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a b s t r a c t

Mg-doped ZnFe2O4 samples were prepared by a microwave com-
bustion method. The obtained samples were characterized by pow-
der X-ray diffraction (XRD), high resolution scanning electron
microscopy (HR-SEM), energy dispersive X-ray analysis, UV–Visi-
ble diffuse reflectance spectra (DRS), photoluminescence (PL) spec-
tra and vibrating sample magnetometer (VSM). XRD results
confirm the formation of cubic spinel-type structure with an aver-
age crystallite size in the range of 15–43 nm. Lattice parameter
decreases with increasing Mg concentration, due to the smaller
ionic radius of Mg2+ ion. The HR-SEM images show the morphology
of the samples as spherical shaped particles in agglomeration. The
broad visible emission band is observed in the entire PL spectrum.
The estimated band gap energy is found to decrease with increas-
ing Mg content (2.15–1.42 eV). The magnetization showed an
increasing trend with increasing Mg concentration (x = 0.5), due
to the rearrangement of cations at tetrahedral and octahedral sites.
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1. Introduction

Nanocrystalline spinel ferrites are the important class of materials having a variety of electronic,
magnetic and catalytic properties. The ferrite nanoparticles are having large number of applications
in different areas such as biomedical, ferrofluid, magnetic media, microwave, magnetocaloric refriger-
ation and gas sensors [1–8]. The ferrites are semiconductor materials with the formula MFe2O4, where
M can be a divalent metal cation [9].

Zinc ferrite (ZnFe2O4) is a normal spinel structure, where Zn2+ cations occupy tetrahedral sites [10].
They are chemically and thermally stable semiconductor materials suitable for a wide variety of appli-
cations including magnetic materials, catalysts, photocatalysts, magnetic resonance imaging (MRI),
drug delivery and pigments [11–13]. Recently, the nanoscale ZnFe2O4 has been extensively studied
by worldwide researchers, because of their unique size dependent physical and chemical properties
as compared to the bulk counterpart materials.

Several preparation techniques for ZnFe2O4 nanoparticles with uniform size have been developed
including co-precipitation, sonochemical emulsification, evaporation, sol–gel, hydrothermal, mechan-
ical milling, combustion method and reverse micelle technique [14–20]. However, in most of the
above cases, they require handling of large amounts of chemicals with long reaction time and low
yield, which usually make the process expensive as well as it pollutes the environment by the release
of toxic gases, and therefore, they are not suitable for large-scale industrial applications [21].

However, microwave combustion synthesis of nanomaterials is gaining much interest among
researchers, due to its unique features such as environment friendly method, short reaction time, ra-
pid heating, energy saving, and high reaction rate. During the microwave reaction, microwave energy
transforms into heat inside the material, which reduces the energy consumption, decreases the reac-
tion processing time and provides rapid, controllable and homogeneous volumetric heating to produce
the final products within few minutes [21–25].

This paper reports the effect of Mg-doping on structural, optical and magnetic properties of
Zn1�xMgxFe2O4 (x = 0.0, 0.1, 0.2, 0.3 0.4, 0.5, 0.6, 0.7 and 0.8) nanoferrite particles prepared by micro-
wave combustion method. Various characterization techniques have been carried out using X-ray
diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray
spectroscopy (EDX), UV–Visible diffuse reflectance spectra (DRS), photoluminescence (PL) spectra,
vibrating sample magnetometer (VSM) techniques and the results are presented herein.

2. Experimental

2.1. Materials and methods

All the chemicals used in this study were of analytical grade obtained from Merck, India and were
used as received without further purification. Zinc nitrate (Zn(NO3)2�6H2O, 98%), ferric nitrate
(Fe(NO3)3�9H2O, 98%) and magnesium nitrate (Mg(NO3)2�6H2O) were used as precursors and urea as
a fuel for this reaction. The compositions were prepared with the addition of magnesium of different
molar ratios (Zn1�xMgxFe2O4 with x = 0.0, 0.1, 0.2, 0.3 0.4, 0.5, 0.6, 0.7 and 0.8) to ZnFe2O4. For the
preparation of pure zinc ferrite using the microwave combustion technique, the precursor mixture
in urea was placed into a domestic microwave oven and exposed to the microwave energy in a
2.45 GHz multimode cavity at 750 W for 10 min. After the completion of the reaction, the solid pow-
der was obtained and then it was washed with ethanol and dried at 70 �C for 1 h. The as-prepared
samples, Zn1�xMgxFe2O4 with x = 0.0, 0.1, 0.2, 0.3 0.4, 0.5, 0.6, 0.7 and 0.8, were labeled as ZnFe2O4,
Zn0.9Mg0.1Fe2O4, Zn0.8Mg0.2Fe2O4, Zn0.7Mg0.3Fe2O4, Zn0.6Mg0.4Fe2O4, Zn0.5Mg0.5Fe2O4, Zn0.4Mg0.6Fe2O4,
Zn0.3Mg0.7Fe2O4 and Zn0.2Mg0.8Fe2O4 respectively.

The entire microwave combustion process produce zinc ferrite powders in a microwave-oven oper-
ated at a power of 750 W has produced ZnFe2O4 within 10 min. The proposed combustion reaction
may be as follows:

2ZnðNO3Þ2 �6H2OðSÞþ4FeðNO3Þ3 �9H2OðSÞþ4COðNH2Þ2ðSÞþ2O2ðgÞ!2ZnFe2O4ðSÞþ56H2OðgÞ "

þ4CO2ðgÞ "þ4N2ðgÞ "þ16NO2ðgÞ "
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2.2. Characterizations

The structural characterization of Mg-doped ZnFe2O4 (Zn1�xMgxFe2O4 with x = 0.0, 0.1, 0.2, 0.3 0.4,
0.5, 0.6, 0.7 and 0.8) nanoparticles were performed using Rigaku Ultima X-ray diffractometer equipped
with Cu Ka radiation (k = 1.5418 Å). Structural refinements using the Rietveld method was carried out
by PDXL program; both refined lattice parameters and crystallite size of the obtained ferrites were re-
ported. Morphological studies and energy dispersive X-ray analysis (EDX) of pure and Mg-doped
ZnFe2O4 nanoparticles have been performed with a Jeol JSM6360 high resolution scanning electron
microscope (HR-SEM). The UV–Visible diffuse reflectance spectrum (DRS) was recorded using Cary100
UV–Visible spectrophotometer to estimate their band gap energy. The photoluminescence (PL) prop-
erties were recorded using Varian Cary Eclipse Fluorescence Spectrophotometer. Magnetic measure-
ments were carried out at room temperature using a PMC MicroMag 3900 model vibrating sample
magnetometer (VSM) equipped with 1 Tesla magnet.

3. Results and discussion

3.1. X-ray diffraction (XRD) analysis

The structure and phase purity of the samples were confirmed by analyzing the X-ray powder dif-
fraction patterns. Fig. 1a–i, shows the XRD patterns of Zn1�xMgxFe2O4 samples prepared with various
Mg substitutions (x = 0.0, 0.1, 0.2, 0.3 0.4, 0.5, 0.6, 0.7 and 0.8). All the observed reflections could be
assigned to cubic spinel lattice indicating their single phase structure with no traces of other impurity
phases (e.g. Fe2O3, ZnO etc.). The peaks could be indexed as (220), (311), (400), (422), (511), (440)
and (533), which are characteristics of single-phase cubic spinel structure (JCPDS card no. 22-1012).
There is no additional peak for all compositions, which indicates that all the samples crystallize in sin-
gle-phase cubic structure [26].

The average crystallite size of the samples is calculated from the diffraction peak of the (311) plane
in the XRD profile, in accordance with Debye–Scherrer formula [21]:

20 30 40 50 60 70 80

2 Theta (degree)

In
te

ns
ity

 (
a.

u)
 

(2
20

) (3
11

) 
(2

22
) 

(4
00

) 

(4
22

) 

(5
11

) 

(4
40

) 

(5
33

) 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 

Fig. 1. (a–i) XRD patterns of (a) ZnFe2O4, (b) Zn0.9Mg0.1Fe2O4, (c) Zn0.8Mg0.2Fe2O4, (d) Zn0.7Mg0.3Fe2O4, (e) Zn0.6Mg0.4Fe2O4, (f)
Zn0.5Mg0.5Fe2O4, (g) Zn0.4Mg0.6Fe2O4, (h) Zn0.3Mg0.7Fe2O4, and (i) Zn0.2Mg0.8Fe2O4 samples.
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L ¼
0:89k
b cos h

where L is the average particle, k, the X-ray wavelength (0.1542 nm), b, full width at half maximum
(FWHM) and h, the Bragg angle of the (311) plane. The crystallite size of the samples was summarized
in Table 1. It has been observed that the crystallite size is decreased from 41.20–15.87 nm with in-
crease in Mg content [27]. It has a minimum crystallite size of 15.87 nm for 0.8 Mg concentration,
due to the smaller ionic radius of Mg2+ ions. Similar results were found by Rahman et al. [9].

In order to further analyze the structural change, the measured XRD patterns of the samples were
simulated based on the Rietveld refinement method. Rietveld XRD data analysis for the samples is
shown in Fig. 2a–i. It was designed to refine simultaneously both the structural and microstructural
parameters. During the refinements, the goodness of fit is defined by the reliability factor S = Rwp/Re,
where Rwp and Re, are, respectively, the R-weighted and the R-expected patterns. The obtained values
of the lattice parameter and crystallite sizes from the Rietveld analysis are shown in Fig. 3 and Table 1.
The lattice parameter of pure ZnFe2O4 is found to be equal to 8.443 Å, which is in good accordance
with the standard value of 8.441 Å (JCPDS No. 22-1012). The lattice parameter decreases with increas-
ing Mg content from 8.443 to 8.427 Å, thus obeying Vegard’s law [28]. The Vegard’s law is based on the
change due to ionic radii of replacing and replaced ions and predicts the linear change in the lattice
parameter for the spinel system with the substitution of different ions. The ionic radius of Mg2+ ion
(0.65 Å) is smaller than that of Zn2+ ion (0.83 Å), and thus causes an effective decrease in the lattice
constant. Similar results were reported earlier by Rahman et al. [9] and Salah et al. [27]. A linear de-
crease in the lattice spacing thus indicates that the Mg ions are replacing the Zn ions in Zn ferrite ma-
trix [24,28]. This explains the decrease of lattice constant with Mg doping and also confirms that Mg is
occupied in the lattice of spinel ferrite [29].

The thermodynamic solubility of the Mg-doped ZnFe2O4 system has attracted much interest. The
spinel solid solutions of Mg-doped ZnFe2O4 were prepared by a microwave heating using a nitrate
mixture of Zn, Fe, and Mg in the required ratio with urea as a fuel. During the microwave combustion,
the temperature increases up to 400 �C [30]. The ionic radius of Mg2+ is 0.65 Å, which is lower than
Zn2+ radius (0.83 Å); and thereby it can be easily soluble within ZnFe2O4 and produces solid solutions.
The formation of solid solutions was confirmed by X-ray diffraction analysis. Mg-doped zinc ferrite is a
spinel-type crystal and the solid solutions are considered to be the products of mixing of Mg in ZnFe2-
O4. It is well known that the thermodynamic solubility of the spinel solid solutions is connected with
the cation distribution [31]. On the other hand, cation distribution is closely related to their magnetic
properties. Thus, the choice of a proper composition of solid solutions will have a better control of the
magnetic properties of these materials, which are of interest for the electronic industry. From metal-
lurgical point of view, the formation of zinc ferrite during microwave heating is one of the major

Table 1

Lattice parameter, crystallite size (Scherrer formula, Rietveld analysis) and band gap values of Zn1�xMgxFe2O4 (x = 0.0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7 and 0.8) system.

Samples Lattice parameter
(Å)

Crystallite size D (nm) Band gap
(eV)

Strain
(%)

S (Goodness of
fit)

Rietveld analysis Scherrer
formula

Rietveld
analysis

ZnFe2O4 8.443 41.20 43 2.15 0.067 1.184
Zn0.9Mg0.1Fe2O4 8.441 39.35 41 2.01 0.066 1.137
Zn0.8Mg0.2Fe2O4 8.439 36.78 39 1.98 0.063 1.092
Zn0.7Mg0.3Fe2O4 8.435 31.59 37 1.96 0.060 1.102
Zn0.6Mg0.4Fe2O4 8.433 26.53 29 1.80 0.058 1.107
Zn0.5Mg0.5Fe2O4 8.431 19.59 21 1.75 0.055 1.105
Zn0.4Mg0.6Fe2O4 8.430 17.92 19 1.68 0.053 1.103
Zn0.3Mg0.7Fe2O4 8.429 16.28 17 1.55 0.050 1.101
Zn0.2Mg0.8Fe2O4 8.427 15.87 16 1.42 0.047 1.105
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obstacles, solubilising Mg in ZnFe2O4 during combustion. Therefore, acknowledge of the thermody-
namic solubility of zinc ferrite and its solid solutions are desirable [32,33].

3.2. Scanning electron microscopy (SEM) studies

The morphological characteristics of the obtained Zn1�xMgxFe2O4 (x = 0.0, 0.1, 0.2, 0.3 0.4, 0.5, 0.6,
0.7 and 0.8) nanoparticles were investigated by the high resolution scanning electron microscopy (HR-
SEM) and are shown in Fig. 4. HR-SEM images of Zn1�xMgxFe2O4 samples (Fig. 4a–i) reveal that all the
samples exhibit a compact arrangement of homogeneous nanoparticles with spherical shape. Fig. 4a
shows the presences of pure ZnFe2O4 nanoparticles, and Fig. 4b–i, shows the images of Mg-doped
Zn ferrite nanoparticles, which are homogeneous and agglomerated with diameter ranging from 40
to 43 nm for undoped and 35–15 nm for Mg-doped ZnFe2O4 samples. Nanoparticles are agglomerated
due to the presence of magnetic interactions among the particles [9].
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Fig. 2. (a–i) XRD pattern refinements using the Rietveld method of (a) ZnFe2O4, (b) Zn0.9Mg0.1Fe2O4, (c) Zn0.8Mg0.2Fe2O4, (d)
Zn0.7Mg0.3Fe2O4, (e) Zn0.6Mg0.4Fe2O4, (f) Zn0.5Mg0.5Fe2O4, (g) Zn0.4Mg0.6Fe2O4, (h) Zn0.3Mg0.7Fe2O4, and (i) Zn0.2Mg0.8Fe2O4

samples (experimental data, upper solid line: calculated pattern, lower solid line: intensity difference).
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3.3. Energy dispersive X-ray (EDX) analysis

EDX spectra of pure and magnesium doped zinc ferrites, Zn1�xMgxFe2O4 system (x = 0.0, 0.1, 0.2, 0.3
0.4, 0.5, 0.6, 0.7 and 0.8) are shown in Fig. 5a–i. Fig. 5a shows the peaks of Fe, Zn and O elements in
pure ZnFe2O4 and Fig. 5b–i, shows the peaks of Fe, Zn, Mg and O elements for Mg-doped ZnFe2O4 sam-
ples. The observed percentage of Mg/Zn value matches well with the amount of Mg/Zn used in the
respective precursors (inset of Fig. 5a–i). It is interesting to note that the preparation condition com-
pletely favors the formation of mixed ferrites and allow us to study the effect of increasing Mg content
on the properties of the zinc ferrite. The above mentioned results confirm the formation of pure and
Mg-doped ZnFe2O4 phase.

3.4. Diffuse reflectance spectroscopy (DRS) studies

To study the effect of crystallite size on the optical properties of ZnFe2O4 semiconductor ferrite
materials, the UV–Visible diffuse reflectance measurement was carried out. The band gap energy
can be approximately calculated from the optical reflectance data by the Kubelka–Munk function,
F(R) = (1 � R)2/2R, where R is the diffuse reflectance [21,34]. A graph is plotted between [F(R)ht]2

and ht, and the intercept obtained is the band gap energy (Fig. 6a–i). The estimated values of the band
gap of Zn1�xMgxFe2O4 (x = 0.0, 0.1, 0.2, 0.3 0.4, 0.5, 0.6, 0.7 and 0.8) nanoparticles are 2.15, 2.01, 1.98,
1.96, 1.80, 1.75, 1.68, 1.55 and 1.42 eV, respectively (Fig. 7 and Table 1). It clearly shows that there is a
decrease in the band gap of the Mg-doped ZnFe2O4 samples, when compared to the pure ZnFe2O4. The
band-gap (Eg) value of bulk ZnFe2O4 is 1.9 eV, and hence there is a blue shift for ZnFe2O4, Zn0.9Mg0.1-
Fe2O4, Zn0.8Mg0.2Fe2O4, Zn0.7Mg0.3Fe2O4 and red shift for Zn0.6Mg0.4Fe2O4, Zn0.5Mg0.5Fe2O4, Zn0.4Mg0.6-
Fe2O4, Zn0.3Mg0.7Fe2O4 and Zn0.2Mg0.8Fe2O4 samples. This may be due to the additional sub-band-gap
energy levels that are induced by the abundant surface and interface defects in the agglomerated
nanoparticles [35,36]. The shift in Eg of the Zn1�xMgxFe2O4 nanoparticles with the decreasing crystal-
lite size is the result of quantum confinement effects arising from the small size regime [37,38].

3.5. Photoluminescence (PL) studies

In order to study the defects and other impurity states of the system, photoluminescence (PL) spec-
tra of the Mg-doped ZnFe2O4 samples were recorded. Fig. 8 shows room temperature PL spectrum of
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Fig. 3. Evolution of the lattice parameter and crystallite size of Zn1�xMgxFe2O4 (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8)
system.
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Mg doped ZnFe2O4 system, i.e. Zn1�xMgxFe2O4 (x = 0.0, 0.1, 0.2, 0.3 0.4, 0.5, 0.6, 0.7 and 0.8). The sam-
ples were excited by using the excitation wavelength at 414 nm. All the samples showed the charac-
teristic near-band-edge (NBE) emission of pure and Mg-doped ZnFe2O4 at around 428 nm. A broader
visible emission band was obtained for all the samples centered at 428 nm, and is attributed to the
recombination of electrons deeply trapped in oxygen vacancies with photogenerated holes [39]. As
we increase the doping concentration of Mg into ZnFe2O4, overall intensities of the peak for all the
samples decrease. This behavior can be attributed to the appearance of new electronic levels between
the conduction and the valence band and might be due to the increase in intrinsic defects [21]. Similar
results were reported in other literatures, in which the values of the band gap energy given are 1.9 and
2.23 eV [40,41]. Fan et al. reported similar band gaps (2.1, 2.0 and 19 eV) for pure zinc ferrites with
three different ranges of particle sizes [42].

3.6. VSM measurements

The magnetic properties of the prepared samples have been determined at room temperature using
a vibrating sample magnetometer (VSM) in the applied filed ranging from �10 to +10 kOe. Hysteresis
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Fig. 4. (a–i) HR-SEM images of (a) ZnFe2O4, (b) Zn0.9Mg0.1Fe2O4, (c) Zn0.8Mg0.2Fe2O4, (d) Zn0.7Mg0.3Fe2O4, (e) Zn0.6Mg0.4Fe2O4, (f)
Zn0.5Mg0.5Fe2O4, (g) Zn0.4Mg0.6Fe2O4, (h) Zn0.3Mg0.7Fe2O4, and (i) Zn0.2Mg0.8Fe2O4 samples.
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plots showing the variation of magnetization (Ms, emu/g) as a function of applied magnetic field (H,
Oe) were plotted for prepared nanocrystalline Zn1�xMgxFe2O4 (x = 0.0, 0.1, 0.2, 0.3 0.4, 0.5, 0.6, 0.7
and 0.8) powders are shown in Fig. 9. ZnFe2O4 is a soft magnetic material, and when Zn2+ in ZnFe2O4

is substituted by Mg2+ ions, there is a severe change in the magnetic properties like saturation mag-
netization (Ms), remanent magnetization (Mr) and coercivity (Hc) as shown in Fig. 10(a–c) [43,44]. It is
observed that Ms of the Zn1�xMgxFe2O4 nanoparticles gradually increased with the increase of Mg2+

content until x = 0.5, and rapidly decreased for x larger than 0.5, i.e. x = 0.6, 0.7 and 0.8 (as shown in
Table 2). Hence, theMs of Zn1�xMgxFe2O4 nanoparticles depends on the distribution of Fe3+ ions among
tetrahedral and octahedral lattice sites, because both Mg2+ and Zn2+ ions are non-magnetic in nature.

The samples ZnFe2O4, Zn0.9Mg0.1Fe2O4 and Zn0.8Mg0.2Fe2O4 with lesser Mg concentration (x = 0.0,
0.1 and 0.2) showed superparamagnetic behavior. This indicates that Zn2+ ions occupied the tetrahe-
dral sites and Fe3+ ions at the octahedral sites, whereas the dopant Mg2+ ions occupied either octahe-
dral or tetrahedral sites [45], thus showing superparamagnetic behavior. Similar results were reported
in literature [46]. The Ms value of the samples Zn0.7Mg0.3Fe2O4, Zn0.6Mg0.4Fe2O4 and Zn0.5Mg0.5Fe2O4

are 25.31, 45.16 and 64.98 emu/g, respectively. There is an increase in the ferromagnetic behavior
for Zn0.7Mg0.3Fe2O4, Zn0.6Mg0.4Fe2O4 and Zn0.5Mg0.5Fe2O4 samples with increase in Mg2+ concentra-
tion. The value of Ms reached a maximum value of 64.98 emu/g, the x is 0.5. Increase of the net mag-
netization (Ms) with increasing Mg concentration is due to the misbalance of Fe3+ ions in octahedral
(B) and tetrahedral (A) sites, superexchange interactions and the non-collinear nature of moments
in the B-site, which results in the increase of the net magnetization [47,48]. Rahman et al. [9] prepared
Zn1�xMgxFe2O4 nanoparticles by co-precipitation method and they have reported that the Ms values
increase with increasing Mg content.

On further increasing the concentration of Mg in ZnFe2O4 nanocrystals, theMs value of the samples
Zn0.4Mg0.6Fe2O4, Zn0.3Mg0.7Fe2O4 and Zn0.2Mg0.8Fe2O4 are decreases (i.e. 58.62, 37.72 and 21.59 emu/g,

Fig. 5. (a–i) EDX spectra of (a) ZnFe2O4, (b) Zn0.9Mg0.1Fe2O4, (c) Zn0.8Mg0.2Fe2O4, (d) Zn0.7Mg0.3Fe2O4, (e) Zn0.6Mg0.4Fe2O4, (f)
Zn0.5Mg0.5Fe2O4, (g) Zn0.4Mg0.6Fe2O4, (h) Zn0.3Mg0.7Fe2O4, and (i) Zn0.2Mg0.8Fe2O4 samples.
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respectively). It is due to the dopant Mg2+ ions, which prefers to occupy the octahedral sites may push
Fe3+ to the A-site, which in turn decreases the value of Ms. However, the migration towards A-sites,
would lead to the increase of Fe3+ concentration in A-sites, which gives rise to antiparallel spin cou-
pling and spin canting, resulting in the weakening of A–B exchange coupling, and thereby decreases
the net magnetic moment [49–51]. The concentration and types of cations substitution also have very
dominant effect on the magnetic properties. According to the Neel’s two sublattice model of ferrimag-
netism [52], the magnetic moment per formula unit is expressed as,

MðXÞ ¼ jMBðxÞ �MAðxÞj

where, MB and MA are the B- and A-sublattice magnetic moment in lB respectively. Actually, the net
magnetic moment determines the Ms value. Zinc ferrite is a normal spinel, non-magnetic ion Zn2+ and
magnetic ion Fe3+ are distributed in A and B sites, respectively [53]. From the literatures [54–56], the
bulk magnesium ferrite (MgFe2O4) has an inverse spinel structure with the preference of Mg2+ cations
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occupying the octahedral sites. Both Zn2+ and Mg2+ divalent ions are nonmagnetic in nature. The Ms of
spinel ferrite nanoparticles is strongly influenced by the cationic distribution on tetrahedral and octa-
hedral lattice sites [9]

Generally, it is believed that ZnFe2O4 should not exhibit magnetic performance as B–B superex-
change interactions dominate and the B-sites magnetic moment is antiparallel to each other. However,
the distribution of cation can be changed obviously, when the grain size is decreased to the nano-size.
A part of Mg2+ may enter into B-site and Fe3+ enter into A-site simultaneously. As a result, the net
moment is departed from zero, which attributed to the enhancement of A–B interaction. In case of
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Table 2

Magnetic properties (coercivity, remanent magnetization and saturation magnetization) of Zn1�xMgxFe2O4 (x = 0.0, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7 and 0.8) system.

Samples Hc (Oe) Mr (emu/g) Ms (emu/g)

ZnFe2O4 5.027 0.0016 1.638
Zn0.9Mg0.1Fe2O4 6.771 0.0139 3.472
Zn0.8Mg0.2Fe2O4 20.76 0.1754 7.121
Zn0.7Mg0.3Fe2O4 22.91 1.1322 25.31
Zn0.6Mg0.4Fe2O4 36.25 5.5041 45.16
Zn0.5Mg0.5Fe2O4 65.96 11.565 64.98
Zn0.4Mg0.6Fe2O4 30.42 5.0418 58.62
Zn0.3Mg0.7Fe2O4 18.63 2.4871 37.72
Zn0.2Mg0.8Fe2O4 15.39 0.8765 21.59
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Mg-doped Zn ferrite, Zn2+ and Mg2+ ions prefer to inhabit the A- and B-sites, respectively, while Fe3+

prefers to inhabit both A-sites and B-sites. When the content of Mg larger is than 0.5, Ms would be de-
creased due to the A–B exchange interaction, which is weaker than the B–B interaction. Ms reached
maximum (64.98 emu/g) when the x is 0.5, which agreed with the previous reports [9,48,57]

The ferromagnetic behavior is absent in ZnFe2O4, Zn0.9Mg0.1Fe2O4 and Zn0.8Mg0.2Fe2O4 samples,
and this may be due to the non-equilibrium distribution of Fe3+ ions in tetrahedral and octahedral
sites, which is in good agreement with previous studies [45,58–60]. The non saturation observed
in MH loop, and the absence of the hysteresis, Mr and Hc indicate that the samples ZnFe2O4,
Zn0.9Mg0.1Fe2O4 and Zn0.8Mg0.2Fe2O4 have superparamagnetic behavior [61,62]. Moreover, the very
low value of Hc and Mr indicate that they are also soft magnets [63–66]. The lattice parameter
of the samples ZnFe2O4, Zn0.9Mg0.1Fe2O4, Zn0.8Mg0.2Fe2O4, Zn0.7Mg0.3Fe2O4, Zn0.6Mg0.4Fe2O4,
Zn0.5Mg0.5Fe2O4, Zn0.4Mg0.6Fe2O4, Zn0.3Mg0.7Fe2O4 and Zn0.2Mg0.8Fe2O4 decreased from 8.443 to
8.427 Å, due to the smaller ionic radius of Mg-doping (0.65 Å), leading to the contraction of the unit
cell volume, which in turn decrease the inter-atomic distance between the ions, and affects the
magnetic properties. Both structural and magnetic properties of Zn–Mg ferrite nanoparticles strongly
depend upon Mg2+ cation doping percentage.

4. Conclusions

Nanocrystalline pure and Mg-doped ZnFe2O4 (Zn1�xMgxFe2O4 with x = 0.0, 0.1, 0.2, 0.3 0.4, 0.5, 0.6,
0.7 and 0.8) samples have been successfully synthesized by a microwave combustion method using
urea as the fuel, with an average particle size of 15–43 nm. The formation of cubic spinel phase
was confirmed by XRD and the structural, optical and magnetic properties were analyzed. X-ray anal-
ysis confirmed the formation of the single phase for the compositions. The lattice parameter is reduced
from 8.443 to 8.427 Å by increasing Mg content. UV–Visible diffuse reflectance spectroscopy shows
that the energy band gap of the synthesized pure ZnFe2O4 nanoparticles is 2.15 eV and by increasing
the Mg-doping, it decreases from 2.01 to 1.42 eV. In the present study, Ms and Mr increased with
increasing Mg content. On doping Mg2+ ions, the ferromagnetic behavior increases (up to x = 0.5),
which changes the shape of M–H loops. The magnetization at the maximum field monotonically in-
creases with increasing Mg content x = 0.5, and rapidly decreased for x larger than 0.5, i.e. x = 0.6,
0.7 and 0.8, which is attributed to the change in the cationic distribution at tetrahedral and octahedral
sites. Smaller values of the coercivity showed the soft magnetic nature of these Zn1�xMgxFe2O4 nano-
particles. Thus, it can be concluded that the different changes occur in the properties of Mg doped
Zn-ferrite nanoparticles is due to the rearrangements of divalent metal cations at different lattice sites.
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