ζ )�′(ζ ) and then integrating with

respect to ζ over (0, θ ) and using (2.7), we get

ω–2(θ )

Ŵ2(κ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

G ′(ϑ)ω(ϑ)�(ϑ)

× G ′(ζ )ω(ζ )�′(ζ )H(ϑ , ζ )dϑ dζ

= G
ωI

κ
0 �

′(θ )GωI
κ
0 �UV(θ ) –

G
ωI

κ
0 �U (θ )

G
ωI

κ
0 �

′V(θ )

– G
ωI

κ
0 �

′U (θ )GωI
κ
0 �V(θ ) +

G
ωI

κ
0 �

′(θ )GωI
κ
0 �

′UV(θ ). (4.14)

Using (4.8) in (4.14), we obtain

∣

∣

G
ωI

κ
0 �

′(θ )GωI
κ
0 �UV(θ ) –

G
ωI

κ
0 �U (θ )

G
ωI

κ
0 �

′V(θ ) – G
ωI

κ
0 �

′U (θ )GωI
κ
0 �V(θ )

+ G
ωI

κ
0 �

′(θ )GωI
κ
0 �

′UV(θ )
∣

∣

=
ω–2(θ )

Ŵ2(κ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

G ′(ϑ)ω(ϑ)�(ϑ)

× G ′(ζ )ω(ζ )�(ζ )
∣

∣H(ϑ , ζ )
∣

∣dϑ dζ

≤
ω–2(θ )

Ŵ2(κ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

G ′(ϑ)ω(ϑ)�(ϑ)G ′(ζ )ω(ζ )�′(ζ )

× |ϑ – ζ |
1
p′
+ 1
q′

∣

∣

∣

∣

∫ ϑ

ζ

∣

∣U ′(u)
∣

∣

p
du

∣

∣

∣

∣

1
p
∣

∣

∣

∣

∫ ϑ

ζ

∣

∣V ′(v)
∣

∣

q
dv

∣

∣

∣

∣

1
q

dϑ dζ . (4.15)

Applying similar arguments to those used in the proof of Theorem 6, we obtain the desired

proof. �

Applying Theorem 7 for ω = 1, then we are led to the following new result in terms of a

generalized fractional integral concerning another function G in the kernel.

Corollary 8 Let the two functions U and V be differentiable on [0,∞) and let the two func-

tions � and �′ be positive and integrable on [0,∞). Suppose that the functionG is increasing,

positive andmonotone on [0,∞[ and having continuous derivative on [0,∞[ with G(0) = 0.

If U ′ ∈ Lp([0,∞[), V ′ ∈ Lq([0,∞[), p,q, r > 1 with 1
p
+ 1

p′ = 1, 1
q
+ 1

q′ = 1 and 1
r
+ 1

r′
= 1, then

the following fractional integral inequality holds for all τ > 0, α,β > 0:

2|GIκ
0 �

′(θ )GIκ
0 �UV(θ ) –

GIκ
0 �U (θ )

GIκ
0 �

′V(θ ) – GIκ
0 �

′U (θ )GIκ
0 �V(θ )

+ GIκ
0 �

′(θ )GIκ
0 �

′UV(θ )|

≤

(

‖U ′‖rp

Ŵr(κ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

G ′(ϑ)G ′(ζ )�(ϑ)�′(ζ )

× |ϑ – ζ |
1
p′
+ 1
q′ dϑ dζ

)
1
r
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×

(

‖V ′‖r
′

q

Ŵr′ (κ)

∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

G ′(ϑ)G ′(ζ )�(ϑ)�′(ζ )

× |ϑ – ζ |
1
p′
+ 1
q′ dϑ dζ

)
1
r′

≤
‖U ′‖p‖V

′‖q

Ŵ2(κ)

(∫ θ

0

∫ θ

0

(

G(θ ) – G(ϑ)
)κ–1(

G(θ ) – G(ζ )
)κ–1

G ′(ϑ)G ′(ζ )�(ϑ)�′(ζ )

× |ϑ – ζ |
1
p′
+ 1
q′ dϑ dζ

)

.

Remark 4.2 Setting ω(θ ) = 1 and G(θ ) = θ in Theorem 7, then we obtain the result of

Dahmani [50]. Similarly, if we take κ = ω = 1 and G(θ ) = θ in Theorem 7, then we get the

inequality (1.4) on [0, θ ].

5 Concluding remarks

We presented some new weighted fractional integral inequalities for a class of differen-

tiable functions connected with Chebyshev’s, weighted Chebshev’s and extended Cheby-

shev’s functionals by utilizing weighted fractional integral operator recently introduced by

Jarad et al. [45]. These inequalities are more general than the existing classical inequalities

given in the literature. The special cases of our result can be found in [5, 15, 16, 48–50].

Also, one can easily obtain new fractional integral inequalities associated with Cheby-

shev”s, weighted Chebshev’s and extended Chebyshev’s functionals for another type of

weighted and classical fractional integrals such as Katugampola, generalized Riemann–

Liouville, classical Riemann–Liouville, generalized conformable and conformable frac-

tional integrals with certain conditions on ω and G given in Remarks 2.2 and 2.3.
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